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Stability of quantum-fluid mixtures
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The absolute stability of quantum-fluid mixtures is examined in terms of long-range correla-

tions in the wave function. Divergent long-range fluctuations in the Jastrow part of the
ground-state wave function are shown to signal the location of the spinodal point, i.e., the limit-

ing concentration for supersaturation. Sample results are presented for two-component boson
fluids.

I. INTRODUCTION

Considerable interest has been shown recently in a
number of different quantum fluids, including mix-
tures such as 'He in 'He, spin-aligned 'He in He,
spin-aligned atomic hydrogen in 4He, and the mixture
of spin-aligned atomic hydrogen with spin-aligned
atomic deuterium or tritium. ' Of particular impor-
tance in the mixture case is the question of whether
the components will actually mix at any finite concen-
tration. '

It has long been known that isotopic bosons such
as spin-aligned hydrogen and spin-aligned tritium will

not mix at all at zero temperature. Crudely speak-
ing, the argument is that, since the interaction poten-
tial is identical between all of the isotopic particles,
the enhanced zero-point motion of the lighter-mass
particle when it is in solution, due to caging at the
preferential higher number density of the heavier-
mass particle, can only be overcome by complete
phase separation. In the case where one (or both) of
the isotopes is a fermion, this tendency to phase
separate is partially compensated by the fact that the
Fermi surface of the phase-separated state is larger
than in the mixed case, thus favoring mixing. Thus
He will admit up to a 6'lo concentration of 'He at

T = 0. This limit is essentially established by the
concentration at which the increased Fermi energy of
the phase-separated system is equal to the increased
kinetic energy due to caging in the mixed state. 3

The complete phase separation of isotopic boson
mixtures has been substantiated by Miller in his care-
ful work on the quantum theory of corresponding
states in mixtures. ' It is also shown there that it is
possible to have a finite concentration of one boson
component in another if the relative strengths of the
interaction potentials is favorable. In particular, an
increased attraction between unlike particles pro-
motes mixing. ' To make those calculations practi-
cal, Miller used the average correlation approxima-
tion (ACA) in which the spatial correlations in the
wave function are independent of the differences

between the constituents. While this permits a sur-
vey of a wide range of systems, the results become
less trustworthy as the physical differences between
the constituents increases.

In this paper we discuss a complementary theory
which is particularly well suited to examining the
properties of a given mixture, even in the case when
the constituents are substantially different. We ex-
amine the generalization to multicomponent systems
of the paired-phonon analysis (PPA) or, equivalently,
the Jastrow Euler-Lagrange analysis, ' of the ground
state of the system of interest. In contrast to the
ACA, this provides a maximum flexibility in the
correlation between the particles. An important con-
clusion of the present analysis is the ease with which
it identifies the absolute mechanical instability with

respect to phase separation, i.e., the location of the
spinodal curve (at T =0). Knowing this determines
the maximum concentration for a supersaturated
solution. While this is relatively easy to obtain if one
knows the enthalpy as a function of concentration,
since it corresponds to the onset of negative curva-
ture, that information is difficult to produce, except
in the ACA, because of the necessity of converting
from the density variable to the pressure variable.

II. STABILITY CRITERION

It has been shown that there is an intimate connec-
tion between the mechanical stability of a quantum
fluid and the long-wavelength behavior of its collec-
tive mode and its liquid structure function. On the
one hand, one knows that the zero-point motion of
the phonons appears in the ground-state wave func-
tion in the form of a Jastrow factor. " " Moreover, a
structural instability of the fluid may be associated
with the softening of the collective mode. " Similar-

ly, the liquid structure function S(k) is the suscepti-
bility for coupling to the phonon, and thus will show
an anomaly at a structural instability.

The latter effect is best known from the divergence
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of S (0) at the liquid-gas critical point, producing crit-
ical opalescence. It has also been exhibited in recent
theoretical work on the ground state of liquid 4He

(Ref. 14) and liquid He, 9 where the mechanical in-

stability occurs (as the density is lowered into the
negative pressure regime) at the density where the
compressibility E diverges. This cavitation instability
would only be accessible experimentally by superex-
panding the fluid. In contrast with finite temperature
cases such as the liquid-gas critical point, the
anomalous behavior of S (k ) does not appear in its
value at k =0+ (which must strictly vanish at zero
temperature) but rather in the slope of S (k ) at
k =0, which is proportional to E' and thus diverges
at the density of the instability. Correspondingly one
finds that the sound velocity c vanishes, producing a
softening of the phonon energy tck. The connection
between this long-wavelength behavior of S(k) and
the excitation spectrum p(k) is given as always, by
the Bijl-Feynmann relation"

8' k
2mS(k) '

which is exact in the long-wavelength limit.
We wish to show here that the analogous situation

occurs in quantum fluid mixtures. In addition to the
cavitation instability, there is also the possibility of a
long-wavelength instability corresponding to absolute
mechanical instability with respect to phase separation
in a two-component mixture. Generally, the number
of possible instabilities of this sort equals the number
of components in the mixture. In order to discuss
these instabilities in the mixture, we will briefly re-
view the generalization to multicomponent systems
of the relationships between the density fluctuation
spectra, the structure of the ground-state wave func-
tion, and the liquid structure functions. s' A matrix
notation is used to simplify the discussion.

Each of the n components of the mixture has a

density fluctuation operator p-„, 0. = 1, . . . , n. In

the long-wavelength limit, the operator producing
each of the n collective modes is a linear combination
of these density fluctuation operators. The generali-
zation of the Bijl-Feynmann equation for the disper-
sion relations is obtained by diagonalizing the n x n

matrix

t(k ) = S '~ (k )pp(k)S '~2(k )

where pp(k) =diag(lI2k2/2m, ), and S(k) is the
structure function matrix, with elements

S.s(k) = (N.Ns) "(Aol p k p -{4o),

(2)

where Pp is the normalized ground state. For a sys-
tem with short-range interactions, the long-wave-
length behavior of each component is linear':

lim S &(k) =y &k (4)

as is each of the dispersion relations':

lim p (k) =Eke
k~o

In the case of a two-component system, the in-phase
mode is a total density fluctuation mode, with veloci-
ty c+, while the out-of-phase mode is the concentra-
tion fluctuation, with velocity c . Here we wish to
point out that a long-wavelength instability to phase
separation in a mixture is signaled by the vanishing
of c, or, equivalently, by the divergence in the
slopes y & of the components of the liquid structure
functions at long wavelengths.

To formulate this stability criterion in a manner
useful for application in a calculation, we use the fact
that, as in the single-component quantum fluid, the
zero-point motion of the collective modes appears in
the ground-state wave function as a (multicom-
ponent) Jastrow factor. Thus, if we suppose that the
system has ground-state wave function Pp, we can
examine its stability against a small displacement of
the Jastrow type:

n

p„({r,])= exp —X X u &( r; —r; ) $p({r;])
aaP (i,I )a' P

(6)

A necessary condition that Pp be the ground state is that is satisfy the matrix of conditions

which can be written in the convenient form'

S'(k) =
4 {[1 S(k)]pp(k) +tp(k)[1 S(k)]]

where the matrix S' is defined by

S'p(k) = (N Np) v (pp{ V"[p-„p k
—(N Ns)' S s(k)] {Qp)

(g)

(9)
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and V'({r;j) is the Jackson-Feenberg function
whose expectation value is the energy of the system

2

V"({r;))= V({r;I)—X %~in/'
4m;

(10)

This set of equations is the multipcomponent general-
ization of the Euler-Lagrange equations for the op-
timum Jatrow factor in the ground state of a quan-
tum fluid. ""The prime in Eq. (9) signifies that S,'&
can be obtained as the g derivative of S &(k, g) de-
fined for the wave function p = exp

& (g V )pp. Note

from Eq. (9) that S'(k) is a fluctuation function, and
thus might be expected to exhibit anomalous proper-
ties at an instability. Moreover, it can be seen from
the right side of Eq. (8) that S'(k) vanishes as k' at
small k. As in the theory of critical points, it is
better to work with direct correlation functions (i.e.,
non-nodal functions) X &(k) and their g derivative
X.', (k):

X(k) =1—S '(k)

X'(Ic) = S '(Ic)S'(Ic)S 1(ic) (12)

hm ( 1/2S-1 1/2)2 lim 2 I/2X 1/2

k~0 k~0
(14)

Thus the right side of Eq. (14) must be positive, i.e.,
must have all positive eigenvalues, and is proportion-
al to k'. Moreover, it follows that the determinant of
the right side must be positive and proportional to
k'". Since Dete0 is also positive and proportional to
k ", it follows that

lim DetX'(k) & 0 .
k~0

(15)

The actual value of the left side of (15) may be
determined from Eq. (14) by using the invariance of
the determinant under permutation of the factors in a

product matrix, together with the relationship in Eq.
(2), to give

lim DetX'(k) = pm c'
k~0 a 1

which is the generalization of the one-component
result"

(16)

Then Eq. (8) can be converted to the useful result

(eo S eo —
&

ep) =2eo X eo + &eo —= Q(k)

(13)

In particular, the right side of (13) must be positive
definite. Since, in the long-wavelength limit,
S '(k) —k ' and eo- k', we see that

the system.
In the particular case of a two-component system,

the result is

DetX'(0+) = mlmpcj'. c' (18)

The velocities of the density fluctuation and concen-
tration fluctuation are evaluated elsewhere. ' The
result for the product which appears on the right of
Eq. (18) is

DetX'(0+) = ptpq(elle» —el'q ) (19)

BjXI BP 2
e11e22 e12 e22

~P1 ~2 ~P2
(20)

so that the vanishing of Eq. (16) with e & A 0 implies
that Bp„/Bp vanishes.

The location of the spinodal points is given by the
vanishing of DetX'(0+) in which case

e11e22 e122 = (21)

or, equivalently, either c+ or c vanishes. In fact, it
can be seen from the expressions in Ref. 16 that
c ' =0 whenever (21) is satisfied, although c+' van-
ishes only at the pont where e11=e12=e12=0. If
c ' = 0 but c+ & 0, the concentration mode has com-
pletely softened at k =0, so that the spinodal point
corresponds to an absolute mechanical instability with
respect to phase separation. When c+ also vanishes,
the density fluctuation mode has also completely
softened, which corresponds to the cavitation insta-
bility found at the maximum metastable negative
pressure in a one-component system. '

Expressions for the long-wavelength behavior of
S ~(k) at T=O (Ref. 17) show that the slope
diverges (elle» —e~'~) ' ' as the spinodal point is ap-
proached from within the metastable region. Howev-
er, if the spinodal point is the phase-separation insta-
bility so that c+ does not vanish, there is a linear
combination of S &(k) which has a nondiverging
long-wavelength slope, corresponding to the normali-
zation of the density fluctuation eigenstate.

At T A 0 the components of the liquid structure
factor have a finite value at k =0, proportional to T
with a coefficient which diverges as (c ) ' as c 0.
This is the concentration fluctuation effect analogous
to critical opalescence at a liquid-gas critical point.

where e & is the second derivative of the ground-
state energy density with respect to the number den-
sities p„. The right side of Eq. (19) is related to
more familiar forms of the thermodynamic stability"
by noting that'

lim X'(k) =mc =
k~0 pE

(17) III. APPLICATIONS

Thus it is clear that the positive value in (15) is
directly related to the absolute mechanical stability of

An advantage of the formulation of the stability
criterion in terms of X'(0) is that X'(k) is the key
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function in certain methods for solving the ground-
state problem. As a practical matter, one does not
actually know $0 as was presupposed in Sec. II. How-
ever, experience has shown that Jastrow functions
[i.e., functions of the form of Eq. (6) with yo being a
constant for boson systems or a Slater determinant
for fermion systems] provide good approximations to
ground-state wave functions of strongly correlated
systems. Moreover, the long-wavelength properties
of such systems are accounted for very we11 by a Jas-
trow function if that function is the solution of the
Euler-Lagrange equation for the energy ex-
tremum" ':

tential for all interactions:

0aP
V p(r) =4e s I'

12 ' I6
&aP

(23)

1
e = e]2

&
(e]]+e22) '(24)

For simplicity we choose ~~~ = ~» =—~ and define the
enhancement parameter K by

e), ——(I + ~)e

Then e reduces to

(25)

We follow Miller by parametrizing the potential with
an excess e parameter e (Ref. 1):

(22) 8 =ex (26)

Thus the appearance of long-wavelength instabilities,
when the wave function is the optimum Jastrow
function, may be taken as a strong indication of the
same instabilities in the exact ground state of the sys-
tem.

Alternative procedures have been developed to
solve the Euler-Lagrange equation for u (r) [Eq.
(22), (8), or (13)] which makes use of the function
X'(k), in effect attempting to reduce the difference
between the left and right sides of Eqs. (8) and (13)
with successive iteration. One of these procedures,
the paired-phonon analysis (PPA), ""has been gen-
eralized to multicomponent systems. ' The PPA is in-

itialized with a convenient choice of Jastrow func-
tion u s (r). The first iterate is defined by
u's(r) =uos(r)+/tu s(r), where /t, u s(r) is chosen
to minimize the expectation value of 0, in an ap-
proximate way, which is equivalent to diagonalizing
the Hamiltonian in the paired-phonon basis via a Bo-
goliubov transformation. " The matrix elements of
H in this basis depend in a simple way on X'(k).
Thus the iteration scheme is closely tied to a physical
basis, the diagonalization procedure. During the PPA
iteration process, the condition that the diagonaliza-
tion produces real excitation energies at small k is
that Q(k) [Eq. (13)] be a positive matrix [even
though it is no longer equal to the left side of Eq.
(13) unless the PPA has been iterated to conver-
gence]. Moreover, upon taking the determinant of
0 (k), this condition reduces to the absolute stability
condition of Eq. (15) in the long-wavelength limit.
The relationship between this determinant and the
excitation velocities [Eq. (16)] also holds for the op-
timized Jastrow function as long as the c are the
velocities which appear in the slopes of excitation
spectrum and S(k) at small k."

To illustrate the points discussed above we have
done several calculations on two-component boson
mixtures in the HNC/0 (hypernetted-chain) approxi-
mation as in Ref. 18. We use the Lennard-Jones po-
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FIG. 1. Det Q(k) [Eq. (13)j for a 6% concentration of
boson He in He at total denstiy p =0.0219 A for several
values of ~: 1, ~=0.015; 2, ~=0.02; 3, ~=0.03; 4,
]c=0.04; 5, ~=0.05.

so that K is a unitless scale for e allowing us to vary
the relative strength of the interspecies interaction.

Results for the finite k-dependent stability condi-
tion are shown in Fig. 1 for the final solutions of the
iterative procedure. The system under consideration
is a 6'/o concentration of boson He in He at a density
of 0.0218 A 3 with helium parameters in the
Lennard-Jones potential, except that the a~2 enhance-
rnent parameter x is in the range 0.050 down to
0.015. Note that the finite k-dependent stability con-
dition [Det II (k) & 0] is violated for ~ less than ap-

proximately 0.0215. Note, also, that it is first violat-
ed at k = 0, as should be expected for an infinite
wavelength instability. The absolute stabililty condi-
tion [Det X'(0) & 0] is examined as a function of ~
in Fig. 2. The fact that it appears to be a linear func-
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FIG. 2. Det X'(0+) as a function of K for the system
described in Fig. 1.

tion of ~ makes it easy to obtain the critical ~ value
for this density and concentration without being ob-
liged to approach it arbitrarily closely.

Figure 3 shows the T =0 S &(k) for several values
of K. Note that the closer K approaches the instabili-
ty, the larger the slope of S &(k) at small k, ap-
proaching an infinite slope at the instability. Note
also that the variation of S &(k) with ~ shows up
only at very small k, owing presumably to the rather
small values of K tested.

Included in Figs. 1 and 3 are apparent solutions of
the Euler-Lagrange equation from within the abso-
lutely unstable values of K. It should be stressed that
these are not solutions in the strict sense of the vari-
ational problem, but are an artifical effect due to the
choice of the step size in k space in our numerical
procedure. There are, in fact no solutions for these
values of K. Moreover, the analysis of Sec. II makes
it clear that, if this situation persists in the exact
ground-state solution, then the spinodal value of ~ is
the limiting point for the existence of a uniform
ground-state wave function. Beyond this spinodal
point, the ground state must be a state of two-phase
equilibrium. It should be added, however, that there
exists a well-defined energy function E(~) for K

beyond the spinodal point. In this unstable region,
E(tr) is the infimum of the quantity

(p(H (p)/(p(p) within the space of all uniform trial
functions p, and can be approached arbitrarily closely
from the above by suppressing the long-wavelength
fluctuations which arise in the solution of the corre-
sponding Euler-Lagrange equation.

our stability results are in semiquantitative agree-
ment with those of Miller where they can be com-
pared, ' though our method is very different. His
results are obtained by evaluating the curvature of
the enthalpy. Since he uses short-ranged Jastrow
functions, the instabilities cannot show up in long-
wavelength behavior of the S s(k), which in that
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FIG. 3. Theoretical optimal structure functions g &(k)
for a 6% concentration of boson He in He at total denstiy
p = 0.0219 A 3 for the values of ~ given in Fig. l.

case approach a finite value at k =0. However, the
absence of the correct long-wavelength behavior only
slightly affects the energy, the essential ingredient in
the excess enthalpy.

Isotopic mixtures correspond to the choice ~ =0,
all constitutents having the same interactions. As
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must be the case from more general arguments, we
find no solutions in the isotopic boson mixture 3He

bosons in ~He (as can be seen from Figs. 1 and 2) as
well as in the case of spin-aligned hydrogen in spin-
aligned tritium ('H-3H). The absolute stability con-
dition Eq. (15) is strongly violated at all concentra-
tions. It is interesting to note that it takes somewhat
more than a 2% enhancement of the attraction
between 'He (boson) and 4He atoms to overcome the
tendency to phase separate in a 6% solution.

It should be emphasized that in those cases where
the absolute stability condition is not violated, i.e.,
where we find a solution to the Euler-Lagrange equa-
tions, we cannot decide without calculating the excess
enthalpy whether the solution is a metastable system
lying in the two-phase region, or is stable.

Since our calculations have dealt exclusively with

boson mixtures, we should point out that the same
analysis with only slight modifications can be ap-
plied to mixtures having one or more fermion com-
ponent, which includes a number of physically in-

teresting examples. An interesting complication oc-
curs there because of Landau damping of one or
more of the collective modes, which should be
enhanced by the softening of the collective mode as
the instability is approached. Analysis of the one-
component fermion liquid has, however, demonstrat-
ed the existence of absolute instabilities at negative
pressures, a result which will have a straightforward
generalization to a multicomponent system.
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