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Large bipolaron in one- and two-dimensional systems
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The bound state of two electrons in polar crystals is investigated in various dimensional

systems by numerical solution of the Bethe-Salpeter equation in which the interaction is

composed of the Coulomb repulsion and the attractive interaction mediated by longitudi-

nal, polar-optic phonons. In three-dimensional (3D) systems, no bound state is found,
while in both 1D and 2D systems a bound state exists. In particular, in 1D systems, the

binding energy can be of the order of the energy of the longitudinal-optic phonon (al-

though the binding radius is large compared to the lattice constant).

I. INTRODUCTION

A problem of great physical and technological
interest is to obtain a superconductor with a high
transition temperature T, . Several theoretical pro-
posals have been made, ' but none of them have
been realized. Recent experiments, however, in
some specially prepared samples of CuC1 and CdS
suggested the possibility of high-T, superconduc-
tivity, although they have not been proved convinc-

ingly to be related to high-T, superconductivity.
Large diamagnetic anomalies have been observed in
CuC1 samples under high pressures at temperatures
as high as 200 K. Nearly complete diamagne-
tism has been reported in pressure-quenched (i.e.,
prepared by releasing high pressures at a rapid
rate) samples of CdS at 77 K. '

If we interpret these experimental results at such

high temperatures as the occurrence of supercon-
ductivity, we have to ask why high-T, supercon-
ductivity appears in these systems in which the
electron density is presumably small. Since both
CuCl and CdS are ionic crystals, polar-optic pho-
nons might play an important role in superconduc-
tivity in such low electron density systems. This
idea seems to be true, particularly because the cou-

pling constant between polar phonons and electrons
becomes large owing to the decrease of the screen-

ing effect of electrons themselves with the decrease
of the electron density. Concerning this point,
however, the present author has already made a
numerical evaluation of the effect of polar-optic
phonons on T, in one of his papers. " According
to the paper, when the conventional theory of su-

perconductivity which is based on the BCS
theory' is applied to superconductivity in an ionic
crystal with a rather low electron density, T, in-

creases first and then decreases with the decrease
of the electron density. The maximum T, thus ob-
tained depends on the effective mass of an electron

m, the optic dielectric constant e„, the static
dielectric constant eo, and the frequency of the
longitudinal-optic phonon coI, but whatever values

we may take for eo and coI, this maximum value of
T, is at most 5(m/e ) (K) when rn is measured in

the unit of the mass of a free electron. Since the
factor m/e„ is usually smaller than unity, T,
hardly exceeds 10 K. Therefore, when we consider
superconductivity on the basis of the BCS theory,
polar-optic phonons do not bring about high-T, su-

perconductivity even if they couple strongly with
electrons.

Recently, Bishop and Overhauser suggested
another possibility of obtaining high T, s-upercon-

ductivity with the help of polar-optic phonons. '

They calculated the optic-phonon-mediated
electron-electron interaction in real space for elec-
trons at the bottom of the conduction band and
speculated that even if there were only two elec-
trons in the system, they might form a bound pair.
This idea opens the way to consider that in an ion-
ic crystal with a very low electron density, the su-

perconductivity of electron quasimolecules, pro-
posed by Schafroth, Butler, and Blatt, ' might oc-
cur rather than the BCS-type superconductivity. If
an energy to bind two electrons is so large that
these two electrons behave like a molecule even at
high temperatures, and if the number of such mol-
ecules can be increased so as to give a kind of
Bose-Einstein condensation at a sufficiently high
temperature, we will obtain a high-T, supercon-
ductor.

Motivated by the consideration mentioned above,
this paper treats a quantitative discussion of the
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bound state of two electrons in an ionic crystal.
At first sight, however, one might think that even

if the electron-phonon interaction becomes large,
these two electrons will not be bound together,
since the polarization of the lattice can at most
reduce the electron-electron interaction from the
direct Coulomb repulsion e le r to e I&or which
is still positive, where r is the distance between two
electrons. But this discussion forgets about the
point that the dynamic interaction rather than the
static one is important in the formation of a bound

state, because in a bound state, physically speaking,
an electron goes back and forth inside the binding
radius, which is just a kind of an oscillatory mo-

tion. When the interaction become attractive at
the frequency co of the oscillation, a bound state
may appear, even if the static interaction is repul-
sive. In the case of ionic crystals, if this co lies be-
tween the transverse-phonon frequency co, and the
longitudinal one co~, the interaction does become
negative, so that a bound state of two electrons can
be expected. Thus, in order to discuss a bound
state of this kind, it is very important to take
proper account of the co dependence of the interac-
tion, i.e., the retardation effect.

Another important point in treating a bound
state is the dimensionality of the electron motion.
As is known by an elementary problem in quantum
mechanics, a bound state can be formed more easi-

ly when the dimensionality is decreased. When we
consider the same problem in the momentum rep-
resentation, this is related to the fact that the den-

sity of states near the bottom of the band increases
with the decrease of the dimensionality. The den-

sity of states near the bottom of the band enters
the problem of a bound state, because in momen-

tum space, a bound state of two electrons can be
considered to be created by successive mutual
scatterings, in particular, by the use of the states
near the bottom of the band in order to minimize
the expense of the kinetic energy in the scatterings.
In such scattering problems as this, the magnitude
of the density of states as well as the strength of
the potential itself plays an important role in the
calculation of the transition rate. Thus we need to
investigate the bound state of two electrons not
only in the three-dimensional (3D) character of the
electron motion but also in 2D and 1D cases in
which the density of states near the bottom of the
band becomes large.

The bound state of two electrons in an ionic
crystal is usually called the bipolaron and has al-

ready been considered by a few workers. '

However, these works are insufficient in the fol-

lowing two respects. First, all these discussions
were limited to the strong-coupling region, i.e., the
case of the small bipolaron. The small bipolaron is
unfavorable for the discussion of superconductivi-

ty, because it is trapped in some place of the lattice
and some additional mechanism is necessary to
move the small bipolaron through the whole crys-
tal. Second, the bipolaron itself was not investigat-
ed quantitatively except by Vinetskii. ' By apply-
ing the method of Pekar' which was developed for
the polaron problem in the strong-coupling region,
and also by employing the variational method to
determine the wave function of the bipolaron,
Vinetskii obtained that in 3D systems, the bipo-
laron existed only in a very limited region, i.e.,
only when e„/eo was less than 0.05.

Taking these physical and historical circum-
stances into account, we approach the problem of
the bipolaron from the opposite direction, that is,
from the weak-coupling limit and investigate the
possibility of the existence of the bipolaron by the
use of the lowest-order perturbation theory instead
of the variational method. In Sec. II of this paper,
we describe a formulation to derive an equation of
motion for the bipolaron by starting from a
Bethe-Salpeter equation for two electrons, in which
the retardation effect is included. A method to
solve the equation numerically is also shown here.
Calculated results for the binding energy and the
wave function are shown in Sec. III. The binding

energy becomes as high as co~ in 1D systems, al-

though the binding radius is very large compared
to the lattice constant. This indicates that the
present bipolaron is not small, but large and will

move rather freely in the crystal. We also discuss
the criteria to choose a material which has a large
binding energy. In Sec. IV, we summarize the re-
sults and discuss several problems for future
research.

II. EQUATION OF MOTION FOR BIPOLARON

We consider a system composed of two electrons
in a singlet spin state in an ionic crystal. Al-
though phonons are always considered to be 3D,
electrons are treated to be 1D, 2D, or 3D. In the
following, we go through a formulation for a 3D
system first. Some modifications which are neces-
sary in order to discuss 1D and 2D systems are
shown later.

The Hamiltonian of the system in second quanti-
zation is written as
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H=pe C C ++cola a +ggV C + C (a —a )
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where C is the annihilation operator of an electron with momentum p and spin cr whose dispersion rela-

tion e-„ is assumed to be parabolic, i.e., s'-= p /2m, a-„ is the annihilation operator of a longitudinal-optic

phonon whose energy coI is assumed to be dispersionless, the electron-phonon coupling constant V- is given

by
' 1/4

(2)
27tl COI

4

and V (q) is the Fourier transform of the Coulomb repulsion, given by

V (q)=4ire /q

The total volume of the system is taken to be unity and the parameter a in Eq. (2) is usually called the di-

mensionless coupling constant in the polaron problem, defined by

=2a=e (m/2col) ~1/2

Eo
(4)

The origin of energy is defined as to give the energy of an electron when it is placed at an infinitely separat-
ed site from another electron. Therefore, the energy of the bound state of two electrons is negative.

In the language of thermal Green's functions, the binding energy of two electrons appears at the pole of
the two-particle vertex part I'(p, p ', icop, icop, icok) in the space of the total-energy variable icok. This vertex
part I represents the multiple-scattering process in which one electron with momentum p and energy
icop+icok/2 collides with another electron with momentum —p and energy icop+—icok/2, and is scattered
into the state with momentum p

' and energy i cop +icok l2, where cop AT(2p + 1——) and cok =2qcTk with the
temperature T and integers p and k. In the lowest order of the interaction, the equation for this vertex part
can be written as

I'(p, p ', l coppl cop~pl cok )

= V(p —p', icop icop ) Tg—g V—(p —p ",icop icop») .—
p

II~ II leo "+icog /2 6~ » leo "+lcok /2 I ~ »
P —P

&&I (p ",p ', lcop-, lcop:,icok),

where the total effective interaction between elec-
trons V(q, icoq) is given by

V (q)V(q, icoq)= + V-V"-
p q (i~ )2

V(q, icoq)=V (q)/e(icoq) .

The energy of the transverse-optic phonon co, is re-
lated to coI through

The first term is the Coulomb repulsion and the
second one is the phonon mediated interaction.
With the use of the dielectric function e(i coq), de-
fined by

2
co)

E(icoq) =e„+(ep—e„)
col —(Icoq )

V(q, icoq) is rewritten as

where the ionicity of the crystal P is defined by

P= e Iep ~

As icok in Eq. (5) approaches the binding energy
Ep, the vertex part tends to infinity by taking the
following form:
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I (p, p;icoz, icoz ,ic'ok) where the function P- is defined byP

P„=f ImF (p, co),

while the first term in the right-hand side of Eq.
(5) gives only a finite contribution and can be
neglected compared with other terms in Eq. (5).
Then, putting Eq. (11) into Eq. (5) and dividing
both sides of the equation by the common factor,
we obtain the following equation:

F(p, ico~)= Gp—(p, ico~)Gp( —p, ico~—)

and the interaction V—,(Eo), which takes ac-
count of the retardation effect, is given by

o0 6'~+ E~ I —Eo
V-„-„.(Eo)= —dQ

P P P ~ II2+(& +& E )2

X V(p —p', iQ) .

X Tg g V( p —p ', i co& i co& —)~ g

p P

XF(p ', ico~ ), (12)

In the case of ionic crystals, the effective interac-
tion is given by Eq. (8). Therefore, V-,(Eo) is

P P
easily calculated as

where Gp(p, ico ) and F( p, ico ) are, respectively,
defined as

Vo(p p ') 6~+6~ i Ep+pc—oiV--, (Ep) =
E' 6'~+ 6'~ ) —Ep+coI

and

1
Gp(p, icoz)= .

iso —e +Eo/2 '
P

F(p, icoz) =r(p, ico~)Gp(p, ico~)

XGp( —p, ico~) —.

(13)

(14)

(18)

ImF"( p, co)= i'-5(co E-+ , —Eo) . — (19)

In the lowest-order of the interaction, the pole of
F (p, co) for co&0 comes from Gp(p, co). Thus
ImF ( p, co) in Eq. (15) can be approximated well

by a single delta function, namely,

Equation (12) is just the same equation as the

gap equation for the Cooper pair at T =T, in the
weak-coupling superconductivity. The only
difference between Eq. (12) and the gap equation is

in Gp( p, ico~). In the usual theory of superconduc-

tivity, the Fermi energy eF appears in Eq. (13) in-

stead of Ep/2. Since ez is positive and very large
compared to the binding energy of the Cooper pair,
the bound state of the Cooper pair is in the contin-
uum of the single-particle states. On the other
hand, we consider Eo/2 to be negative and thus
treat a bound state below the continuum of the
single-particle states. Except for such a difference
in the Fermi level, Eq. (12) is the same as the gap
equation mathematically. Thus we can apply the
same analytical method to the solution of this
equation as developed in the theory of supercon-
ductivity. ' Performing the frequency sum in Eq.
(12) and making an analytical continuation from
icoz to co+i 0+ to use the retarded Green's function
which will be denoted by the superscript R, Eq.
(12) leads to the following equation at T =0:

(2e- —Ep)P-
P P

~ dco= —g J ImF~(p ', co') V--, (Ep),
P

(15)

Substituting Eq. (19) into Eq. (15), we finally ob-
tain the equation of motion for the bipolaron as

~2
P 4 p+ Q V

p p (Eo)ct p =Eod
p

.
+ /

P

(20)

From this observation, P is known to play a role
P

of the wave function for the relative motion in the
momentum representation.

Since the system is isotropic, the s-wave state
will be the lowest one for P-. In the s-wave state,

depends only on the m.agnitude of p. By intro-
ducing the nondimensional variable t, defined by

t =C~/COI
P (21)

In order to see the meaning of P-, let us consid-
er the case in which there is no retardation effect,
that is, V(p —p ',i 0) is independent of the fre-
quency variable iQ and can be simply written as
V(p —p '). In such a case, V „,(Ep) is reduced
to the interaction V(p —p ') itself. Then Eq. (20)
is just the Schrodinger equation in the momentum
representation for the relative motion of two elec-
trons in the potential of

V(r)= +exp(iq r) V(q) .
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we can transform Eq. (20) as
V (q)=2mei

1/2

Ix+Cy (27)
(t+t)p(t)=-

2m(1 —P)

x f, dt'K{t, t';t)P{t'), (22)

and the kernel in Eq. (22) is changed into

(t;+t)P; = —$J;,(t}P, , (24)

with t; =(t; + t;+ i )/2 and

f.
JJ(t)= f dt'K(t;, t', t) .2' 1—

The binding energy in the nondimensional form t
is obtained by the calculation of the zero point of
the determinant of the matrix ( t; + t )5,J +JI ( t )

With the use of t thus obtained, P; normalized by

Pp which is the value of P(t) at t =tp is given by
the solution of the following matrix equation:

(25)

where P(t) =P-, t = Ep—/2cot, and the kernel of
the integral equation is given by

1 v t +v t' t+t'+2t+13
Wt v t v t' —t+t'+2t+1

(23)

Equation (22) can be solved numerically by divid-
ing the interval (0, 00 ) in the t space into small
ones, (t;, t;+ i). In each small interval (t;,t;+, ), P(t)
is assumed to be constant P;. Then Eq. (22) is
equivalent to the following matrix equation:

t+t'+2t+P' t+t+2t+1 ' (28)

(29)

with the Bessel function of the zeroth order Jp(z}.
When we take X(r) as

' 1/2

X(r)= — exp( —«/(r ) ),2 1

m (r)
V (q„) can be calculated analytically as

{30)

with the use of the elliptic integral of the first kind
K(k). For a 1D system, p in Eq. (20) is now a ID
vector in the x direction. Assuming the azimuthal
symmetry around the x axis and writing the wave
function of the electron in the y-z plane as

X((y +z &'«), we can obtain V (q) as

V(q, )= f dq, dq, z z zn+q&+e
'2

f r dr
~

X(r)
~

Jp(q„r)

g [(t;+t)51 +J~J(t) Jpj(t)]pj =(—tp+t )pp ~ «n }=e'F{(r)n/2y» (31)

{26)

As for the partition points,
~ t;+i t;

~

-10 —is
chosen for small t; and then is increased loga-
rithmically. The maximum value for t; is chosen
to be 500; it was checked that this cutoff value
does not give any significant changes in the ob-
tained results.

Even when we treat a 1D, or a 2D system, we
obtain the same equation of motion as in Eq. (20).
The only modification appears in the calculation of
the interaction V-, (Ep), in particular,

P P
V (p —p ') in Eq. (18). Once V (q) is changed

with the change of the dimensionality, the kernel
K(t, t', t) in Eq. (22) should be changed. In a 2D
case, the momentum p in Eq. (20) should be un-
derstood as a 2D vector in the x-y plane. When
electrons can be assumed to be localized well
around z =0 and thus the square of the wave func-
tion in the z direction may be taken as a delta
function 5(z}, V (q) is calculated as

where F(z) is given by

[—lny z —(1—y z )(3—y z )/2]
(1— z )

and the parameter y is defined as

1 —P (r)
2(x g

(32)

(33)

K(t, t', t)=, [F(v t v t')—+F(v t +v t')]-
t 2

X
t+t +2t+P
t +t'+2t +1

(34)

The parameter (r ) represents the spread of the
electron in the y-z plane around the x axis. How-
ever, unlike the 2D case, this parameter cannot be
set equal to zero, because V (q„) becomes infinite

with the effective Bohr radius a'=e„/me . With
the use of F(z), the kernel in the 1D case is ob-

tained as
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FIG. 1. Calculated binding energy —Eo in units of
r0~ as a function of a for two values of P in 2D systems
at T=O.

at (r) =0. Therefore, in 1D systems, calculations
will be done for several nonzero values of (r ).

III. RESULTS OF CALCULATION

%hen the electron motion is 3D, no bound state
is found in the present weak-coupling approxima-
tion, even though the attractive interaction mediat-
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FIG. 2. Binding energy —Eo in units of coI as a func-
tion of P in 2D systems at T =0. The parameter a is
taken to be 63.

ed by phonons is large enough to produce deep at-
tractive potential wells in real space, as pointed out
by Bishop and Overhauser. ' This result indicates
that the kinetic-energy term of each electron resists
the formation of the bound state so strongly that
no bound states can be created. In the strong-
coupling approximation, however, we can imagine
a different situation by considering the fact that
even when there is only one electron in the system,
the electron is trapped by the lattice to produce a
small polaron. Namely in the strong-coupling lim-

it, the effect of the kinetic energy of each electron
is weakened before we treat two electrons (to be
precise, two small polarons in this case). Thus we
can expect the existence of the bound state in the
strong-coupling limit, just as predicted by
Vinetskii. "

%hen we consider the problem not in real space
but in momentum space, we can understand prob-
ably more easily the reason for the absence of the
bound state in 3D systems in the weak-coupling
approximation. Since the state of the large bipo-
laron (the bipolaron in the weak-coupling limit) is
created by the use of the states with small momen-
tum, the density of states of such states, in particu-
lar, near the bottom of the band should be large.
In a 3D system, however, the density of states van-
ishes at the bottom of the band and thus the bound-

pair cannnot be formed. In the strong-coupling
theory, on the other hand, the states with large
momentum become more important than those
with small momentum. In such a case, there is no
difficulty in creating the bound pair, even when
the density of states at the bottom of the band van-

ishes.
Compared with a 3D system, a 2D one has a

better chance to provide the bound state, because
in a 2D system, the density of states is constant
and is finite even at the bottom of the band. Ac-
cording to expectation, the bound state is found
and the calculated binding energy —Eo in the unit
of the energy col is plotted in Fig. 1 as a function
of a for two values of P. Since only one parameter
u appears in the polaron problem, one might think
that —Eo depends only on a, but actually —Eo
also depends on P in a rather interesting way, as il-
lustrated in Fig. 2. As long as P is smaller than
some critical value (0.01 in the case of Fig. 2),
—Eo does not change so much with the increase of
P. However, once P exceeds this critical value,
—Eo decreases very rapidly and the bound state it-
self disappears at the value of P slightly larger
than this critical value. The reason why —Eo
behaves in this way is simple. As mentioned in
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in units ofFIG. 3. Calculated binding energy —Eo in units o
coI as a unc iofunction of a in 1D (chainlike) systems at T =0.

f . TheCalculations are done for several values of P. e

parameter y w ic eh' h d scribes the size of the chain is tak-
en to be 0.01.

Sec. I, each electron oscillates inside the binding
radius in the bound state with the frequency of the
order of Eo. In ord—er for the interaction be-

tween electrons to be attractive, this frequency
should be within the range from ro, =v (3c0I to col.

Even though P is increased from zero and thus ro,

is increased, there is no essential change in the in-

teraction, that is, the interaction is still attractive,
as long as co, is less than the value of the order of

p givenEgiven a—t P=O. Therefore, Eo is nearly i—n-

dependent of P in this region. However, once ro,

exceeds some critical value which is about —Ep at
P=O, the interaction between electrons is no longer
attractive and does not provide the bound state.

In any case, the bound state appears in a 2D sys-

tem, but the region in the (a,13) plane in which the
bound pair is formed is very limited. The parame-
ter a should be larger than about 5 and another
parameter P should be smaller than about 0.01. As
a result, it is very difficult to find materials which
meet this condition. In addition, even if we obtain
some material which satisfies this condition, —Ep
becomes at most as large as one hundredth of col.

Namely, we can never expect —Ep larger than
about 10 K. This indicates that a high-T, super-
conductor will not be obtained with the use of this
kind of system.

In a 1D system, we can expect an even larger
binding energy, because the density of states at the

i I i)IIII) i I i [~iii(
&=50
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FIG. 4. Binding energy —Eo as a function on of for
three values of a in 1D systems at T =0. The parame-
ter y is taken to be 0.01.

bottom of the band is infinite in this case. In Ftg.
3, E—is drawn as a function of a for severalp is
values of P. The parameter y which describes the
spread of the system in the direction perpendicular
to that of the electron conduction, as defined in
E . (33), is taken to be 0.01. The qualitative
behavior of the curves in this figure is just the
same as in Fig. 1 for 2D systems, but there is a
great quantitative difference. The bound state ap-

ears even when u is very sma, i.e., as large as
0.1. The binding energy can be as large as one ha
of ~I, which means that —Ep becomes larger than
100 K. The dependence of Eo on—P is shown in

Fig. 4 for three values of a. The bound state is
formed even if P is larger than 0.3 for a =5.

In order to show that the present bipolaron is
not small but large, an example of the wave func-
tion is given in real space in Fig. 5. The case of
LiF is treated here, so that a =5. 13, P=0.227,
col =960 K, and a*=1.02 A. Instead of the
parameter y, the spread factor (r ) /a' is specified
to be 0.2. The wave function P(x), which is the
Fourier transform of P, is small when x is very

small, because for small x, the Coulomb repulsion
dominates to keep away an electron from another
one. When x is increased, P(x) has a peak at
x =12a* and a tail which spreads out more than
100a'. For x larger than 150a', P(x) shows an os-

cillatory behavior, but its magnitude is so small
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FIG. 5. Wave function y(x) in real space for the case of LiF in which a ID (chainlike) structure is assumed to exist.
This wave function is the Fourier transform of p . The size of the chain (r ) is taken to be 0.&a, wh««' is the ef-

fective Bohr radius. The calculated binding energy for this case is 72 K at T =0.
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FIG. 6. Predicted binding energy —Eo in K in 10

(chainlike) systems for TlCl, LiF, and SrTi03 as a func-
tion of the size of the chain (r ) normalized by the ef-
fective Bohr radius a*. Calculations are done at T =0.

that we cannot recognize it in the figure. In this
way, the binding radius is very large and this is the
reason why the bipolaron in the present case is
called the "large" bipolaron.

Since the bound state appears in a very wide re-

gion in the (a,p) space in 1D systems, we can give
several materials which will give a large binding
energy. The criteria to look for appropriate ma-
terials are: (i) a should be rather larger, (ii) p
should be small, and (iii) col should be large. Guid-

ed by these criteria, lithic halides, in particular,
LiF can be pointed out. Thallous halides like T1Cl
can also meet these conditions, although co~ is rath-
er small. In T1C1, the parameters a, p, cot, and a*
are, 2.56, 0.133, 238 K, and 8.02 A, respectively.
Calculated results of the binding energy for TlC1
and LiF are shown in Fig. 6 as a function of
(r ) /a'. Since the interaction V (q~) in Eq. (31)
decreases and consequently the electron-phonon in-
teraction becomes small with the increase of
(r ) /a*, Eo decrea—ses with the increase of
(r ) /a'. However, the rate of this decrease de-
pends on the material, in particular, on the param-
eter p. In T1CI which has a smaller p than LiF,
—Eo decreases more slowly than that in LiF, as
(r )/a' is increased. Although no information is
available for this parameter (r ) /a" at present,
(r ) is probably of the order of a*. Therefore, it is
desirable to find a material having very small p,
because in such a material, —Eo is still very large
at (r ) /a' = 1. In order to show that this is true,
the case of SrTi03 is also plotted in Fig. 6. In
SrTi03, we take a=4.04, p=2. 3)& 10 , rot=607
K, and a*=1.62 A, but there are two problems in
the application of the present theory to SrTi03.
First, the smallness of p stems from the presence
of a ferroelectric soft-phonon mode, but the
transverse-phonon mode which gives the soft mode
at low temperatures is no longer soft at high tem-
peratures. Therefore, even though —Eo at T =0 is
very large, the bipolaron state will not exist at high
temperatures. Second, we have calculated —Eo by
assuming that there is no q dependence in eo, e„,
and col, but in fact, there is a strong q dependence
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in e0 in the case of SrTi03, though other parame-
ters, i.e., e„and co~ are nearly independent of q.
In spite of such problems, we present the result of
SrTi03, mainly because we can point out that any
material having a ferroelectric soft-phonon mode is
a very good candidate for a system having a very
large binding energy, even though the parameter o.
is not so large.

IV. DISCUSSIONS

We have found results about the bound state of
two electrons in an ionic crystal which are interest-

ing from the viewpoint of optic properties of such
a system as well as high-T, superconductivity.
The large bipolaron state exists in 1D and 2D sys-
tems. In the case of 1D systems, the binding ener-

gy can be larger than 100 K. These conclusions
are based on calculations in the weak-coupling ap-
proximation, but they are probably true even after
strong-coupling effects are included. Since in 3D
systems, the bipolaron state exists in the strong-
coupling limit' in contrast with our result in the
weak-coupling approximation, strong-coupling ef-
fects do not destroy the bipolaron state but stabi-
lize it.

As mentioned in Sec. II, the main difference be-

tween the BCS-type superconductivity' and that
of electron quasimolecules' is in the position of
the Fermi level. In the former case, it is within
the conduction band, while in the latter case, it is
below the bottom of the band. One important
consequence coming from this difference of the
Fermi level is that in the formation of the bound
pair in a 1D system, the latter takes a full advan-
tage of the large density of states near the bottom
of the band, while the former does not use the
states near the bottom of the band because they are
already occupied and cannot be used for the scat-
terings of the formation of the pair.

In order to obtain the superconductivity of elec-
tron quasimolecules' in a 1D (i.e., chainlike) sys-
tem, however, there are two problems to be solved.
First, Bose-Einstein condensation does not occur in
a 1D, noninteracting boson system. Second,
there is an argument that carriers in a 1D system
are localized even by the existence of very weak
charged centers or disorders. We might be able
to solve these two problems by considering either
the intra- and/or the interchain interactions be-
tween the bipolarons, or the possibility of the hop-
ping of the bipolarons between chains, but the
study on these problems is left in the future.

2

e(icoq) =e„+ COp

Eg (i coq)—
where E~ is the band gap averaged over the Bril-
louin zone of the narrow-gap semiconductor and

co& is the plasmon energy of the valence electrons
in the semiconductor. By using Eq. (35) in the cal-
culation of the interaction V(q, icoq) instead of Eq.
(7) and then by redefining the parameters a, P, and
co~ as

(35)

1ca= e
1

+co&/Eg

X [tm/2(Eg+aP~/e„)'i ]'i, (36)

and

P=Eg /(Eg +cop/e„), (37)

co( = (Eg +cog /E ~ ) (38)

Our calculations were initiated to explain the
anomalous experimental results in CuC1 and
CdS. ' When we use the usually accepted
parameters of a, P, and co~ for CuCl and CdS, we
cannot obtain large binding energies of the bipo-
laron for these materials, even if we assume that
some 1D (chainlike) system is created in these ma-
terials. Therefore, we cannot give any explanation
about these experiments at present. However, there
is a possibility that the parameters a, P, and co~ are
different from the usually accepted values in the
specially prepared samples of CuCl and CdS. In
fact, I.eftkowitz suggested the existence of the fer-
roelectric soft-phonon mode in the sample of CuC1
which showed the diamagnetic anomalies. If
such a soft mode really exists, the parameter P be-
comes nearly equal to zero, which gives a large
binding energy of the bipolar', provided that a
chainlike structure is created in the sample. A pre-
cise knowledge of these parameters a, P, and co~ in
these specially prepared samples is indispensable
for further study on the anomalous phenomena
found in these materials.

So far, we have discussed the effect of the
polar-optic phonon on the bound state of two elec-
trons, but just the same argument can be applied to
the electron system in contact with the highly po-
larizable material which is the system usually
treated in the discusssion of the exciton mechanism
of superconductivity. ' ' For example, when we
consider a narrow-gap semiconductor as a polar-
ized material, the dielectric function E(icoq) may be
given by
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respectively, we can obtain the binding energy of
the bound state mediated by the polarization of the
narrow-gap semiconductor. If Eg can be taken
much smaller than co& which is supposed to be of
the order of 10 K, and if u can still be taken not
too small, we will obtain a very large binding ener-

gy even in a 2D system. Thus, by the use of this
kind of system, we might be able to realize an exci-
tonic superconductor not in the BCS-type but in
the type of electron quasimolecules.
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