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A thermodynamic formulation for the electron self-energy is given which is applicable
when the electronic spectrum possesses structure on the scale of phonon frequencies, pro-
vided only that the ratio of phonon phase velocity to electron Fermi velocity is small.
Electron-phonon, Coulomb, and electron-defect interactions are included on an equal foot-

ing and it is shown that their different frequency dependencies lead to specific effects
on the Eliashberg self-energy: (a) The Coulomb interaction contributes nothing of essence

to the normal-state self-energy (in this isotropic approximation) but retains its usual de-

pairing effect upon the superconducting gap function, (b) defects affect superconducting

properties primarily through a broadening of the electronic spectrum, and (c) phonons
contribute a thermal shift and broadening as well as the mass enhancement. A generali-

zation to intensive electron-phonon, electron-electron, and electron-defect interaction con-

stants is necessary to redevelop an intuition into the effects of these interactions. The
change in the structure of the Eliashberg equation due to a nonconstant density of states

(DOS) and the consequent interplay between static and thermal disorder is analyzed in

detail, with a central feature being the change in frequency dependence of the self-energy

compared to a constant DOS solution. The effect of DOS structure on the superconduct-

ing transition temperature T„which is manifested in the defect dependence of T„ is

analyzed in detail. Further it is proposed that an extension of the self-consistent Eliash-

berg approach be extended above T, to determine the normal-state self-energy and there-

by the electronic contribution to thermodynamic quantities. Phonon broadening is shown

to affect the spin susceptibility at finite temperature. Reinterpretation of several of the
anomalous properties of 315 compounds in terms of the present theory is suggested.
Several aspects of the theory are compared to experimental data for Nb3Sn.

I. INTRODUCTION

Deeply ingrained in the formal theory of the in-

teracting electron-phonon (e-ph) system in metals
are two simplifying approximations. The first is
an extension of the adiabatic, or Born-Oppen-
heimer approximation' in which the light electrons
are considered to respond instantaneously to the
heavy ions (of mass M). Central to the theory of
e-ph systems is Migdal's theorem, which demon-
strates that nonadiabatic effects can be obtained
accurately by low-order Feynman-Dyson perturba-
tion theory, to lowest order in an expansion param-
eter of the order of (mlM)'~ && l. The second
simplification is the assumption of a constant den-

sity of states (CDOS) over a region +0 around the
Fermi energy EF, where 0 is a few times of the
mean phonon frequency. This approximation al-
lows the DOS function X(E) to be approximated
by X(EF) in certain energy integrals. The two ap-
proximations in fact are related, and it often seems

to be assumed that Midgal's theorem is inapplica-
ble if N(E) is not constant [to within (m IM)'~ ]
over a range +0 around EF. As will be shown in
this paper, however, there exists an important re-
gime within which the CDOS approximation may
be relaxed in a straightforward manner while re-

taining Migdal s simplification. The resulting gen-
eralizations of the CDOS expressions often are not
intuitively obvious, and the consequences involve a
reinterpretation of many of the properties of this
class of materials.

That structure in the DOS on the scale of 0
should be expected in crystals containing several
transition-metal atoms per unit cell can be deduced
from general considerations. Elemental transition
metals are known to have peak structure in their
DOS which may be only a few tenths of an eV
wide. A compound with (for example) ten atoms
per unit cell will have 10 times the number of
bands in the same overall bandwidth, leading to
structure on the order of hundredths of an eV.
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Recent band-structure calculations ' on 315 com-
pounds (eight atoms per unit cell) indeed have veri-
fied structure on this scale. DOS structure can be
important even in elemental metals if the Fermi
level Ez lies near a van Hove singularity, such as
occurs in Pd and Pt.

The most intriguing consequence of the e-ph in-
teraction, both theoretically and technologically, is
superconductivity, and it has not been overlooked
that the superconducting transition temperature T,
might be affected by DOS fine structure. An early
study of A15 compounds was carried out by Bar-
isic and co-workers in the weak-coupling limit,
where it was noted that the DOS within a region
+0 around EF contributes in the determination of
T, . Cohen, Cody, and Vieland applied a strong-
coupling version of the Koonce-Cohen formalism
to investigate the effect of model A1S DOS func-
tions upon T, .

In a model solution of the Eliashberg equation
with non-CDOS effects included approximately
Nettel and Thomas suggested an average DOS
given by

c 8CO
Q

NT

X [N(coZ)+N( coZ)—]/ln(Q, /T, )

as being most relevant in determining T, . Here
Z(co) is the strong-coupling renormalization (real

part), Q, =Q is a cutoff frequency, and the DOS
function will be taken with origin at EF through-
out this paper. It was evident to Nettel and Tho-
mas that there is great utility in identifying, when-
ever possible, an effective value of N (EF) for use
in the CDOS version of Eliashberg theory rather
than having to deal always with the full energy
dependence explicitly. This simplication will be
explored further in this paper.

Horsch and Rietschel' obtained numerical solu-
tions to the Eliashberg equation in the small

kT, /0 limit where the imaginary part of the self-

energy can be neglected. They found an enhance-
ment of T, relative to the CDOS value T, for
placements of a square root DOS peak near
EF—QZ(0). This was interpreted as a reduction
of the repulsive part of the e-ph interaction due to
DOS variation. It could equally well be considered
as an enhancement of the attractive part of the in-
teraction (which occurs at co & Q), with an approxi-
mate value of the enhancement given by Nzz.

A more general approach was taken by Lie and

Carbotte, "who calculated a functional derivative
5T, /5N(E) for several superconductors. Its shape
was found to be quite insensitive to the metal con-
sidered, having a maximum at E =EF, decreasing
to half maximum at

and becoming negative (but remaining very small)
above

E EF
I

—=50—70T. .

This (linear) approach leads to an average DOS

6T, GT
NLC —— dE N E

5N E dN(EF
(1.2)

which is useful for estimating T, from a CDOS
theory. In Eq. (1.2) dT, /dN(EF) is the integral
over 5T, /5N(E), and T, is given by

8T
T, =T, + [NLC —N (EF )]

dN (EF )
(1.3)

Written in this form Nz c clearly has an interpreta-
tion as an effective value of N (EF ). Since the im-
portant contributions to the integral in Eq. (1.2)
come from the region

~

E EF
~

& 10T—, -Q, (for
strong coupling superconductors), for nonpatholog-
ical DOS functions the averages Nzz and NLc
should be similar.

Whereas an average over the DOS may be suffi-
cient for understanding T„ for many properties of
interest (e.g. , the T dependence of the spin suscep-
tibility X,~) no such simplification will be possible.
In this paper a general approach for obtaining the
electronic self-energy, and thereby the thermo-
dynamic properties, is described. Both static and
dynamic disorder are included in a straightforward
generalization' of the usual Eliashberg approach,
and it is shown that each type of disorder contri-
butes to the shift in chemical potential as well as
to a shift and renorrnalization of the electronic
spectrum. Although the emphasis here will be
focused on the superconducting state, implications
for normal-state properties also will be discussed.
A preliminary report' of the application of this
theory to Nb3Sn has been published elsewhere.

The plan of the paper is as follows. Section II is
devoted to the description of the system of in-

teracting electrons, phonons, and defects which
will be studied, and the approximations leading to
our expression for the electronic self-energy are
discussed and justified. The treatment of the ener-

gy dependence in the Eliashberg equation is given
in Sec. III, where it is argued that the band-energy
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dependence of the self-energy should be negligible
in most cases. This leads in turn to a less formid-
able numerical procedure for solving for the self-

energy. In Sec. IV the generalized Eliashberg sys-
tern of equations is presented and the alterations
arising from DOS structure are discussed. As a
byproduct of retaining the band-energy dependence
of the e-ph interaction in the equations, a better
understanding of the Coulomb pseudopotential and
of the role of impurity scattering is obtained. A
discussion of several aspects of the theory at T, is
presented in Sec. V. In Sec. VI the spin suscepti-
bility is discussed in terms of a self-energy deter-
mined from an Eliashberg-type equation at T & T, .
Unlike previous uses of Eliashberg-type equa-
tions, ' which of necessity require an infinite sum-

mation of diagrams to describe appropriately the
appearance of a gap (superconducting or spin-
density-wave) in the spectrum, this novel applica-
tion accomplishes more easily what could be ac-
complished (at least approximately) in some finite
order of perturbation theory. It is suggested that
this approach may be fruitful for studying other
thermodynamic properties. Indeed, there has been
little concern over non-CDOS corrections above T,
with the exception of the T dependence of g,z and
the elastic constants, both of which show anoma-
lous behavior in high-T, 215 compounds.

H =H& +HPg +He & +H& Ph+H1~P (2.1a)

where

H, = QEk%'kr3
k

(2.1b)

Hph ——g Qgggjg, ,
Qv

(2.1c)

H, ,= —, g V(k, k';q)%k qr3
kkq

X +k+k +q (2.1d)

II. GENERALIZATION OF THE
ELIASHBERG SELF-ENERGY

The usual treatment of Eliashberg theory on the
imaginary frequency axis is clearly set forward in

the literature. ' We will provide only the back-
ground necessary to clarify the generalizations we

propose and the approximations which remain.
The system we consider is described by the Hamil-
tonian

He-ph Q gkk'v(bk —k', v+b k' —k, v)
k, k', v

X Wkf ~3+k+~, (2.1e)

)le

H;~p ——g Q Vkk (R~)'Pk 3
kk' j=1

where a denotes a second-order term. In the
Nambu scheme the spin index is eliminated in
favor of the two-component field operator

(2.1f)

Ck

+k=
C k

(2.2)

in terms of the electron annihilation operator ck .
The Pauli matrices are denoted by ~&, r2, and ~3.
Electron-band and phonon-mode indices will not
be exhibited explicitly except where necessary.

In this form of the Hamiltonian 4 describes
band electrons, for which the electron-static lattice
and electron-electron interactions have been includ-
ed in a mean-field sense. For the electron-lattice
interaction the remaining coupling is given, to
second order in the ion displacement, by the "

electron-phonon Hamiltonian H, „h. The second-
order term, which has not been displayed explicit-
ly, is required to keep the theory translationally in-
variant. ' The residual Coulomb interaction be-
tween band electrons is assumed to be representable
in the usual four-body form and is denoted by V in
the electron-electron Hamiltonian H, , The effect
of this term on superconducting behavior is not
understood in detail but fortunately an approxi-
mate treatment in terms of an empirical "Coulomb
pseudopotential" (see below) seems sufficient for
most purposes.

The "impurity" term H; ~ represents' n; identi-

cal, randomly distributed imperfections centered at
positions Rj. The scattering potential V' I'

represents the difference between the potential in

the region of the imperfection and the perfect-
crystal potential. The phonon Hamiltonian H„h is
expressed in terms of bare phonons (with creation
operator bg„) of frequency Qg„which are dressed

to the observed frequency~@ by the band-electron
polarization as described fat' example by Migdal.
In this paper we will not consider the effect of lat-
tice imperfections on either the phonon spectrum
or the electron-phonon coupling g, although the ef-
fect may become large for highly disordered ma-

terials.
The electron thermodynamic Green's fun@Sion is

given by
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G (k,i r0„) ' =iso„—(Ek —g)r3 —X(k,i co„),

(2.3)
/

I I

where co„=(2n + 1)n T and the self-energy X con-
ventionally is given by'

X(k, i co„)=ico„[1 Z—(k,i co„)]

+X(k,iso„)r3+P(k, iso„)r& . (2.4)

For bulk superconducting properties the ~2 term in
X is proportional to P and is assumed to be elim-
inated by the choice of phase. Two points should
be noted here. First, the chemical potential g,
which is determined by the relation

N, =Tg TrG (k, iso„)e
k, n

(2.5)

in terms of the number of electrons N, (e is a posi-

PHONON SCREENED DEFECT
COULOMB

FIG. 1. Proposed phonon, Coulomb, and defect con-
tributions to the electron self-energy X. The double
lines indicate the renormalized Green s function G(X),
giving a self-consistent, infinite order relation for X.

tive infinitesimal quantity), will be retained expli-

citly. Second, we also retain the energy shift 7
(not to be confused with the susceptibility) and
find that although it does not reduce to a trivial
shift in the chemical potential, its effects are usual-

ly of a secondary nature.
The Eliashberg equation for the self-energy,

represented diagramatically in Fig. 1 is'

X(k tcofg ) — T y 73G (k t cog )1 3 'y
~

gtt;k'y
~

D (k k ~~/ t~/')
k', n' V

+ V(k, k', iso„iso„)+—[n;
~
t(k, k', iso„)

~
/T]5„„ (2.6)

The first term results from coupling to phonon
branch v with renormalized phonon Green's func-
tion D„. The second term arises from the dynami-
cally screened and Coulomb-vertex-corrected
electron-electron interaction V, which is discussed
further below. The third term, which is usually
not included, results from neglecting correlated
multiple scattering between distinct static defects,
but includes multiple scattering from a single de-
fect by means of the t matrix' t. This treatment
strictly applies to the dilute limit; however, the
transport theory which results usually is found to
be valid to rather large defect concentrations.

In writing the phonon contribution to X as in
Eq. (6), Migdal's theorem has been invoked. In its
usual form this theorem states that, to within a
quantity of order (m /M)'/, the electron-phonon
vertex function I',

~h can be taken as unity (for the
purpose of calculating the electron self-energy).
Within simple metal language an equivalent expan-
sion parameter is 0/Ef. This had led to specula-
tion that Migdal's theorem may not hold for sys-
tems which have DOS structure, and in some sense
an effective degeneracy temperature (EF) on the
scale of Q. As Scalapino' "has emphasized,
however, the validity of the approximation rests on
a small value of the ratio of phonon phase velocity

I

~&/Q to electron group velocity Uk. Even for A 15
compounds with large N(Ef) and low electron ve-

locities the ratio of these quantities averaged over
the Brillouin zone is (2—3) X 10 (e.g.,

' (co~/Q )
-5X10 cm/sec and' (Uk)=(uk)'—:U~

=2X10 cm/sec for Nb3Sn). The approximation

r, ph 1 can break down in the immediate vicinity
of a van Hove singularity Uk =0, but such a small

number of electrons within
~

Ek Ef
~

& II have-

Uk &cog/Q that the contribution to the Brillouin-
zone sum in Eq. (2.6) will be negligible.

Recently Drozhov' has provided more insight
into this problem. The situation Drozhov studied
is that in which an M& van Hove critical point
falls at EF, which is one situation for which

Uk &cog/Q. It was found that so much dispersion
is introduced into the electronic states by the e-ph
interaction that the corresponding quasiparticles
are for the most part removed from the region of
the critical point (and, of course, are highly
damped). The quasiparticle velocities tend to
diverge at the critical point. Thus, if the fully re-
normalized Green's function, rather than its bare
counterpart, is used in Eq. (2.6) (as is done in
Eliashberg theory and as it is shown in later sec-
tions must also be done in the normal state), it
may well be the case that the criterion Vt, )co&/Q
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in terms of renormalized uelocities Vk (if they can
be defined) is satisfied even near critical points
uk~0 where Migdal's theorem as stated is unprov-
en. Assuming this to be the case, the only remain-
ing difficulty is with optic modes, for which near
zone-center phase velocities co~/Q diverge. It ap-
pears that a small enough number of modes are in-
volved that the Brillouin-zone sum for X is unaf-
fected.

Migdal also demonstrated (for the normal state
at T =0) that the renormalized Green's function G
appearing on the right-hand side of Eq. (2.6) can
be replaced, in the COOS system he considered, by
the unrenormalized Green's function, thus allowing
a formal solution for low frequencies. No corre-

sponding simplification is possible when variation
in N(E) is not negligible, as observed by Eliash-
berg' '"' for the superconducting state in which the

opening of the gap gives a sharply varying density
of quasiparticle states. A central point of this pa-

per is that, when the energy variation of N(E) oc-
curs on the scale of phonon energies, X must be
determined self-consistently from Eqs. (2.5) and

(2.6) for the normal state as well.

The three contributions to X in Eq. (2.6) differ
fundamentally in their frequency dependence. The
phonon Green's function D„(ico„)has its important
frequency variation for

~
co„~ (Q and decreases as

co„ for
~
co„~ &&Q. The Coulomb interaction

V(ico„) varies only on the scale of the electronic
plasma frequency (peak in the energy-loss function)

cop] 10 eV. The impurit contribution is energy
conserving, with (1/T)5„„ in Eq. (2.6) represent-

ing the 5 function 5(co —co') in the thermodynamic
formulation. For the phonon and impurity contri-
butions the sum over

~
co„~ in Eq. (2.6) can be

truncated at a cutoff frequency co, -5—10Q with

negligible loss of accuracy. The practical necessity
of using a minimal frequency range for solving for
X has prompted the folding down of the Coulomb
potential V into a pseudopotential U as described
in detail elsewhere. ' ' The treatment is general-

ized somewhat in Appendix A, with the result

1/U = I/V+N(c. o„i)ln(co„i/co, ) . (2.7)

III. TREATMENT OF THE
ENERGY DEPENDENCE

In its most general form the Eliashberg equation
is extremely difficult to solve even if the kernel in
large parentheses in Eq. (2.6) is known. Besides
the four-dimensional frequency-momentum vari-
ables which are summed over, 6 and X also are
matrices in band index, ' although this fact is
nearly always ignored. To date little of a quantita-
tive nature is known about the importance of off-
diagonal (in band index) contributions to G; how-
ever, cases where these corrections seem to be
necessary have been extremely rare (but see
Chakraborty and Allen '). In the present paper all
such "band-mixing" effects will be neglected. We
will concentrate on including the energy depen-
dence of the band density of states within an iso-
tropic, band-diagonal approximation.

The isotropic average A (E) of a wave-vector-
dependent quantity A (k) is defined by

2 (E)=g A (k)5(E Ek ), —
k

(3.1)

where to simplify notation we have introduced a
dimensionless, normalized averaging function given
by

5(E —e) =5(E e)/N(E) . —

A further approximation necessary to reduce Eq.
(2.6) is

This relation, and the effective DOS N(co~i), will be
discussed further in Sec. IVA. Using this pseudo-
potential and utilizing the evenness' i ' in frequen-
cy co„of the functions Z, X, and P, Eq. (2.6) can
be reduced to an N, pN, matrix equation with
(2N, —1)mT=co, (i.e., n =0, 1, . . . , N, —1).

$G (k', ico„)B(k,k';i co„ico„)5(E Ek )5(E—' Ek ) =G (E',i co—„)B(E—,E';i co„ico„), —
kk'

(3.2)

G(E ico„) '=ico„(E g)r3 X(E,i—c—o„) . —

B(k, k';i co„ico„) is any o—f the three kernels in Eq. (2.6) and B(E,E';i co„ico„)is defined —by Eq. (3.2).
The self-energy becomes' "'"

(3.3)

X(E,t'co„)=T g J dE'r G(E', t'co„)r N(E') IX(E,E';ico„ico„) P*(E,E')—[I (E,E—')/m T]5„„I—,
I co+

~
(N (3.4)
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where

7 (E,E', tco„)= —g i gkk, i
D„(k k—', iso„)5(E E—k)5(E' —Ek ),

kk'v

p, *(E,E')=g U(k, k', 0)5(E Ek—)5(E' E—k ) = U(E,E',0),
kk'

I (E,E')=en' g I
t(k k' 0)

I
'5(E —Ek»(E' —Ek ) .

kk'

(3.5)

(3.6)

(3.7)

which in turn is due to variation with energy of
the character of the wave functions and scattering
properties but not the density of states. In general
we expect this variation to be small compared to
DOS effects, although this question deserves fur-
ther study. Information on the E dependence of
A, (E,E) can be gained by studying the E depen-
dence of the mean-square electron-ion scattering
matrix element I (E) which enters A, . Using the
calculated electronic structure and wave functions
of Klein et al. (to be used in the calculations
described in Sec. V), it is found that I (E) varies
by only 2% in a 4-mRy region centered at EF
where N(E) changes by a factor of 3. Neglecting
this small energy dependence of the kernel gives

ft( l N» —
L N)F»»

/
CtP~

/ (CO~

(3.8)

In the CDOS limit N(E)~N(E~), the usual
electron-phonon coupling constant A, , pseudopoten-
tial p*, and impurity width I are given by
N(EF)k(EF, EF,0), N'(Ep)p '(Ep, EF), and

N(Ez)PEF, EF), respectively It .will become ap-
parent, however, that the normally ubiquitous
quantity N(EF) nowhere appears explicitly in this
more general theory, although we will identify in
Sec. V an effective average density of states which
is useful in an approximate determination of T, .
The Coulomb pseudopotential p* is discussed fur-
ther in Sec. IVA and in Appendix A.

The E dependence of X arises solely from the E
dependence of the kernel

A,,tt(E,E') =A,(E,E') P, *(E,E')—

—(1/n T)f'(E,E'),

with

C(Eire»)=(E (+X—») +Z„(co„+b,„) .

(3.11}

with each average incorporating in the denomina-
tor C(E,iso„) an energy shift g —X„and broaden-

ing half-width Z„(co„+5„)'~. Both functions are
even in co„. The following sections describe the ef-
fects of a nonconstant N(E) that are included in
N„and P„, which for a constant density of states
reduce to

N„ N(Ef )

0 (3.13)

IV. GENERALIZED ELIASHBERG THEORY

The generalized equations for the Eliashberg
self-energies are

N

»Z» ~»+~~ Q ~»m Nmem +~N»e»»
m=0

N

X„= ~T g (A,„+ —2P")P e I P„e„to„, —
m=0

(4.1)

The gap function is given by b „=P»/Z„. Even
and odd averages over N(E) result, given by

2 2 1/2Z» (~» +~» )

dE
P» ~ C (E,iso» ) E 0+—&»

(3.12)

where X»:X(ic0»),—etc, and the density-of-states
effects are confined to the factor

F„=f dEr3G(E, iso»)r3N(E) .

Inverting G ' in Eq. (3) leads to

(3.9)

+I N»e»$»co»/Z„, (4 3)

(4.2)

N

(2n+1}$»= g (A„~ 2P*) —N e P~/Z~
m=0 m

i~„Z„(E— g+7t.'„)r, — —
r3G(E, i tv» )r3 ——

C(E,i co„)
'

(3.10)
where k' —+' and the DOS "enhancement" e„are de-
fined by



li92 WARREN E. PICKETT 26

k~~ =—k(l &~ —l &~ )+k(l &~ +l &~ )

e„=co„/(co„+b„)'

(4.4)

(4.5)

Ree(ar) =ReIco/[co2 —g~(~)]'~2] .

A. The Coulomb pseudopotential

(4.5')

b,„=mTQ . (A,„~ 2P*)N—e
m=0

N

—&nm g ~ni NIeI ~m/~m .
1=0

Explicitly A, is given by

)L.(le~ —LN~ )

=2 I dQQa F(Q)/[0 +(co„—co~) ] (4.7)

A nonzero solution to Eq. (4.3) exists only for
T & T, . However, Eqs. (4.1) and (4.2) may be use-

ful at higher temperatures as well, a fact which is
discussed in Sec. VI.

Converting Eq. (4.3) into an equation for the gap
function leads to

From Eq. (4.2) it follows that the contribution to
7 from the Coulomb interaction is independent of
co„. This results in a constant shift X, in all quasi-
particle energies and consequently a compensating
shift g~ g+g, in the chemical potential. There-
fore the Coulomb contribution to X in Eq. (4.2)
can be disregarded without loss of generality. On
the other hand, phonon and impurity scattering
give rise to nonconstant energy shifts X„which
must be retained in an accurate theory.

The pseudopotential U in Eq. (3.6) is given as
usual as a solution to an integral equation de-
scribing the folding-down of high-frequency
scattering processes included in V. The zone-
averaged pseudopotential p* satisfies the approxi-
mate relation (see Appendix A)

r

(4.9)

in terms of an intensiue electron-phonon spectra
function (i.e., coupling per electronic state)

X&(E'—Ek )

and

a F(Q,)=a F(E,E';0,)
I E E

(4.8)

where N(co) denotes an average over N(E) on the
scale of co, and p, is given in terms of V by an
equation analogous to (3.6). However, according to
the gap equation (4.6) it is approximately the di-
mensionless quantity N(co~)P

' which enters into
the determination of the gap function (and hence
T,). Here co~ denotes the range of the average over
N(E) appropriate to the gap equation, which will
be discussed further below. In the limit of a slow-
ly varying DOS near E~, N(co~)~ N(Ez) and

Equations (2.5), (3.12), and (4.1)—(4.3) [or (4.3)
replaced by (4.6)] form a system of coupled non-
linear matrix equations which must be solved itera-
tively for the self-energies at each temperature of
interest. Their solution allows (at least in princi-
ple) the direct calculation of electronic thermo-
dynamic properties, ' ' ' such as T„specific heat,
etc Numer. ical solutions of these equations have
been presented elsewhere' (and see below) but a
number of effects, and their interpretation, result-
ing from a complex electronic structure will be dis-
cussed in this section. The care which must be ex-
ercised in any interpretation of the imaginary fre-
quency equations is exemplified by the "enhance-
ment" e„defined by Eq. (4.5). Evidently e„ lies in
the range 0 &

~
e„~ & 1. The designation "enhance-

ment" is appropriate since, when continued to the
real axis, the real part of this function gives the
well-known DOS enhancement on the real axis

(4.10)

This leads to a dependence of p' upon N(EF) simi-
lar in form to that of Bennemann and Garland,
who used p =0.26 and N(co~, )ln(co~, /co, )

=3.85 (eV atom) ' for transition metals. How-
ever, since p in Eq. (4.10) is formally proportional
to N(E~), which can vary widely within a given
class of metals, Eq. (4.9) is the appropriate relation
from which to determine p . The quantities p and
N(co~~) vary slowly within a class of metals, with
the dominant variation arising from scaling with
bandwidth.

B. Impurity scattering and "Anderson's theorem"

In the CDOS limit N„~ N(EF), P„~0, X„
vanishes, and the chemical potential is constant.
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C. T=T,

At T= T, (b,„~0) the alteration of the quasi-
particle density of states due to the gap vanishes,

and the expressions (4.1), (4.2), and (4.6) simplify
somewhat. The equation for the (infinitesimal) gap
becomes linear and decouples from the remaining
equations, which still must be solved iteratively for
N„. The equation determining T, can be written

[Eq. (4.6) with e„~1]
N

X„'+'—2@*
m=0

2n+1 ' -( ) NI
N 6 =0,

(4.11)

where 6 =6 /co . %ritten in this form the T,
equation is a straightforward generalization of the

The gap equation (4.6) reduces to the usual form
and, for I =N(EF)I ~ 0, the equation (4.1) for Z
does likewise. For nonzero I the static impurities
give a contribution to Z related to disorder
broadening of the energy spectrum. Obviously this
has no effect on the normal state, since (in the
CDOS limit) there is no structure to broaden. The
gap-induced structure in the superconducting state,
where the quasiparticle DOS is

N(EF)Reft/[co —b (co)]

also is unaffected by the broadening since the
equations for Z and 6 are uncoupled in this limit.
This is a manifestation (indeed, a proof) of
Anderson's theorem, which states that supercon-
ducting properties (of CDOS systems) are unaffect-
ed by dilute nonmagnetic impurities.

The generalized Eliashberg equations above show
that this statement of Anderson's theorem breaks
down when structure is present in the DOS, due to
the disorder broadening of the underlying electron-
ic structure. Although I does not enter explicitly
into the gap equation (4.6) (due to the energy-
conserving nature of this interaction), disorder
scattering can lead to important spectral broaden-
ing via Z, and conceivably to non-negligible spec-
tral shifts g„—g. The effect on the gap and on

T„ is transmitted to the gap equation entirely
through the resulting set I N„].

CDOS expression, as given for example by Allen
and Dynes. Ignoting for the moment corrections
to the kernel diagonal, the primary change is the
replacement of the CDOS eigenvector A„by N„A„.
This replacement has no effect upon either T, or
the eigenvector, whose components are now N„A„.
This means that (at this level of approximation) b,„
will be altered by DOS structure in proportion to
N„'. A similar correction to the gap occurs at
T & T„and this indicates that the analytic con-
tinuation b (co) can be altered substantially' 2 by

energy dependence of the DOS.
The correction due to DOS structure to the pho-

non contribution to Z„—1, proportional to NI in

Eq. (4.11), tends to be canceled by N„, while the
factor N„multiplying (2n +1) in the diagonal
can be regarded as the self-consistent response of
6„ to the DOS structure. It is this latter effect
which gives rise to much of the correction to T,
compared to the CDOS limit. The structure of
Eq. (4.11) will be clarified further in Sec. V where
an approximate T, equation is discussed.

V. DISCUSSION AND CALCULATIONAL
RESULTS AT LO%' TEMPERATURE

A. How much DOS variation?

The system of generalized Eliashberg equations
has been applied to Nb3Sn and Nb at T=T, .
Technical aspects of the numerical solution are dis-
cussed in Appendix B. For Nb3Sn the corrections
to the CDOS results are substantial, both for T,
and for the self-energies 6„,co„Z„,and P„. Crys-
talline Nb was checked as a possible fringe case,
where corrections might be noticeable if not really
important. The DOS of Nb is characterized by a
large value of N(EF)= 10 (Ryspin) —with EF ly-

ing 20 mRy above a peak, and the energy variation
being described sufficiently well by a slope of
—200 (Ry2 spin) ' over a range of +20 mRy
=+3&(10 K around E~. The correction to T,
was found to be 0.4% (downward), with corre-
spondingly small corrections to the self-energies at
T, . Although this correction is well below the ab-
solute accuracy of the Eliashberg equations as de-
rived (keeping only certain classes of diagrams) and
applied (especially the treatment of the Coulomb
interaction), it nevertheless represents faithfully the
accuracy of the CDOS approximation in Nb and in
metals with similar or less DOS structure near Ez.
A preliminary report of the Nb3Sn calculations has
been reported' and further results are discussed
below.
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B. Approximate relations for T,

In the CDOS limit T, is determined by a I' and
p*, or equivalently,

T, = T, [A,,g (co),p'], (5.1)

where a I' is described by a strength A, and shape
function

g(co) =(2/its)a ,I'(co) .

Generalizing the pioneering work of McMillan,
Allen and Dynes showed that, for widely varying
strengths and shape functions, this functional of g
can be replaced to high accuracy by a function in-

volving only two moments co~,g and co2 of g.
AD

Tc = Tc (~~folog~to2~iJ (5.2)

One of the most useful applications of such an ap-
proximate T, equation is the extraction of A, from
experimental data on T, and reasonable estimates
of co)og, co2, and p*.

In the previous sections it has been shown that
the general functional form of T, is

T, =T, [A, ,g(co),P*;N(E),I ], (5.3)

where g is defined analogously to g. The form of
the gap equation (4.6), together with the work of
Allen and Dynes, suggests an approximate T,
equation of the form

Tc=Tc(~~tolog~to2P 'Ng Np Na I ) (5.4)

N N

g A,„( Nl Nl„g A,„l '.
l=o l=o

(5.5)

Since A, decreases as co for co ~~0, N~ will cor-
—2

respond approximately to a Lorentzian average of
N(E) over a frequency half-width 0 around EF
(actually g).

In the off-diagonal terms the corresponding re-
placement is

N N

g X'„+.'N. i -N, g X„'+'Z. . (5.6)
m=0 m=0

However, since 6 decreases rapidly with increas-
ing corn, even changing sign for mm & Q, Ã~ aver-
ages over a smaller region than does N~, for exam-

where Ng, Nz, and Na are averages over N(E). A
few general features of these averages will be noted
here.

The average denoted N~ is that which should
multiply A,

' ' in the kernel diagonal in the approx-
imation

pie, on the order of 0/2.
The average N& multiplying p* is less straight-

forward, since p* has no frequency cutoff to make
a partial sum coverage. Numerical solutions
show that 4„approaches a negative constant value

b,„for large n (for nonvanishing P*). Obviously
N„also approaches a constant average DOS value
N„. If both N„and A„have approached their
asymptotic value at n =k &N„ it follows that N&,
given by

N

Nq= QN„b„
N

IG —1

g N„h„+—,N„h„ln(N, /k)
0

Ic —1

g b,„+—,h„ln(N, /k)
0

(5.7)

is weakly dependent on the cutoff N, . This cutoff
dependence is artificial and arises from the incon-
sistent treatment given to p in folding p down to
p'. The energy integral leading to Eq. (4.9) does
not take into account the full variation of N(E)
whereas the "unfolding" to the cutoff N, in Eq.
(5.7) is taking this energy dependence into account.
It is straightforward to correct this discrepancy by
generalizing Eq. (4.9), that is, by using the relation
(A5). However, the following approximation will
suffice to illustrate some effects of DOS structure.

Owing to the rapid decrease of A„with n and
the (2n+1) ' factor in b„, the DOS average,

M

N„(M) = gN„E„—
n=0 n=0

(5.7')

for small M "converges" (i.e., becomes stationary
with respect to M) rapidly before the cutoff depen-
dence mentioned above becomes a consideration
and leads to the unwanted limit 1V@~N„. In a
preliminary report' of this work applied to Nb3Sn
(also see below) the first term alone

eff AD ~)it
Tc = Tc (Neff~irolog~to2i effP (5.8)

(although numerical solutions to the CDOS equa-
tions were actually used rather than the Allen-
Dynes equation). Note that

wTc Zo 0 85 —0.90cg2 0/2

N&(M =0)=N(AT, Zo):N,ff—
was used in the CDOS theory, giving an approxi-
mate value T,' which could be compared to nu-
merical solutions of the full system of matrix equa-
tions for T, . In essence T,' is given by (for I =0)
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FIG. 2. Superconducting transition temperature T, of
Nb3Sn vs Fermi-level position, calculated within dif-

ferent approximations. Full line, solution from fu11

energy-dependent equations; dashed line, solution assum-

ing CDOS N(E) =N(EF); dot-dash line, solution assum-

ing CDOS N(E)=N, ff (see text).

2

for Nb3Sn (T, =18 K, Zo ——2.7, co2
——175 K).

results of this approximation are shown in Fig. 2,
where it is evident that T,' reflects the trends of
the numerical solution quite well as the assumed
value of FF is varied, although being —1.5 K too
large. The crude approximation T, resulting from
the assumption N(E) =N(EF) is seen in Fig. 2 to
give a much stronger N(EF) dependence than actu-
ally occurs.

For nonzero impurity scattering each DOS aver-

age N„has its broadening half-width to„Z„ in-

creased by I N„[see Eq. (4.1)]. A low-order ap-
proximation can include this by increasing by
I ff=N~I each of the widths which determine

N~, N~, and N&, of which the former must be cal-
culated self-consistently (at least in principle). The
calculations described below result from numerical
solutions to the full energy-dependent equations,
however.

The quantities Nx, Nt„and N& offer a reason-
able possibility of obtaining a realistic value of T,
without solving nonlinear coupled matrix equa-
tions. Unfortunately it is a monumental task to
ascertain even an appropriate form of the approxi-
mate T, equation envisioned in Eq. (5.4), as this
would involve full solutions for a wide variety of
shapes of N(E) and g(co) as well as coupling
strengths A, , p*, and I . Worse, it begins to appear
hopeless to extract unambiguous information from
an experimental value of T, in the face of so many
unknown parameters. The only compensation is
that the behavior of T, with the level of imperfec-

tion [T,(I )] can be incorporated into the analysis.
A more realistic approach for interpreting experi-
mental data is to use a single average Ndf, with

Neff =N~ being a good choice, in the CDOS ex-
pression of Allen and Dynes. This in effect is the
usual practice, except that the value of A,,ff—N ffA

extracted in this manner may differ from the mass
enhancement value derived from heat capacity or
other measurements.

Although the DOS average appropriate for an
approximate T, equation given above differs in de-
tail from that of Nettel and Thomas, the spirit of
the approximation is similar to theirs. The more
rigorous, but linear, approach of Lie and Car-
botte" for calculating 5T, /5N(E) follows from the
present formulation by calculating the correction
AT, arising from an infinitesimal variation of en-
ergy E from a constant DOS given by

C. Defect dependence of T, and X(E~)

It was observed in Sec. V B that experimental
data on T~[1 ] [i.e., T, versus defect concentration
n;, since I =~n;

~

t
~

from Eq. (3.7)] provide

(p) Nbp Sn
X= ).8

=0.16

o F
—0.4

K I e in et p I .

I

-2

0.5-- ~

I
0

WOLF et al.
I i I

2 3
,E- EF( InRy)

—0.2

I I I I I I I I

-80 -60 -40 -20 0 20 40 60 80
E-EF (mRy)

FIG. 3. Comparison of electron and phonon energy
scales for Nb3Sn. (a) a F(co) from tunneling data by
Wolf et al. (Ref. 32) and N(E) function calculated by
Klein et al. (Ref. 5), shown on the same mRy scale. (b)
Same N(E) function on a scale of —1 eV.

AN(E') =E5(E' E) . —

It could be of interest to study the effects of the
supralinear terms for a particular DOS function
using the present theory. However, the Lie-
Carbotte results provide an important intuitive
grasp of the general behavior of 5T, /5N(E) as
well as a first approximation for numerical calcula-
tions.



1196 WARREN E. PICKETT 26

direct information on the energy variation of
N(E). Calculation of T, (I ) has been carried out
for Nb3Sn using the DOS function calculated by
Klein et al. For n F we have assumed

a F(co) =N(cosh)a F(ro), (5.9)

(5.10)pc ——4~1 /Qp,

Q~ = (4ne/3)N(E. F )Uz,

with fiQ& ——4.0 eV. The experimental data on

p(T, ) ~p(0) has been converted to the "true" resi-
dual resitivity pp by the use of the parallel resistor
formula

(5.11)

1 1 1——+
)o(0) )oo

(5.12)

p,„=150pQcm, since Weismann et al. have
found that po given by this expression, and not
p(0), is approximately linear with damage-inducing
radiation dose. The theoretical prediction is com-
pared to four sets of experimental data in Fig. 4.
The calculation is consistent with experimental
data for residual resistivities below 7S pOcm. For
larger disorder the theoretical prediction ap-

cosh ——300 K, with a F(co) derived from tunneling
data by Wolf et al. Both N(E) and a F are
shown in Fig. 3 on the same scale to allow an easy
comparison of their energy variations. For P* the
value p* =0.16 determined by Wolf et al. has been
used in the form N(EF)iJ, =0.16.

To compare with experimental data the defect-
broadening half-width 1 was related to the residual

resistivity pp by

proaches the asymptotic limit T,=9 K whereas the
experimental values saturate at T,=3 K. This in-
dicates that, for ppy75 pOcm, the disorder is de-
creasing the electron-phonon coupling a (co)
and/or hardening the phonon spectrum F(co), nei-
ther of which is included in the present theory
which treats a F as independent of disorder.

The correspondence between defect concentra-
tion and residual resistivity (I"~pc) is not as sim-

ple as Eq. (5.10) implies. It should be observed,
for example, that I in Eq. (5.10) must be deter-
mined self-consistently from the relation

r=N(l )r, (5.13)

pc ——3I /e up[i (I )] . (5.14)

We find by calculation, however, that uF(I ) cc 1/
N(l ) [since Qz(I ) is constant to within 2%],
which makes Eq. (5.14) numerically equivalent to

pp [4'/Q (E,)]N(r)r . (5.14')

Conceptually Eqs. (5.14) and (5.14') are not at all
equiualent and the former relation gives the correct
physical picture.

In Fig. 5 the effective defect broadening (or

where, as mill be shown below, the I dependence
of N(I ) is strong. Therefore, although I increases
linearly with disorder, I is distinctly sublinear.
However, the factor 0& in a suitably generalized
version of Eq. (5.10) also contains the factor N(I )

so the DOS dependence of pp cancels. As a result
the defect concentration dependence of pp goes in
versely with that of Uz, a result analogous to an

equivalent observation for the phonon-limited resis-
tivity made previously by Allen. This result can
be written

Nb3Sn

+ +
++ +

O O

Defect Broadening
o in Nb, Sn

Il
/

.-.' CDOS
/

OO o

I
' ' ' '

I
' ' ' '

I
' ' ' ' I

0 50 100 150 200 250

p, (p,n crn)

FIG. 4. Calculated T, of Nb3Sn (full curve) vs "true"
residual resistivity po (i.e., from parallel resistor formula)
compared with experimental data (Ref. 35). The theory
is not expected to be accurate for large defect concentra-
tion (pp) 75 pQ cm) since changes in a F are not includ-
ed in the theory.

0 10 20 30 4-0 50
I', (rnR. y)

FIG. 5. Self-consistently determined defect broaden-
ing width I (equivalently residual resistivity po)—full
line—vs disorder I o, determined from Ã(E) shown in
Fig. 3. The dashed line gives the COOS approximationr=r, .
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Nb3Sn

X = 1.8
+

QN(EF)vq = constant
+ vF = constant

~o

M
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)
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)
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p, (p,n crn)
FIG. 6. Effective density of states N(I ) vs residual

resistivity po for Nb3Sn. Solid line: theory, including e-

ph interaction with A, =1.8. Dashed line: theory, no e-

ph interaction. Symbols: experimentally inferred values

(Ref. 38), assumed two different constraints on N(EF)uF
with varying disorder.

equivalently, po) is plotted versus

I o ——N(E~)I'=en;N(EF)
~

t

Owing to broadening of the peak in N(E) near Ez,
I' increases more slowly than that for a CDOS
N(E) =N(EF), shown —

by the dashed line. Howev-
er, for pp) 50 pQ cm, I' is approximately linear
with defect concentration, just as the data of
Weismann et al. for p0 are approximately linear
with radiation fluence in this range.

The behavior of the factor of N(EF) in the
linear specific-heat coefficient y versus residual
resistivity may provide more direct information on
N(E) than does T, (po), since only a straightfor-
ward Lorentzian broadening of N(E) is involved.
In the few cases which have been studied systemat-
ically, however, y has been inferred instead from
the temperature dependence of the upper critical
magnetic field, 3 which involves independent infor-
mation (or assumptions) about the values of ma-
terial constants such as A, , UF, mean free path I,
etc., as well as an assumption about the behavior
of band-structure-related quantities with defect
concentration. The resulting values of N(I ) for
Nb3Sn obtained by Ghosh et al. , resulting from
the assumption that N(E+)uz, or secondly, uF it-
self, remains constant with increasing disorder, are
compared in Fig. 6 with that calculated from the
DOS function in Fig. 3. Calculated values of
N(I') are shown both for the (usually assumed}
case where only defect broadening is taken into ac-
count (dashed line), and the more general case in
which e-ph broadening is included (full line).

The calculated values including e-ph broadening

I

Q I

o
I

' ' ' ' ' ' ' '
I

—10 -5 0 5 10

ENERGY (rnRy)
FIG. 7. Effect of defect broadening on the N{E)

function shown in Fig. 3. Vertical lines indicate the

respective Fermi levels, determined from conservation of
electrons. Circles denote N(I ) =N(EF). The best sam-

ples of Nb3Sn have residual resistivities po-10 pA cm,
which precludes extreme energy variation of the density
of states.

are in slightly better agreement with the empirical
values obtained assuming N(EF)up —-const [h-owev-
er, the argument given above in the discussion of
T, (pu) indicates N(EF)uF) =const would be the
proper assumption]. The analysis of Ghosh et al.
of course also needs generalizing along the lines of
the present theory. It is clear from Fig. 6 that ex-
trapolation from the existing data to obtain a "per-
fect crystal value" of N(EF) may not be valid,
since a kink may occur at or below 10 IMQ cm.
The degree of broadening of the full N(E} curve is
illustrated more clearly in Fig. 7. A peak of width

3 —4 mRy or less is virtually lost for a residual

resistivity of 10 pQ cm, which corresponds to the
highest quality samples of Nb3Sn. Such a large
perfect-crystal value of N(EF) implies a tendency
toward defect formation, which serves to lower

N(EF) and thereby decreases the number of elec-

trons at high energy, resulting in a more stable ma-

terial.

D. Defect dependence of T, :
Previous studies

There have been several previous applications of
broadening to account for properties, especially T„
of A15 compounds. Most of these have been

phenomenological, as typified particularly by the
work of Mattheiss and Testardi. ' The studies
of Aleksandrov, Elesin, and Kazeko, ' and Huang,
Chu, and Ting, "' however, have used a more fun-
damental approach. Both groups studied T, using
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a weak-coupling formalism and model DOS func-
tions to illustrate the effect of defect broadening of
N(E) upon T, .

Aleksandrov et al. "' purported to explain the sa-
turation in Nb3Sn of T, at 3 K for high defect
concentration solely in terms of DOS broadening.
The present generalized theory and realistic DOS
function shows saturation at -8—9 K if only de-
fect broadening is taken into account. In addition,
this limit depends on the DOS function on only a
large ( —1 eV) scale, for which all band-structure
calculations ' give results similar (modulo
5 —10 lo bandwidth-type differences arisings from
different exchange-correlation approximations, etc.)

to those of Klein et al. which were used here. A
similar limit (-7 K) follows from the DOS
broadening study of Soukoulis and Papaconstanto-
poulos, if T, (10 pQ cm) is normalized to the ex-

perimental value of 18.6 K. To understand the 3-
K saturation it is necessary to invoke a weakening
in the strength of a F by approximately a factor of
2. This weakening may result from weaker cou-

pling or harder phonons. In fact, both of these ef-
fects have recently been observed in tunneling stud-
ies of Nb3Al (Ref. 43) and Nb3Ge (Ref. 44) with

varying degrees of disorder.
Huang et al. ' assumed a singular one-dimen-

sional DOS and obtained results similar to those of
Aleksandrov et al. and the present results. They
concluded that, due to DOS variation near EF, a
high T, compound can have a small value of
N(EF) Alook at. Fig. 7 shows that this cannot be
the case for A 15 compounds with appreciable
amounts of disorder, as in a11 samples of Nb3Ge,
Nb3A1, or for that matter, Nb3Sn. For pp=10
pOcm, i.e., a clean Nb3Sn sample, the broadening

half-width I is 1.6 mRy=250 K, which is roughly
equal to the maximum phonon frequency Q. Thus

N(Q), which determines T, (see Sec. V 8), cannot
be much different from the value of N(E) at E~
[N(1 ) in the present notation]. A Uery low po,
high-T, crystal may have a relatively low value of
N(E~) if a large peak lies within -Q of Ez, how-
ever.

Other mechanisms involving defect broadening
have been proposed to account for the degradation
of T, by defects. Meisel and Cote suggested that
an assumed inability of phonons with wavelength

longer than the electron mean free path to scatter
electrons effectively (and, hence bind Cooper pairs)
could account for the defect dependence of high T,
compounds. This cannot explain the increase in T,
with pp in low-T, materials, " however. Moreover,
if this "phonon-ineffectiveness" concept is accepted

it is very difficult to understand the rather large

T, and measured a I of highly disordered Mo
(Kimhi and Geballe, Ref. 46). Ruvalds and
Soukoulis have attributed most of the high T, (at
least in Nb3Ge and V3Si) to an acoustic plasmon
mechanism which decreases in strength as the elec-
tronic spectrum is broadened. However, there is
strong evidence from tunneling measurements that
the electron-phonon interaction itself is strong
enough to account for the high T, in V3Ga (Ref.
48), Nb3Sn (Ref. 32), Nb3Al (Ref. 43), and Nb3Ge
(Ref. 44), so there is now little reason to except
the acoustic plasmon mechanism to apply to any
A 15 compounds.

VI. NORMAL-STATE SPIN SUSCEPTIBILITY

A. General considerations

The magnetization M is given by the difference
in number of spin-up and spin-down electrons
times the moment per electron,

M(g, T) =ps(N, , N, ,)—
(6.1)

with

N, = T g G (k,ia)„)e
k, n

(6.2)

and

6 (k,ice„)= icy„(Ek g p~oH)— —— .

X(k,i co„),— (6.3)

where H is the magnetic field. Luttinger has
shown how this "self-evident" exact expression for
M can be derived diagrammatically.

The measured zero-field susceptibility is given

In Sec. IV it was shown that in general T, does
not provide a measure of N(Ez), but rather of an

average of the DOS over a region nT, ZO or. larger.
In this section we investigate what information
about N(E) is contained in the spin susceptibility

X,~. For the sake of generality the full k depen-

dence of the expressions will be retained as far as
possible.
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by

BM

aa, ~ 0=o,g=g(w, )

dG ' (k,i co„)

d (psaH) H=0
(6A)

2ps—T g G (k, tco„)[1+X'(k,tco„)],
k, n

where we have used Eq. (6.3) and the expansion

Xo(k,ico„)=X(k,ico„) izito—HX'(k, ico„)+O(H ) .

(6.5)

(6.6)

Equation (6.5) is an exact expression for X,z in terms of the renormalized Green s function and the field
derivative of the self-energy. As can be seen from Wolff's diagrammatic theory for X,p, the G term in

Eq. (6.5) arises from the simple, but renormalized, bubble diagram in Fig. 8(a), whereas the G X term arises
from all vertex corrections (i.e., diagrams with other than self-energy insertions to G). With X given by the
diagrams of Fig. 1, we can write, introducing J = —dG Id(psoH)

i H o——J ~=J,

J(k,ico„}=1— T g A,,rr(k, k', ico„ico„}G—(k', ico„)
k'n'

(6 7)

= 14Tg jeff(k-, k', ico„ico„)—G (k', ico„)J(k',ico„)
k'n'

—T g X,rt(k, k';ico„ico„}— G(k', ico„) . (6 7')

The second term in Eq. (6.7') describes "ladder-

type" vertex corrections (see below), with a typical

graph shown in Fig. 8(b). The third term repre-

sents field corrections to the effective electron-

electron interaction, with the lowest-order phonon
contribution shown in Fig. 8(c). There is of course

t

a large class of diagrams for X,„which are not in-

cluded in Eq. (6.7) by virtue of the approximation
for X from which this equation is derived.

For T—+0 Luttinger has shown that, as long as

y(co) [X(co)=—m (co) iy(co)] van—ishes as fast as co

as co—+0, M is given by

(b)

M =Ps go e(g g'k )—
ko

(6.8)

where 8 is the unit step function and 5'k is the
renormalized energy given by

'cs'k =Ek m(k, S'—
k

—g) .

The susceptibility is given by

(6.9}

X,p(T =0)=2p,sg
ko

d 8'ko
@0—&k }

(6.10)

The derivatives

FIG. 8. Susceptibility diagrams discussed in the text.
For simplicity the renorntalized Green's function is
denoted by single full lines rather than double lines as in

Fig. l. Other notation is as in Fig. 1.

VkS'k = '%7kEk —Bkm (k, l'k —g)

—B„m (k, co)
i „s„gVk'cs'k

(6.11)



WARREN E. PICKETT 26

d 8'k dEk

dH dH
m (k, g'k —g)

a

d 8'k~—8 m(k, co)
i „ dH

at the Fermi surface g'k =g become

(6.12)

Vk 8'k~ ——[v~ —Bkm~(k, O)]/( I+Ak), (6.13)

dS'k~ Bm (k, O)= —pg o+ (1+&k),
8 psH

(6.14)

where A,k =—8 m (k,~)
~

=0 is the usu» m»s «
normalization. Equation (6 10) becomes

Bm, (k,O)
X,„(T=0)=2@,'E(g) 1+

8 pgH
~

Uk
—Ram(k, D|&"k I) . (6.15)

f (E —g) =Tg G (E,iso„)e (6.16)

can be differentiated to yield

Here Uk =
~

vk
~

and vk =Ukuz, and the angle
brackets ( ) denote a Fermi-surface average.

Equation (6.10) expresses X,„ in terms of a renor-

malized density of states, including mass enhance-

ment from Eq. (6.9), and a susceptibility per state
d8'k~/d—H which also includes a mass enhance-

ment factor [Eq. (6.14)]. Equation (6.15) expresses

g,~ in terms of the bare factor N(g) in which the
total mass enhancement cancels out. That the
phonon mass enhancement cancels out was first
recognized by Quinn and Ferrell, ' who interpreted
the cancellation as the result of each of the spin-

split bands carrying its own mass renormalization
with it rigidly.

Reverting to the isotropic approximation for G,
the relation for the thermal distribution function

stein phonon spectrum of strength k, where it was

found that, with increasing A, , df/dE—becomes
ever more long ranged, resulting in considerably in-

creased averaging over X(E) as well as a greater
variation of g(T) given by the isotropic form of
Eq. (6.2):

N, =2IdE f (E g)E (E—) . (6.2')

J(iso„)=1+Tg )I.,rr(iso„ice„)—

For even moderate values of k, of the order of 0.5,

f differs significantly from fo and results in an

enhanced temperature dependence of X,& in Eq.
(6.18). Bhatt ' has found previously that a low-

temperature expression leads to an enhancement

(I+A, ) of the T dependence of X,~.
Returning to the expression (6.7) for the en-

hancement J, neglect of the field dependence of the
interaction leads to

TQG

(Eicos

—)
dE , l CO~

n

(6.17) X JdEE(E)G (E,iso„)J(iso„)

the convergence factor being unnecessary here.
Equation (6.5) for X,~ can therefore be written

X (T)=2@ I dE

X&(E)[l+&'(E,T)], (6.18)

with X'(E, T) being defined from Eq. (6.5) by this

equation.
The crucial feature of this expression is that in-

teractions can alter f(E) drastically from its free-

particle counterpart

fo(E)= [ exp(E/T) + 1]

The behavior of f has been presented elsewhere
for the case of electrons interacting with an Ein-

(6.19)

in the isotropic approximation. As was the case
for the self-energy in Sec. III, the (assumed) in-

dependence of A,,rr on Ek and Ek leads to an E
independent J. Also as was found for X, the dis-

tinct frequency dependences of the Coulomb, pho-

non, and defect interactions lead to different
characteristic behaviors for J.

B. Coulomb interaction

In the presence of only Coulomb interactions (in

the approximation of Secs. II and III) f is essen-

tially unchanged from fo. In the range of interest
in Eq. (6.18), of the order of m T, the frequency
dependence of the screened exchange interaction,
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which will be denoted as usual by I, can be
neglected. Equation (6.19) becomes (J, =J& ——J)

(6.20), Eq. (6.18) becomes the usual Stoner-en-
hanced expression for g,z.

J=1+IfdE —"f ~ N(E)J
dE

=1/[1 IN,—ff(g)],

where

(6.20)

C. Interaction arith defects

Defects drastically alter the occupation of crys
talhne eigenstates, even at T =0. Assuming a con-
stant density of states, it is straightforward to
show that f is given (in the dilute limit) by the
convolution of fo with a Lorentzian of width
I =N(Ep)I:

N„,(g) =fdE df E &N(-E) (6.21)

is the effective density of states at g at temperature
T. With the enhancement J=1+2' given in Eq.

f(E)=fdE' fo(E') . (6.22
(E —E')'+ I'

If N(E) varies on the scale of N(E+)I, I must be
determined self-consistently as discussed in Sec.
VC.

Defects give rise to a susceptibility enhancement given by

J(i co„)=1+(I /m )fdE N(E)G (E,ico„)J(ico„)=1/[1 I;(ico„)—],
where I; is given, after partial integration, by

I;(ico„)=—(I /rr) dE G(E,ico„) .dN(E)
dE

Clearly no enhancement occurs for a constant N(E). To provide an estimate of the magnitude of this
correction we evaluate the lowest order correction 5XI", pictured in Fig. 8(d),

5X,'"=2ps(I /~)T g QG(k, ico„) G(k', ico„)
n kk'

(6.23)

(6.24)

=2@ (I /rc) g Tg G(k, ico„)G(k',ico„)
kk'

-=2ps( /n. ) g Tg[G(k, ico„) G(k', ico„—)]e
kk' k Ek' k' k

d d f«k) f(Ek')

, dEdEk, E, E— (6.25)

The k dependence of the self-energy has been
neglected in writing the energy denominator as
Ek —Ek. Using the isotropic approximation and
performing partial integration in each variable
gives

5X';"=2@'—f dEN'(E)

X fdE'N'(E') ' ', f' '
E' —E

(6.26)

We consider first the case where N'(E)
=dN(E)/dE can be taken to be constant in the
important range around Ez. Setting

N'(E) =AN (Ep }/W, (6.27)

where 3 is a constant of order unity and 8'is the
bandwidth, leads to the result

5X' '=2 N(E )A (6.28}

Thus defects may lead to a nonvanishing but usu-
ally small contribution to the Stoner I. For com-
pounds with several transition-metal atoms per
cell, however, 8'may represent a subband width
such that I /W is not small, in which case it is
necessary to do the integral in Eq. (6.26) more
carefully. Nevertheless, we expect this contribu-
tion to 7 generally to be secondary to the change
in N(EF) in the simple bubble term due to defect
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broadening. Finally, it should be noted that this
defect contribution to X,p need not always be posi-
tive as in Eq. (6.28). If EF occurs at a peak, or a
dip, in N(E), in which case N'(E) and N'(E') in

Eq. (6.26) have opposite signs in the important re-

gion of integration, the correction to X,p may be
negative.

D. Interaction with phonons

It is not generally recognized that phonons can
seriously alter the thermal occupation of crystalline
eigenstates if the e-ph interaction is even moderate-

ly strong. It has been shown elsewhere that e-ph
interactions shift the spectral weight of low-energy
electronic excitations drastically, and as a result
the thermal occupation f(E) broadens, correspond-
ing to occupation of higher-energy bare electrons
and holes. The resulting modification of the first
term in Eq. (6.18) can be substantial. Since this ef-
fect of the e-ph interaction on f (E), as well as
many of its implications, is described elsewhere,
only phonon effects on the susceptibility will be

addressed here.
Previous treatments ' of the effect of e-ph in-

teractions on the susceptibility have approached
the problem from the viewpoint of a phonon con-
tribution to the Stoner interaction parameter I.
These treatments have all assumed a CDOS sys-
tern, however, and in the general case it is not clear
that this "Stoner I" viewpoint provides a useful
approach. To see this, consider the Eq. (6.7')

neglecting the field dependence of the interaction:
The frequency dependence of k from the e-ph in-

teraction is essential to the correct evaluation of
this term and results in a frequency depend-ent

enhancement J(ice„). As a result J cannot be writ-
ten in the simple (constant) form (6.20) as is the
case for Coulomb interactions, nor even in the still
simple (but frequency-dependent) form (6.23) as for
defects.

We content ourselves here with studying briefly
the first correction to 7,p

from e-ph interaction
(beyond self-energy insertions to G). This correc-
tion is shown in Fig. 8(e) and is given by

5X,"ph 2p~T g G (k——,iso„)A(k k', iso„—iso„)G2—(k',iso„) .
kn

k'n'

(6.29)

In the isotropic approximation this becomes

5X,"pq
——2ps T g A(i co„ico, „)Id—EjdE' N'(E) G (E,i co„)N'(E')G (E',i co„) .

nn'
(6.30)

If N(E) varies on the scale of Q, no further sim-

plification of this expression is possible. In partic-
ular, 5P,"ph is not bounded in magnitude by any
small parameter and it may be of either sign.
Since this contribution to X,z is the first [Fig. 8(e)]
in the e-ph ladder series leading to a generalized
Stoner enhancement, the e-ph contribution to a
"Stoner I" may be large and of either sign.

If N'(E) can be approximated by a constant
N(Ez)/W over the range EF W to Ez+ W, a—nd
is negligible otherwise, Eq. (6.30) can be evaluated
for an Einstein phonon spectrum a F(co)
= (XQz /2)5(co —Q~ ). The energy integral gives

dEN' E 6 E,icon

—& i m[N (EF )/Wj sgn—co„-. (6.31)

(1) 2 A, QE
5X, th-2psN(EF) ln48' QE

(6.32)

For 8'&&QE the frequency sums lead to the result

suggesting that a ladder summation of such contri-

butions would lead to a contribution to the Stoner
I given by

I A,QE
, ph- ln (6.33)

Oscillation in N (E) in transition-metal compounds
is likely to severely reduce the dependence of Ip ph

on the cutoff 8', so the net result is likely to be
dominated by DOS structure near EF.

It is notable that Eq. (6.33) is of exactly the
same form deduced by Fay and Appel from the
same diagram without invoking the isotropic ap-
proximation used here. Fay and Appel also em-

phasized that other diagrams may give phonon
contributions to g,p of the same order as that re-

sulting from Eq. (6.33). Although the contribution
(6.30) to X,z is not bounded by any small quantity
like Q/W, there is still no assurance that other di-
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agrams will not give important contributions.
However, Eq. (6.30) has the advantage that the
electron Green's function is dressed by phonons,
implicitly accounting for an infinite subset of dia-

grams fol Xsp.
Kim, taking another point of view, has con-

sidered the magnetic field dependence of the pho-
non frequencies arising from changes in electronic
screening of the ion-ion interaction. The change
hco~ depends on the spin polarization, which may
be Stoner-enhanced by the Coulomb interaction.
Kim finds the result that the phonon contribution
to I may itself be enhanced by the same factor,
thereby greatly increasing the importance of I ph
for nearly magnetic metals. Figure 8(c) gives the
lowest-order diagram which arises from field
dependence of the phonon spectrum. Recently
MacDonald and Taylor have suggested that re-
finements of Kim's theory will not lead to correc-
tions as large as were envisioned by Kim.

E. Combined effects of interactions

X,p 2P'sN, ff(g)/[1 ———IN, ff(g)], (6.34)

with N, tt given by Eq. (6.21).
The results of the application of this expression,

with I calculated from local-density-functional

theory, have been described elsewhere. It was

found that, although the temperature dependence
was qualitatively similar to the data of Reywald
et al. , both the calculated absolute magnitude
and T dependence were only —15' of the experi-
mental values. The orbital susceptibility can cer-
tainly account for much of the discrepancy in

magnitude, as well as for some of the T depen-
dence which arises from the variation of g with

temperature. However, it seems likely that disor-
der contributions to X,p other than those entering

A realistic calculation of ps& requires that all
three of the interactions discussed above be taken
into account simultaneously. The ladder diagrams,
e.g., Fig. 7(b), can only be fully included by a nu-

merical solution of Eq. (6.19), and corrections
beyond the ladder approximation present additional
difficulties. It might be expected that a reasonable
first approximation would be to retain only the
Coulomb part of A,,tt in Eq. (6.19) but include de-
fect and phonon contributions to G. The set of di-
agrams included in this approach is typified by the
Coulomb ladder diagram of Fig. 8(f), and the cor-
responding contribution to P» is given by

Eq. (6.30) through N, tt will be necessary for a
more quantitative theory.

VII. CONCLUSION

A generalized formulation of the Eliashberg ap-
proach to the electron self-energy has been devel-
oped which is valid for crystals for which the elec-
tronic spectrum varies on the scale of phonon fre-
quencies. The formulation has been kept on the
imaginary frequency axis where it is numerically
tractable, and further numerical application of the
theory to A15 compounds will be presented else-
where. Although there is no difficulty in extend-
ing the formalism to the real axis, ' ' the resulting
calculational difficulties make this approach unat-
tractive when detailed results are wanted.

The present generalization of Eliashberg theory
proposes a system of equations for describing the
superconducting onset at T, as well as the gap and
renormalization functions below T, . Calculations
at and below T, have shown that tunneling spec-
tra' ' as well as thermodynamic behavior can be
significantly altered by DOS structure. In addi-
tion, it is proposed that the self-consistent ap-
proach of Eliashberg be extended above T, to
determinethenormal stateelect-ronicself energy-
This theory lays the foundation for a more unified
picture of the relationship between high-
temperature superconductivity and the anomalous
normal-state behavior of 215 compounds, as in the
conclusion that the temperature dependence of the
susceptibility is increased substantially by the
strong electron-phonon interaction.

The satisfying agreement between the calcula-
tional results discussed in Sec. V and the experi-
mental data indicates that (1) the present proposal
for the self-energy (Fig. 1) is adequate at low tem-

perature, and (2) the DOS for Nb3Sn calculated by
Klein et al. is realistic. The disagreement between

the theoretical and experimental susceptibility is
certainly too large to be ascribed to an incorrect
theoretical DOS function. A conceivable source of
this discrepancy is that this ansatz for the self-

energy is inadequate for temperatures approaching
the Debye frequency; it is known (see Allen, Ref.
21) that even in CDOS systems there are further
adiabatic corrections to X which cannot be shown

to be small. However, I consider it more likely
that the expression (6.34) for X,~ is insufficient.

An important area which has not been addressed
in this paper is the normal-state specific heat C„,
which has been used often to extract empirical
values of N(EF). Let us assume, as the simplest
situation, that the specific heat can be divided into
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electron and phonon contributions, as was shown
to be the case for CDOS systems by Grimvall. '

Generalizing Grimvall's general relation Eq. (A7)
along the lines of the present theory leads to addi-
tional contributions to C„, due to DOS variation,
arising from the temperature variation of g and of
y(co). Grimvall ' has already concluded that C„,
is "far from linear at T=T," for certain strong
coupling superconductors. In addition, many A 15
compounds are known to have highly anharmonic
phonons, which complicates the identification of
C„~h. Thus much theoretical work remains before

the measured specific heat can be used to deduce
detailed information about variation in N(E).
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APPENDIX A

The usual expression' ' for the Coulomb pseudopotential U generalizes in the present case to

V(k, k";ico„)U(k",k';0)
U(k, k';O) = V(k, k';O)+ T

~N„)., k [Ek 0+&—«" i~n)]'+z«" i~8 )'[~n+~«",i~n)]
(Al)

The treatment to this point ignores the possibility of spin fluctuation contributions and also assumes' "that
V is essentially positive, eliminating the consideration of enhancement of superconductivity by plasmon or
exciton mechanisms. In principle, the dynamically screened Coulomb interaction V includes Coulomb renor-
malization and Coulomb vertex corrections.

For the "frequencies" co„and energies Ek of interest in Eq. (Al) it suffices to ignore the self-energy
corrections to the denominator. Performing the energy surface averages leads to

N E"
p ~(E,E') =p, (E,E')+ T g I dE"p, (E,E")

2 p ~(E",E') .
I, I &, E +co~

(A2)

p, I
E I, IE'

I &~p,

0 otherwise (A3)

and that N(E) vanishes for
I
E

I
& co„~, one finds

To make contact with later notationp *(E,E')
=U(E,E';0) andP, (E,E'):V(E,E',0) h—ave been
introduced, and also the frequency dependence of
V has been ignored.

Assuming further that

L (co„cop))=N(cop))l(co„cop))

=N(copt)ln(cop)/co, ), (A6)

where N(co„~) is the mean DOS over a region
EF+co~, and l(co,co') (introduced by Allen"") is
the function L (co,co') with N(E) replaced by unity.
In the (strict) CDOS limit N(co~&)~N(E+), the
usual expression

1/p, *=1/P +L (co„co&i), (A4) 1/p *= 1/p+ in(co„~/co, ) (A7)

where

L (co„co@i)—:T g I dE
v~ N(E)

I~ I
&co " E +n

(A5)

is recovered, where p =N (EF )p, and p*
=N(EF)p*. However, the CDOS limit of Eliash-
berg theory applies if N(E) is approximately con-
stant over the range EF+co„ in which case a more
precise expression for p* is given by

For a specific model of N(E), L can be evaluated
explicitly. Given the level of approximation lead-
ing to Eq. (A4) however, it suffices to note that

1/p* = 1/p+ [N(co&~)/N (EF ) ]in(co&~/co, ) .

This relation is discussed further in the text.
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APPENDIX B

The calculations described in this paper require
the self-consistent solution of the N, XN, matrix
equations (2.5}, (3.12), and (4.1)—(4.3). Two tech-
niques used in the present computations will be
described briefly here.

These equations have the feature that the low-

frequency (small
~
co„~ ) rows and columns are in

some sense more critical for obtaining convergence
than those of larger frequency. It has been found
that the technique used by Allen of using the
solution of the m Xm subsystem as an approxi-
mate solution of a larger subsystem provides an ef-
ficient method of providing an iterative solution of
the system of equations. The sequence m =1,2,
4, 8, . . . , N, used by Allen has been used here,
with N, = 128 for all calculations described in this

paper.
The only arbitrary assignments in this procedure

occur in setting initial values of N„and Pn. The
iteration is begun by setting Np N(Ez), P——p

——0,
then calculating Zp, Xp, ho, and g' '(T), the first
approximation to g(T) (see below). Then Np and

P0 are recalculated until self-consistency is ob-
tained. In proceding from the solutions of m pm

subsystem to the 2m &&2m subsystem, 'the assign-
ment

Nm
m &j&2m

J m
(81)

was made. A search for more sophisticated extra-
polations of these functions did not result in signi-
ficantly more efficient solutions.

A crucial step in attaining reasonably accurate
solutions to this system is finding a procedure for
determining g(T) from Eq. (2.5). The free Green's
function 60, for instance, gives rise to the Fermi-
Dirac distribution function fp

fo(E)= T g Go(E,i co„)e
n

(82)

Z~ =6J =+~ =0, j)Pl

Then Eq. (2.5) can be written

(83)

only after an infinite summation; truncation of the
frequency sum in Eq. (82) at any point leads to a
function which is nonexponential. In the present
calculation g has been evaluated as follows.

For the m )&m subsystem, m =1,2,4, . . . , N„
we make the definition

N, =2T g f dE N(E)ReG (E,ico„;g)e
n)0

=2TRe f dEN(E) g I Gp(E, ico„;g)+[6(E,ico;g) Gp(E, ico;g—)]I
n)0

m

=2 f dE fp(E —g)N(E)+2TRe g f dEN(E)[G(Eico„;g) Gp(Eico„—;g)] .
n=0

(85)

Finally, the noninteracting chemical potential gp(T), determined by

The relation G(E, ico„)=G(E,ic—o„) has been used in writing the sums over co„&0 only. The dependence
on g, the interacting chemical potential, has been displayed explicitly to emphasize that introducing

Gp(E, ico„;g) and fp(E —g) is merely a mathematical method for evaluating the infinite summation. In par-
ticular,

2 f dE fo(E g)N(E)+N, . —

N = f dE fp(E —gp)N (E},
was used to write the equation determining g as

m

2TRe g f dEN(E)[G(Eico„;g) Gp(E ico„;g)]—=2 f dE [fp(E —go) fp(E —g)]N(E) . —
n=0

This equation is solved iteratively for g at each step of the iteration of the system of equations.

(86)

(87)
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