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Frequency dependence of mutual friction in rotating He II
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Interaction of a second-sound wave with vortices in rotating He II results in an extra-
attenuation of the wave and a small decrease hu~ of the velocity of second sound. We
report accurate measurements, at 1.9 K, of both effects as functions of the angular veloci-

ty 0 and the second-sound frequency co. A resonator, whose fundamental mode was near
50 Hz, was specially designed for this work, with the purpose of extending the frequency
range commonly used. As suggested by Mehl, the velocity decrease hu2 has been inter-

preted in terms of an imaginary part of a complex mutual-friction parameter 8=8l
+i82. Thus, our measurements have consisted in determining the frequency dependence
(at 1.9 K) of 8l and 82. Just as previously pointed out by Mehl et al. , in connection
with their own data 82 vs T, it is found that the detailed predictions of the theory of Hall
and Vinen, in spite of the crude approximations contained in it, fit surprisingly well our
experimental data 8 l and 82 vs co. We have recently published a hydrodynamic theory
of mutual friction which provides an alternate explanation of our experimental results.
The latter theory was originally inspired by the present work, which conversely gives ex-

perimental evidence of its validity.

I. INTRODUCTION

He II contained in a uniformly rotating vessel is
threaded by a system of quantized vortex lines

parallel to the axis of rotation. At angular velocity

0, the number of lines crossing the unit area per-
pendicular to the axis of rotation is 2Q/a, where ~
the quantum of circulation. A second-sound wave

propagating perpendicular to vortices causes them
to oscillate at the second-sound frequency co. The
resulting line velocity Vl can be expressed in terms
of the normal and superfluid velocity fields of the

1incident wave, V„& and V, &, by the relation

BpN
Vz =V~ t

— v X (Vg )
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where B and B' are the two mutual-friction param-
eters, first introduced by Hall and Vinen; p is the
helium density, p„ the normal fluid density, and v
is a unit vector along the vortex line. The
mutual-friction force F, on the superfluid exerted

by unit length of vortex line is related to VL by the
Magnus formula:

F, =p,avX(V„—Vl ),
where p, is the superfluid density. The average
frIctional force per unit volume appearing in the

macrosopic equation of superfluid flow is equal to
the vortex density 2Q/a times F, . As shown by
Bekarevich and Khalatnikov, ' expressions (1) and

(2) for the line velocity and the mutual-friction
force can be introduced phenomenologically,
without relying on any specific model of vortex
motion.

Vortex motion is a dissipative process showing

up as an additional attenuation of second-sound in
rotating He II. The extra-attenuation constant is
proportional to the first coefficient B, or more
strictly to its real part B~, if a small imaginary
part B2 has to be considered. B~ has been exten-
sively measured as function of temperature 4 s; all

B~ vs T data agree (up to 2.1 K) within the com-
mon accuracy of measurements (5—10%).

Interaction of second sound with vortices entails,
as a side effect, a decrease in rotation of the
second-sound velocity u2. This is a minute effect
(

~
hu2/u2

~

—10 ' at Q- 1 sec '), which was first
observed and discussed by Vidal et al. ' and then

by Mehl et al. "" Au2 measurements as function
of temperature obtained by these two groups exhi-
bit strong discrepancies. To some extent, this ex-
plains why they also disagree about their theoreti-
cal interpretation. The initial purpose of the
present work was to clear up this point.

The effect of velocity decrease is most simply in-
terpreted if the mutual-friction parameter B is tak-
en as a complex quantity, as proposed by Mehl. '
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In their pioneering work on mutual friction, Hall
and Vinen (HV) did find a small imaginary term in
their expression for the mutual-friction force,
pointing out that such a component of force can
change the velocity of sound; they, however,
neglected it in later applications. Taking the HV
formulas literally, and writing 8 and 8' as
B&+iB2 and B'i +iBz, Mehl has shown that B2
can be calculated from the known values of Bi and
8'i. ' Experimental values of Bq determined from
the bu2 data of Miller, Lynall, and Mehl are in

good agreement with the calculation of Mehl. The
HV theory also predicts a weak dependence of 8
on second-sound frequency (see Sec. II). Sensitive
measurements of Bi, also reported in Ref. 13, have
revealed its frequency dependence, consistent with
the HV theory. Nevertheless, in view of the exper-
imental scatter (see Fig. 7 in Ref. 6), the frequency
range that was used (500—1700 Hz) was too nar-
row for the comparison with theory to be entirely
conclusive, especially as the correlative frequency
dependence of B2 was not observed.

For their part Vidal and Lhuillier' consider B
and 8' as real and frequency-independent quanti-
ties. Generalizing the equations of Bekarevich and
Khalatnikov, they instead introduce a new kinetic
coefficient v coupling the dissipative heat flux and
the mutual-friction force. Through their moving-
vortex model, v is related to the transported entro-

py per unit length of vortex line s„. The obvious
result of this additional term should be a velocity
reduction —Au2 ~ v~s„. Vidal and Lhuillier then
give a rough estimate of the transported entropy
s„, from which they derive a theoretical expression
for hu2 in reasonable agreement with their experi-
mental results.

In this paper we report accurate measurements
at 1.9 K of both the extra-attenuation and the de-
crease of u2 as function of the second-sound fre-
quency. This working temperature has been
chosen primarily because optimum performances
of our temperature control system are obtained at
about 1.9 K. ' Moreover, 1.9 K lies in the tem-
perature range where the coefficient B' is nearly
zero; vortex dynamics thereby are simplified, mak-
ing the comparison with theoretical models easier.
Our results turn out to be in very good agreement
with predictions of the HV model (Sec. II), in ac-
cordance with Mehl's point of view. One cannot,
however, adhere entirely to the HV model, which
is otherwise unable to explain the actual magnitude
of the principal term Bi, as explained in Sec. II.
Recently, we formulated a hydrodynamic theory of

mutual friction, ' the conclusions of which are
summarized in Sec. IV. This alternative theory
also accounts for the phase and frequency-
dependent effects investigated in this paper, while
predicting the correct values of Bi from 1.7 to
2.1 K.

II. THE HALL-VINEN MODEL

2p X
pnps& & +~

2p F
pnps& & + ~

(3)

where X and Yare functions of o~~ and Oi.
Near 1.9 K, a useful simplification will be

achieved by taking into account the relative small-
ness of the coefficient 8'. Measurements of 8' uti-
lize the fact that 8', together with the Coriolis
force, couples two degenerate modes in square or
cylindrical cavities. In spite of experimental
scatter, it can be stated that

~

8'
~

&0.1 over the
temperature range from 1.7 to 2.1 K. Since 8=1,
it follows from Eqs. (3) that

~

Y/X
~

=
~

8'/8
~

&0.1. Therefore, with accuracy better than 1%,8
can be written as

2p g —i

pnps&

X is given by an expression of the form

D 1X= +—,
D +(D' p„a)—

(4)

(5)

where D and D' are parameters proportional to the
collision diameters o

~~
and o.&. We will pay partic-

ular attention to the last term I /E. The normal
fluid velocity at the vortex line denoted as Vii (ro-

The original HV theory was refined by Hall'
and then reexamined by Hillel, Hall, and Lucas. '

In this paper we shall make use of the results and
notations of the theory in its final form, as
presented by Mehl.

The HV theory combines a.kinetic treatement of
roton-vortex collisions with purely hydrodynamic
arguments (Magnus effect, dragging of the normal
fluid). As a result, rather complicated relation-
ships are obtained, giving B and B' in terms of two
collision diameters o.

~~
and o j, which describe the

scattering of rotons by vortex lines. The derived
expressions for B and B' can be written in the
form'
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ton drift velocity) in the original papers, was ex-

pected to differ from the normal fluid velocity V„i
far from the line. HV related the difference be-

tween these velocities to the mutual-friction force
through the equation V„i—Vit E,——/8, where

—4rg
ln(L /25) + 1+in/4. (6)

A — (in@)+im /2
pnps&

16ngp
(7)

Here A stands for a real and frequency indepen-dent

expression involving o
~~

and oz. All terms in Eq.
(7) are dimensionless quantities; A -B-1 is the
main term, whereas the last two terms represent
small corrections. At 1.9 K, p„p,s'/16m. rip=0. 05.
It will be these small terms, however, that will be
investigated in the present work. Let x —iy be the
complex number in the large parentheses of Eq.
(7). Since y «x, terms of the order of (y/x) can
be neglected, so that Bi-1/x and Bz Y/x, or

pnps&
B) ——A— lnN

16m.gp
(8)

pnps
(9)

32'gp

It should be noted that the above expressions for B
and B' indeed do not constitute a complete theory
of mutual friction. B and B' are only being substi-
tuted by the other two unknown parameters o

~|

and 0.&. Several attempts have been made to calcu-
late the collision diameters from first principles.
However, as shown in the paper of Hillel et al. '6

(see their Fig. 1), none of the theoretical values of
cr~~ and ai derived in the literature can account for
the experimental data of B and B'. Thus, it turns
out that the only definite conclusions of the theory,
irrespective of the o's, just concern the weak fre-
quency dependence of Bi and Bz This frequenc. y
dependence, as well as the relation connecting B2
and B~, only involves well-known quantities, name-

ly p„, p„and ri. According to Eqs. (8) and (9), at
1.9 K, an imaginary part B2-0.07 should be asso-
ciated with a real part B~ of order unity, and dou-
bling the second-sound frequency should increase

Here L is the roton-roton mean free path, ri is the
normal fluid viscosity, and 5=(g/p„~)' ' is the
viscous penetration depth at the second-sound fre-

quency co/2mB. r.inging out the frequency-
dependent term and the imaginary part of 1/E in

Eqs. (4) and (5), we obtain

B=B)+iB2

Bi and B2 by 3.5% and 7%, respectively.
The authors, however, paid no attention to the

frequency dependence and phase effects implied
from their model. From the set of equations given
above it is clear that these effects originate only in
the term E as given by Eq. (6). However, Eq. (6)
itself results from an approximate calculation, us-
ing the naive model of a solid wire dragging an or-
dinary viscous fluid. As Hall has pointed out, ' it
is not obvious that the formula for E is correct.
Thus Eqs. (8) and (9) should be used with due cau-
tion, leading at best to qualitative conclusions.
Moreover, given the usual scatter of measurements
in rotating helium, the expected effects, if any, are
too weak to have been detected.

In view of the uncertainties contained in the
term 1/E, a careful derivation of simplified expres-
sions for B, such as Eqs. (7)—(9), seems somewhat
illusive. As a matter of fact, these equations
would not be worth writing, if they did not ac-
count for our experimental results remarkably well.

III. EXPERIMENT

A. The cavity

Variations due to rotation of the resonant ampli-
tude and frequency of standing waves have been
accurately measured. The second-sound frequency
co, which is the physical parameter of interest, is
varied by merely investigating different modes of
one single resonator. The experimental procedure
is quite similar to that described in two previous
papers. '

A resonator, which we shall refer to as the C
cavity (Fig. 1), was specially designed for the
present work with the purpose of extending the
frequency range as low as possible. It is obtained
from a torus of rectangular cross section by cutting
it and closing up along two meridian cross sec-
tions, so that the cavity is singly connected. The
axis of the torus coincides with the vertical axis of
rotation Oz. With cylindrical coordinates (r, 8,z),
the region of space inside the cavity is given by
r~ &r &r2, 0&8&8O, 0&z &h, where r~ ——25 mm,
r2 ——35 mm, 80——346', h =13 mm. The mean
length along a circular path of radius r =30 mm is
L =181 mm. The fundamental mode and its first
few harmonics are well separated and nondegen-
erate modes. The resonant frequencies, labeled co„,
corresponding to these longitudinal modes are close
to the eigenfrequencies nous/L of a long re. ctangu-
lar cavity of length L. At 1.9 K, the fundamental
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frequency of the C cavity is co~/2m. =53 Hz. Har-
monics up to the twenty-first (1100 Hz) have been

investigated.
Unless placed at nodes of the standing wave,

leaks coupling the helium inside the cavity with
the external helium bath may strongly affect the
second-sound response and lead to unreliable re-
sults. This point is discussed in the Appendix.
The cavity walls were machined from epoxy resin
rods and carefully bonded with an epoxy resin
adhesive (Araldite). Small holes were drilled at the
midlength of the cavity (8=80/2) to allow the heli-
um to flow and the dc heat to escape, these holes

being the only links between the cavity and the
helium bath. Therefore we only used odd harmon-
ics of the fundamental mode that have a node at
Hp/2.

B. Experimental principle

When the driving frequency is near one of the
characteristic frequencies co„so that the nth mode
is predominantly excited, the calculated amplitude
of the temperature field in the cavity, T~(r)e'"',
can be written as

~n
T, (r) = q&„(r),

1 i ( Q„/co„)(co —c—o„)

where p„(r )=f (r)cosnn. B/80 [f(r)=const. ] is

(10)

aJhesire

FIG. 1. (a) Cross-section view of the C cavity viewed

along the vertical rotation axis Oz. (b) Meridian cross
section in a plane through Oz. Dimesions are given in

the text.

the corresponding normalized eigenfunction (or
normal mode such as that defined in the Appen-
dix). The receiving bolometer, located near an an-

tinode of p„(r ), measures both amplitude and

phase of the temperature oscillation. The bolo-
metric signal s =X+iY is directly plotted on the
Argand diagram through the two channels of an
X-Y recorder. From Eq. (10), the frequency
response s (co) takes the form of a classical reso-
nance curve:

1

Qn

BiQ
+

Qno
(12)

BpQ
n =no—

2

Equation (12) is a classical result. Equation (13)
amounts to

(13)

hug hco„

u2

BgQ

2' (14)

and, in the latter form, follows at once from the
wave equation for second sound, provided 8 is
complex, as shown by Mehl. ' The response of a
rotating cavity for any given boundary condition is
calculated in the Appendix using a Green's-
function method, and Eqs. (10), (12), and (13) are
re-derived. We now wish to make two remarks
about these results.

First we note that the second coefficient B' does
not appear in the expressions for Q„and co„given
above. This simple circumstance does not result
from any approximation such as that used in Sec.
II. As shown in the Appendix, in the case of a
nondegenerate mode, 8', whether small or large,
complex or real, cannot affect the response of the
rotating resonator in any way.

On the other hand, Eqs. (12) and (13) describe
the effects that are expected with a uniform distri-
bution of vortices filling the cavity. As a better
approximation, we must allow for the narrow
vortex-free region existing along the walls of the
cavity. The effect of missing vortices is equivalent
to reducing the apparent value of 8, such as that
given from experiment through uncorrected equa-

~(~)=
1 i ( Q—„/co„)(co —co„)

If rotating helium is regarded as an homogeneous
medium with uniformly distributed vortices, the
quality factor Q„and the resonant frequency co„
should vary with the angular velocity Q according
to the following simple laws, to first order in the
small quantity 0/co:
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tions (12) and (13). In other words, B must be re-
placed in the equations by the product By, where y
is a filling factor less than unity, depending on
both the vortex state and the excited mode. This
question has been studied in detail in Ref. 13, both
by theory and experiment. At the thermodynamic
equilibrium, the vortex-free region has a uniform
width expressed in mm [see Eq. (23) of Ref. 13]

dp ——0.290 (15)

which is independent of the shape of the boun-
daries. As the radial variation of the wave field in
longitudinal modes of the C cavity is negligibly
small, we may use the same theoretical expression
for y as in a rectangular 1XL cavity:

y=1 — =1—0.0570-1/2
I

(16)

l now standing for the radial width of the C cavity
(1 =rz —ri). Thus, for example, the second-sound
attenuation should not yield the parameter 8I
directly, but instead the product B&y:

2N 1 1

0 Q„Q„o
At angular velocity 0=1 sec ', Eq. (16) gives
y=0.94. If B, is to be measured with an accuracy
of 1% or so, clearly the correcting factor y cannot
be disregarded.

(17)

C. Experimental results

At a given angular velocity 0 the frequency
response s (co) of the investigated mode iS plotted
by points for about 20 discrete values of the excit-
ing frequency. The accuracy and stability of
recorded points was about 0.1% of the maximum
signal A. This obviously required that all involved
parameters be carefully controlled. The rotational
speed was measured and regulated to a few parts in
10". During a run, we also ascertained that the ac
input power to the transmitter was stable to better
than 10 . Moreover, the signal is very sensitive
to small fluctuations of the driving frequency and,
since uz is temperature dependent, of the bath tem-
perature. At 1.9 K, and for typical Q-10, a
variation

~

M
~

-10 A should follow from
hey/co-10 or hT-10 K (b,ui/ui —10 ).
While taking advantage of the high-frequency sta-
bility of a synthesizer (-10 ), particular attention
must be paid to regulating the bath temperature.

Our temperature control system utilizes an auxi-

liary second-sound resonator of high quality factor
(Q -30.000 at 30 kHz). When driven at fixed fre-
quency, this resonator can be used as a sensitive
thermometer, the rapid variation of phase near res-
onance providing an error signal for regulation.
As the control resonator is a part of the rotating
system, it is important to note that the second
sound in it propagates parallel to vortices, and con-
sequently, is not affected by rotation. Even with
the assumption of the existence of a residual effect
huz/uz ~ 0/co of the form given by Eq. (14), it
still would be unimportant because of the relatively
high frequency used (30 kHz), As pointed out by
Miller et al., uz is also pressure dependent, so that
measurements should need corrections for changes
in the helium bath level (huz/ui-10 /cm He).
In our experiment, however, such corrections
proved unnecessary, since the physical parameter
we are actually regulating is not the temperature
but ui itself, i.e., the second sound v-elocity in sto
tionary helium. At 1.9 K, the long-term stability,
expressed in terms of temperature drift (at constant
helium level), was better than 10 K for periods
greater than 1 h.

The perfect circular shape of the resonance
curve, in accordance with Eq. (11), ensures that we

actually observe a well-separated nondegenerate
mode. It also guarantees the absence of nonlinear
distortion at resonance. The small background sig-
nal due to both electrical crosstalk at second-sound
frequency and weak excitation of distant modes
(see the Appendix) was negligibly small in our ex-

periment, so that the frequency-response curves
could be fitted to the theoretical resonance formula
directly, without background correction.

The quality factors Q„or Q„o were determined
from resonance curves with 0.5% accuracy. The
quantity Biy then was calculated using Eq. (17).
With the use of the data with the fundamental
mode of the C cavity, Fig. 2 shows the typical
dependence of Biy on angular velocity, which is
well fitted by the straight line

Biy=0.823(1—0.0530 ' ),
in good agreement with the predicted value of y as
that given by Eq. (16). This behavior is consistent
with earlier results obtained with rectangular cavi-
ties. ' It should be noted that the easy occurrence
of metastable states may considerably scatter the
observed values of B~y.' The data reported in
Fig. 2 were obtained by systematically achieving
thermodynamic equilibrium, as explained in Ref.
13.
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FIG. 2. Product of the mutual-friction parameter B&

and the filling factor y, as function of the angular velo-

city Q. As explained in the text, B&y was directly deter-

mined from measurements of Q factors, first in the sta-

tionary, then in the rotating resonator. This figure
shows the data obtained at 1.9 K in the C cavity (Fig. 1)

driven on its fundamental mode, co~~2m =53 Hz. B~y is

plotted as function of 0 ', showing the linear depen-

dence of y on 0 ' in agreement with Eq. (16). On ex-

trapolating the fitting line to Q~ ao, we obtain the
value of B& at 53 Hz, which will be used in Fig. 4.

On the other hand, the decrease in the resonance
frequency 5'„=co„o—co„yields the parameter Bz
From Eq. (13), after correcting for the factor y(Q),
we have

6 8 10 12

A{sec ")
FIG. 3. Mutual-friction parameter B2 as function of

the angular velocity Q. B2 was calculated for each 0,
using the measured resonant-frequency shift and

correcting for the factor y. This figure shows a set of
data with the fundamental mode of the C cavity at 1.9
K. By averaging these data we obtain the experimental

value of B2 at 53 Hz (solid line), which will be used in

Fig. 5.

Experimental points of B2 vs co are in excellent
agreement with this theoretical prediction. It is to
be emphasized that the calculation of the curve
B2(ro) from the Bt vs co data involves no free
parameter.

The frequency dependence of B2 has escaped
detection in the experiment of Miller et al. How-
ever, although the three values of B2 at 1.9 K, re-
ported in Fig. 3 of Ref. 6, unexpectedly decrease
with increasing frequency, they are roughly con-
sistent with our own data, whereas somewhat
higher values of B2 follow from the b, uz data of

1 2&~n
B =—

y 0 (18)
1.2

Experimental results of B2 vs 0 for the fundamen-
tal mode are given in Fig. 3. The frequency shifts
5co„were measured with a precision of a few per-
cent. Averaging the data for different angular ve-

locities provides an even more accurate value of B2.
Similar measurements were made for odd har-

monics of the C cavity up to the twenty-first. We
obtained in this way values of B~ and B2 for fre-
quencies ranging from 50 to 1600 Hz. These re-
sults are shown in Figs. 4 and 5. To test Eq. (8),
B ~

' has been plotted against 1nco (Fig. 4). A
straight line with adjustable zero intercept A but
having the predicted slope —p„p, lc/16nqp
= —5.27)& 10 (at 1.9 K) closely fits the experi-
mental results. According to Eq. (9), values of B2
could have been deduced from those measured for
B&. Taking the linear fit from Fig. 4 as a smooth
experimental curve B&(co) and substituting in Eq.
(9), we obtain the solid line B2(co) shown in Fig. 5.

1.0—
50Hz

I

6 7 8
In to{sec ')

1kHz

9

FIG. 4. Frequency dependence of B& at 1.9 K. Open
circles correspond to data taken with the fundamental
mode and 3rd, 5th, 11th, and 21st harmonics of the C
cavity. Open squares correspond to data of Ref. 13 tak-
en with the x and y fundamental modes of a rectangular
cavity 49&6 mm (194 and 1593 Hz). The data are fit-
ted to Eq. (8) by plotting B ~

' vs lnco. The straight line
has the calculated slope —p„p,sc/16m. gp=5. 27)& 10 (at
1.9 K) and the adjusted zero intercept A =1.53. Note
that this value of A is obtained by taking @=0.7 A in

Eq. (21).
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cD
6

1000
&/2K (Hz)

FIG. 5. Frequency dependence of B2 at 1.9 K. The
experimental data (open circles) were taken with har-
monics 1, 3, 5, 9, 15, and 21 of the C cavity. The last
point at 1593 Hz (open square) was taken with the y
fundamental mode of the rectangular cavity 49&(6 mm .
The solid line is the theoretical curve B2(co) calculated
from experimental values of 8& by using the linear fit of
Fig. 4 as a smooth experimental curve 8~(co) and substi-

tuting in Eq. (9).

Vidal and Lhuillier. ' In addition, the measure-
ments of Vidal and Lhuillier show a linear depen-

dence of uq with 0 at small 0 with a more rapid
decrease above 0=4 sec ' (the maximum angular
velocity used in the work of Miller et al.). Ac-
cording to Eq. (14) such a nonlinear dependence of
u2 on 0 would be equivalent in the present data to
Bz increasing with Q. Nevertheless, we observe no
significant variation of Bi in the entire experimen-
tal range of angular velocities (0 & 10 sec ', Fig.
3).

Miller et al. suggest that the presence of a large
electronic pickup in the experiments of Vidal et al.
might have given rise to spurious changes in the
resonant frequency, accounting for both the
disagreement about the experimental results of huq
vs T, and the observed nonlinear dependence of u2
on Q. We disagree with this interpretation. Elec-
tronic pickup is a steady background that can be
easily distinguished from the second-sound signal
and compensated for by a simple change in the ori-

gin of the complex plane. Vidal and Lhuillier state
that in some experiments, one wall of their cavity
was removed entirely. ' Under such conditions,
actual but unforeseen changes in the resonance fre-

quency were more likely to result from a strong
coupling between the cavity and the external heli-

um bath, as explained in the Appendix.

IV. DISCUSSION

Summarizing our experimental results, we can
state that the slight frequency dependence at 1.9 K
of both the increase, due to rotation, of the at-
tenuation of second sound and the decrease —b,u2

Bu
p, —gV u=VXg,'aj (19)

of the second-sound velocity is remarkably ac-
counted for by Eqs. (8) and (9). On the other
hand, the actual magnitude of Au2, as well as can
be deduced with no adjustable parameter from
known values of Bi through Eqs. (9) and (14),
agrees surprisingly well with experimental data.

All these results are contained in a condensed
form in the HV expression (7) for the mutual-
friction parameter B. We might therefore be
tempted to say, like Mehl, that the above experi-
ments support the detailed correctness of the HV
theory. This opinion, however, should be moderat-
ed. From experiment we may strictly infer that B
at 1.9 K is a complex quantity of the form given

by Eq. (7). As its main term reads as an adjustable
real constant A (at some given temperature}, Eq. (7)
expresses nothing but a minor consequence of the
HV theory. Furthermore, as we have seen in Sec.
II the hydrodynamic calculation leading to Eq. (7)

was regarded by HV as a crude approximation,
which was introduced for lack of a rigorous kinetic
treatment of the motion of rotons in the neighbor-

hood of a vortex line. Nevertheless, the approxi-
mate model comparing a moving vortex to an os-

cillating wire did predict the correct frequency
dependence of B as (p„p,a /rip)luego. On the
strength of our experiments, we thus concluded
that the physical picture of a vortex dragging the
normal fluid like an ordinary viscous fluid was

essentially correct. It seemed to us, however, that
the correct numerical factor 1/16m in Eq. (7} was

obtained somewhat by accident.
These remarks incited us to work out a purely

hydrodynamic theory of mutual friction, which
was likely to bear out the role of the normal fluid
viscosity. Although it originates with the present
work, this theory has already been published in a
previous paper. ' Making use of the usual linear
approximation of acoustics, we were able to find a
solution of the Landau-Khalatnikov two-fluid
equations' describing the small oscillations of a
vortex line subject to the superfluid and normal
velocity fields, V» and V„i, of a sceond-sound
wave. This solution has the simple following prop-
erties: (i) incompressible flow (p=const), (ii) rigid
transport at velocity VI of the superAuid vortex
field, and (iii) the normal flow around the vortex is
perturbed over distances of the order of the viscous
penetration depth 5. V„=V» at the core,
7 V„=O, and V XV„=u obey the diffusion equa-
tion
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where Pp is a density of force localized at the vor-
tex core. The total force per unit length acting on
the normal fluid,

is found to be equal (except for its sign) to the
mutual-friction force F, such as that given by Eq.
(2).' In the similar problem of an ordinary
viscous fluid submitted to a localized density of
force, Eq. (19) would immediately follow from the
Navier-Stokes equation. In solving Eq. (19), we
obtained the required relation between Vl, V»,
and V, ~

in the form given by Eq. (1), with 8'=0
aI1d

pnps&

16agp
ln

2
—l 17/2

pn COG

(20)

Here e is a cutoff radius (denoted as I in Ref. 14)
of the order of 1 A.

Firstly, we note that our expression for B can be
rewritten in exactly the same form as Eq. (7) by
taking explicitly

(21)ln(g/p„e ) .
16m'

Consequently, the hydrodynamic theory provides
an alternative and more reliable interpretation of
our experimental results. Moreover, Eq. (20), in
contrast with the HV theory (see Sec. II), makes it
possible to calculate 8 in terms of known macro-
scopic parameters, in particular the normal fluid
viscosity g. According to the theory, the precise
value of e in Eq. (20) depends on the unknown de-
tailed structure of the vortex core. Nevertheless,
since e cannot differ greatly from 1 A and in addi-
tion appears in the logarithmic factor, it should
not be regarded as a free parameter, except in fit-
ting very accurate measurements; for instance, the
best fit in Fig. 4 is obtained for e=0.7 A. Thus
letting e= 1 A, it was found that Eq. (20) well ac-
counted for the actual magnitude and temperature
dependence of 8I from 1.7 to 2.1 K.' This tem-
perature interval roughly coincides with the one
where B' is found experimentally to be nearly zero,
also as predicted.

It is not surprising that our hydrodynamic pic-
ture of mutual friction fails at low temperature, as
well as in the k region. Below about 1.6—1.7 K
the roton-roton mean free path becomes larger

0
than the vortex core (I.) 10 A), so that there is no
escaping a kinetic treatment of rotons-vortex col-
lisions, just as that proposed by Hall and Vinen or
by Goodman. ' On the other hand, the Landau-

Khalatnikov equations must be corrected as the A,

point is approached to include effects of the relax-
ation of the superfluid density. '

Moreover, the expression for 8 given above does
not apply to arbitrarily low frequencies. In partic-
ular, let 80 be the zero-frequency value of 8 ap-
propriate to steady-state conditions as required in
the study of mutual friction in a dc heat
current. ' According to Eq. (20), 8(0) should
become zero at zero frequency, whereas from ex-
periment Bo is known to be again of order unity.
By measuring in rotating thermal counterflow the
chemical potential gradient associated with vortex
motion, Yarmchuk and Glaberson ' obtained
values of 80 at different temperatures; at 1.9 K
they found 80-0.73. The linear approximation
used in the hydrodynamic calculation of 8 requires
the vortex oscillation to be small compared to the
viscous penetration depth 5, i.e., U/co ((5 or
co ))p„u /g, where U is the order of magnitude of
the velocities V„I, V, ~, and VL. ' For instance, at
1.9 K for velocities of practical interest [u -0.1

cm/sec (Ref. 21)] this assumption breaks down at
co (50 sec '. If indeed the nonlinear terms in the
hydrodynamic equations must be taken into ac-
count, the calculation of the line velocity VL in a
steady-state counterflow becomes rather involved.
Again considering the classical analogous problem
of the solid wire in an ordinary viscous fluid,
Vinen noted that the effect of the nonlinear terms
at zero frequency in the expression of the viscous
drag was the same as that of an ef'fective penetra-
tion depth 50——2g/pU, where p is the fluid densi-

ty and U is the velocity of the uniform stream re-
lative to the cylinder. Following Vinen, it may be
assumed that 8 is approximately given by Eq. (20),
after dropping the imaginary term and replacing
5=(rI/p co) by 50=2't)/p„~ V„&—VL ~, or co by

coo p„(V„,——VI. )'/4g—We thu.s obtain a
velocity-dependent value of 8. However, this velo-
city dependence will be very small, since coo ap-
pears in a logarithm. At 1.9 K, for v -0.1

cm/sec, the effective frequency coo-10 and Eq.
(20) yields 80——8I(coo)=0.71, in good agreement
with the experimental result of Yarmchuk and Gla-
berson, ' B0-0.73. In reducing the frequency
from co = 10 (the last point in Fig. 4) to zero, the
value of 8 is therefore decreased by about 25%.

Concerning the much debated question of the
physical origin of Au2, ' our experimental re-
sults clearly appear in favor of Mehl's main argu-
ments. In connection with the theory of Vidal and
Lhuillier, ' it is perhaps worth noting that the nor-



26 FREQUENCY DEPENDENCE OF MUTUAL FRICTION IN. . . 1241

mal fluid flow around the moving vortex, such as
that described by our hydrodynamic solution, en-

tails no entropy drag at all. The transported entro-

py s„(see Sec. I) thus should reduce to the negligi-

bly small core contribution. If it is so, Vidal and
Lhuillier have estimated the resulting Au2 to be 7
orders of magnitude too small.

In conclusion, the experiments reported in this

paper, though dealing with very small and some-
what minor effects occurring in rotating second-
sound resonators, have led to a consistent theory of
mutual friction, using a purely hydrodynamic ap-
proach. Conversely, our experiments, together
with available B~ vs T data, support the correct-
ness of the hydrodynamic theory; in particular,
they provide experimental evidence that the dissi-
pative mechanism in mutual friction (at the tem-
peratures concerned) is none other than the viscosi-
ty of the dragged normal fluid.

pointing normal component of the energy flux vec-
tor, we find (always to first order in 0/co):

(A3)

where

Here n is the outward normal and z„ is the
characteristic impedance of helium. We are faced
with the problem of solving the Helmholtz equa-
tion (Al) in a bounded region of space with the
prescribed boundary condition (A3). We introduce
the Green's function for Eq. (Al) that satisfies
BG/Bn =0 on the walls to obtain the integral equa-
tion for T&(r):

T~(r)= —JJ g(r ')G(r/r ')d r', (A4)

APPENDIX

In this appendix we wish to consider the
second-sound response of a rotating resonator for
rather general boundary conditions. The resonator
is assumed to be a deformed cylinder of arbitrary
cross section. Its inner walls are coated with one
or several transmitting films, which are shaped as
vertical strips (two-dimensional problem}. In order
to generate a second-sound wave at frequency co,

the transmitters are driven at —,co. Let q ( r ')e'"' be
the heat input at a point r ' on the boundary sur-
face: q (r ') equals the ac component of the Joule
effect on the transmitting film and zero elsewhere.

In setting down the equations of motion in the
rotating frame, the two-dimensional temperature
field T&(r )e'"' of a second-sound wave propagating
perpendicular to vortices is found to obey the wave
equation

where g( r ') stands for the right-hand side of Eq.
(A3). The response function Tt(r) can be expand-
ed in a series of orthonormal eigenfunctions of Eq.
(Al), namely the functions qr;(r) satisfying

V tp;+k;y;=0

(Btp;/Bn =0 on the walls). The corresponding
eigenfrequencies are defined as co;0——k;uz. Let c;
be the coefficients of expansion of T&(r ). Using
the so-called bilinear expansion for G (r/r '),

and substituting into Eq. (A4), we obtain the set of
simultaneous linear equations

(A5)

V T~+k T~ ——0, (A 1)
where

q;=o nq;(r ')~;(r ')d r',

To first order in the small quantity fI/co, p can be
written as

is a transmitting factor and

A, ;~ 0 0 [nX'(}'yj(r ')]y;(r ')d r' (A6)

BQ
P PO+ Pl + iP2 (A2)

Here the small real term Po refers to the residual
attenuation in the cavity at rest, and u2 is the
second-sound velocity in stationary helium.

By equating the heat source q to the inward

is a vectorial coupling coefficient. The effects of
rotation on the second-sound response arise in Eqs.
(A5} through the two first-order terms P and P',
involving B and B', respectively.

Assume now the exciting frequency co to be close
to one of the characteristic frequencies, such as
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co, . This mode is presumed not to be degenerate
or quasidegenerate, so that c p~ ( r) is the single
resonant term predominating in the series. At res-
onance c~ —1/p, and, if b,co denotes the half-width
of the common frequency-response curve, the
quantity 1/Q =bco/co p is of the same order of
smallness as p (or 0/co). In a first approximation,
the c s are determined from the zero-order parts of
Eq. (A5):

c (k —k —P' A, )=aq, i =m

c;=aq;/(k —k; ), i+m .
(A7)

From Eq. (A6) the antisymmetry relation

J kJ can be easily inferred. As A ~ =0 in
Eq. (A7), we therefore reach the conclusion stated
in Sec. III that the response function does not in-
volve the coefficient 8'. Furthermore, dropping
second-order terms in k —k~,

2(co —co, )k' —k' =k' i P, +—P,+

we obtain

Cm Qm 1 —t (N N~)—
m

(AS)

where a~ =z„q~/Pk~, Q~ =2/Pi, and co~

=co,(1—P2). Equations (12) and (13) follow im-

mediately.
A better approximation would require, to be

consistent, that the terms of second order in 0/co
should not be neglected in the basic equations.
This would lead to rather cumbersome expressions
for k or p. ' However, the perfect circular shape
of the observed resonance curve in the complex
plane, in accordance with Eq. (AS), as well as the
absence of quadratic effects in our experiment 8 vs
0 bear out the adequacy of the above approxima-
tion.

In the series expansion of T&,

Ti ——c y (r )+ pc;tp;(r)=c y (r), (A9)
imam

the sum of the nonresonant modes constitutes a
small constant background b (r ), which generally

proves to be of no importance in the bolometric
signal. As a practical example, consider the C cav-
ity operating on its fundamental mode coip (Qi
—10 ). The transmitting film and the bolometer
are applied to opposite vertical walls, 0=0 and 8&,

respectively (Fig. 1). The first main terms in b (r )

correspond to the harmonics n =2,3, . . . (co„p
=ncoip). Then taking y„(r ) cc cosnmH/Hp we have

q„=qi and q&„=(—1)"+'yi on the receiving film.
Thus b reads as an alternating series of decreasing
terms, the sum of which is not greater than the
first term c2g2.

b

T] c)
C2 (10 '.Piki

k2 —k)

c~ [k k~ aaqP~—(—r p)]=aq~ . (A10)

Letting a be complex we see that both the quality
factor and the resonant frequency can be modified
owing to coupling term. Therefore, a possible
dependence of coupling on rotation would invali-
date any analysis of experimental data by means of
Eqs. (12) and (13). This explains acoustic
anomalies occurring in untight cavities, such as
poor multiplication of harmonics, or the paradoxi-
cal first increase of the quality factor, sometimes
observed as 0 is raised from zero. In any second-
sound resonator there must be provision for the dc
heat input to escape at places where there is nor-
mally a temperature node [y (r p)] =0.

The presence of undesirable leaks (or superleaks),
coupling the cavity to the external helium bath,
may. strongly affect the parameters of resonance.
This is easily demonstrated by using the above-
mentioned formalism. Suppose a leak opens into
the cavity at any point r 0. The local second-
sound amplitude Ti(r p) acts as a small tempera-
ture difference across the leak, between the cavity
and the helium bath, giving rise to two-fluid (or
superfluid) motion through the leak at driving fre-
quency. Denoting by a the leak admittance, a con-
centrated heat input a Ti ( r p) 5( r ' —r p) must be
added in the boundary condition (A3) to heat
sources q(r '). Instead of Eq. (A7) we now obtain
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