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Onset of convection in dilute superfluid He- He mixtures.
II. Closed cylindrical container
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The thermohydrodynamics of dilute superfluid He- He mixtures is applied to a circu-

lar container with insulating sidewalls and rigid isothermal ends. For small downward

heat flow, the boundary conditions yield a uniform temperature gradient and superflow

but a nonuniform normal flow. Linearized perturbations about this conducting state be-

come unstable at a critical Rayleigh number that (at —1 K) differs only slightly from

that for a classical one-component fluid in the same container. Despite the preferred
direction of the unperturbed normal flow, infinitesimal-amplitude convection can occur in

either of two degenerate modes. The splitting of these modes observed by Warkentin,

Haucke, Lucas, and Wheatley probably involves nonlinear corrections.

I. INTRODUCTION

Recent experimental studies' of a dilute super-
fluid He-"He mixture near 1 K have demonstrated
its similarity to a classical one-component fluid.
For example, the onset of convection in a right cir-
cular cylinder with insulating sidewalls and unit
aspect ratio (radius and height are each equal to
2.07 cm) occurred at a critical Rayleigh number
—1700, close to that for a pure substance in an in-
finite slab. On the other hand, classical hydro-
dynamics also predict that the critical Rayleigh
number increases with decreasing aspect ratio, ris-
ing to -2262 for the geometry used in the experi-
ments. A second unusual feature was the observa-
tion of two distinct convective axisymmetric
toroidal flows, differing only in the sense of
motion. The center-falling pattern was more stable
than that with center rising, whereas linearized
perturbation theory for a classical one-component
fluid predicts full equivalence between the two
states.

To analyze these observations, it is important to
use the two-fluid hydrodynamics, generalized to in-

clude the He impurities. The resulting nonlinear

dynamical equations and appropriate boundary
conditions have been obtained in a previous paper
that studied the onset of convection in an un-

bounded horizontal slab. Here, the effect of
sidewalls is included, with particular attention to a
cylindrical configuration. One striking new feature
(Sec. II) is that the normal fluid flow is intrinsical-

ly nonuniform, even in the preconvective heat-

conducting state. As shown in Sec. III, the linear-

ized perturbation equations contain additional
two-Quid contributions 'arising from the unper-
turbed normal-fluid flow and from the nonzero

V v„'. Numerical estimates indicate that the criti-
cal Rayleigh number for the onset of convection of
the dilute mixture in a cylinder near 1 K should be
close to that for a pure classica1 fluid.

II. UNPERTURBED CONDUCTING STATE

v, = —V4 . (la)

Current conservation then requires

p, V @=p„V v„. (lb)

The fundamental hydrodynamic variables in su-

perfluid mixtures are the normal and superfluid
densities p„and p, and velocities v„and v, . If
v„=v„ the state of a small element of fluid can
be characterized by the center-of-mass velocity and

a set of internal variables, which can conveniently

be taken as the temperature T, the concentration c
of He impurities, and the pressure p, all defined in

the center-of-mass frame. More generally, the rela-
tive velocity v„—v, serves as an additional inter-
nal variable, and it is often simpler to treat the two
velocity fields separately. Since v, is irrotational,
it can be specified by a scalar velocity potential
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Moreover, for slow motions, the dynamical equa-
tion of the superfluid can be rewritten in the ap-
proximate form

BP4 Bc yp

where gi and g3 are second viscosities, p4 is the
chemical potential of the He atoms, and

Bine T(~@~/~T)„
BlnT pq, c(F4/dc)~p

is a dimensionless parameter of order 1 for dilute
mixtures near 1 K. In this way, v, can be related
to V v„, and c can be eliminated from the two-
fluid equations to give the following approximate
dynamical equations:

V v„— —(v„V)v„—VP zT —v„——v, —1 ~vn - p gPcd

p„(dye/dc) zz

01 —pk
z V vn=0,

&n
(4)

+~v„VT—V T=O,
Bl

T H Bt
V'T =0,

c

nXvn=0 ~ (9)

and the perpendicular component of heat flux Q
through the surface is given by

n Q= a,urn V.T, — (10)

here written in dimensionless variables. To define
the appropriate units, we introduce the kinematic
viscosity v„=g/p„ for the normal fluid, the ther-
mal expansion coefficient a~& at constant p4, thePP4

coefficient P, = —p '(Bp/Bc)zz, the effective ther-
mal conductivity x,f~, the "specific heat Cpp atPP4

constant JM4, and the effective thermal diffusivity
X ff—/c ff/pC&& . In Eqs. (4)—(6), the units are the

cell height d for length, d /X, ff for time, v„/d for
velocity, p„(v„/d) for pressure, and

(p„/p)(v„/ i a~„, i gd ) for the temperature. Furth-

ermore, P =v„/X,rr is the Prandtl number, kr is
the thermal diffusion ratio, D is the diffusion coef-
ficient, and P contains several superfluid contribu-
tions as well as the actual pressure and the gravita-
tional term.

At a rigid surface with normal n, the mass
current must have zero perpendicular component

n (p, v„+p.,v, )=0,
and a similar condition on the impurity current
may be rewritten as

D k
n-v„+ y — n. V T =0.

VnT C

For slow motions, the normal fluid sticks to the
walls

I

expressed here in conventional units.
These equations will be applied to a cylinder of

radius R and height d, with aspect ratio I =R/d.
It is convenient to work in cylindrical polar coordi-
nates (r, 8,z) with 0(r (I and

i
z

i
(—, in dimen-

sionless units. For definiteness, the bottom and

top are assumed to be maintained at temperature
T and T +ET, respectively, whereas the sides
are insulating. Thus n. V T vanishes for r =I, and
Eqs. (8) and (9) then show that v„=0 on the sides.
In contrast, u~ (and hence U„) are nonzero at the
top and bottom.

Before the onset of convection, the fluid is in a
steady conducting state, with normal and super-
fluid counterflow induced by the temperature
difference hT. Since AT/T is generally small, it
is permissible to omit terms of second order in hT
in determining the steady flow. In this approxima-
tion, Eq. (5) implies that the temperature satisfies
Laplace's equation subject to the boundary condi-
tion dT/dr=0 at r = I and distinct constant
values on the top and bottom. Evidently, the
unique solution is a linear temperature profile with
constant gradient

V T=zhT

in dimensionless units. Since V v„will vanish,
Eq. (2) gives the corresponding steady concentra-
tion gradient, with the negative sign implying the
accumulation of He in the cooler regions.

The determination of the steady normal vdocity
fleld is not as easy because Eq. (8) implies the
unusual boundary conditions
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Uzr =Un8=0

'at z=+ 2

(12a)

(12b)

ax 1X=—r =0 at z=+—
az

—2

1 1 aX=—I, — rX=O at r =I
2 Taf

(2la)

(21b)

v„=O at r=I, (12c)

where

V.v„=O (14)

in this approximation. Conservation of mass then
shows that V v, also vanishes, so that the corre-
sponding scalar potential satisfies Laplace's equa-
tion, subject to the boundary conditions
8@/Bz= —p„e,/p, at z =+—, and 8@/Br=0 at
r =I . The resulting v, must be uniform, in the
direction of V T, with magnitude p„e~/p, . In con-
trast, v„ is nonuniform with finite vorticity.

Equations (12) and (14) suggest introducing a
vector potential X by the relation

v„=—e)V gX, (15)

and it follows from the curl of Eq. (4) that X satis-

fies the fourth-order equation

(VX) X=O, (16)

again neglecting terms quadratic in b, T/T . Since
the conducting state in a cylinder will be axisym-
metric, X has the form

e& =(D/v„)(y kr/c)—(b.T/T ) & 10

is a small dimensionless constant. For small hT,
the quadratic terms in Eqs. (4) and (6) may be om-

itted, implying

1X= 2r+X, (22)

where X obeys the same equation (18) but with the
boundary conditions

ax IX= =0 at z=+—,
az (23)

Equations (18) and (21) constitute an unusual

problem in incompressible hydrodynamics, because
the condition that U be uniform on the top and

bottom surfaces precludes both the static solution
v„=O and the familiar parabolic Poiseuille flow.
Indeed, the stream lines must meet the top and
bottom parallel to z but with no flow along the
sidewalls. Thus the streamlines concentrate near
the axis of the cylinder. Furthermore, the corners
ar r =I and z =+—, involve nonanalytic behavior

similar to, but more complicated than, the tem-
perature near a corner between two surfaces at dif-
ferent specified temperatures. Here, the occurrence
of a fourth-order equation with boundary condi-
tions on both X and its derivatives is reminiscent
of a thin elastic plate, which cannot be solved in
closed form. For that reason, we have resorted to
an approximate expansion procedure.

If there were no sidewalls, then the exact solu-
tion would be 2 r, appropriate for the uniform nor-

mal flow in a slab. To incorporate this behavior
explicitly, it is convenient to write

X=HX(r,z), (17) X=O, r = —1 atr=I ., B(rX)
ap

and Eq. (16) becomes a single scalar equation

a' '
X(r,z) =0,

az

where

a1a a' 1ar= +-
ar r ar ap2 r ar y2

(19)

ax
Unr =&1

az

a
U~ = —— rX,

r ar

(20a)

(20b)

and X therefore obeys the simple boundary condi-
tions

The corresponding normal velocity field is given by

This set of boundary conditions makes explicit that
X arises solely from the sidewalls.

To proceed, it is convenient to introduce two
separate sets of eigenfunctions: cos(2m —1)nz and

J~(j x), where x =r/I and j is the mt—h zero of
J~. These functions vanish at z =+—, and r =I,
respectively. If s. =j~/21, then the product
J~(j x)Z~(z) can satisfy Eq. (18) with Z~(z) a
linear combination of cosh(2a~z) and z sinh(2s~z)
that obeys the boundary conditions Z~ =0 and
dZ~/dz =+1 at z =+—,. Similarly, if
v =(2m —1)ml, the product F (x)cos(2m —l)mz
can satisfy Eq. (18) with F~ (x) a linear combina-
tion of I~ (v~x) and xIO(v~x) that obeys the boun-
dary conditions I'~ =0 and x 'd(xI )/dx= 1 at
x= l. As a result, the unknown function X(r,z)
may be expanded in these sets of functions
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X(r,z)= g [a Ji(j x)Z (z)
m=1

0.5

+b F (x)cos(2m —1)mz] . (24)

By construction, X obeys the correct fourth-order
differential equation (18) and vanishes at the boun-

daries. The remaining conditions (23) on the
derivatives of X at the boundaries lead to the fol-
lowing pair of relations:

Z 0

[am Ji (jmx)+bm( 1) (2m —1)7rFm (x)]=0,
m=1

(25a)

-0.5
0 0.5

r
I.O

dI' dz

vnr vnz
(26)

and use of Eq. (20) immediately yields the condi-
tion

[~mJm JOj(m )Zm(z)+bmcos(2m —1)nz] =—I
m=1

(25b)

Since Ji(jmx) are orthogonal and complete on the
interval [0,1], Eq. (25a) readily yields a set of
homogeneous linear equations for the unknown
coefficients a and b, and all the integrals can be
evaluated analytically. Similarly, the orthogonality
of the trigonometric functions provides a second

set of linear algebraic equations for a and b

These coupled equations have been solved numeri-

cally for various truncated sets containing up to
the first 20 terms in Eq. (24).

The corresponding flow pattern of the normal
fluid is easily determined. Owing to the axial sym-

metry, the motion is confined to a given vertical
plane at fixed azimuthal angle 8; the corresponding
streamlines satisfy the differential equation

FIG. 1. Streamlines for unperturbed normal fluid

flow (in heat-conducting state) in a cylindrical cell with

unit aspect ratio.

ticular, Um is even and U« is odd under reflection

about the midplane. As noted previously, v, is

uniform, leaving a net local mass flow j
throughout the container, even though V j =0 by
construction.

III. LINEARIZED EQUATIONS FOR ONSET
OF CONVECTION

The preceding section determined the steady

conducting state, with the dimensionless normal

fluid velocity —e i
= —ei V )& (XO) and temperature

0 1

T +6T(z+ —,). We now expand the dynamical

equations (4)—(6) to first order about this steady

state, writing

~l
Vn = —61+Vn

T =To+ b, T(z + , )+T', —

rX(r,z) =const . (27)

Figure 1 illustrates the streamlines for the configu-
ration (I =1) used in the experiments in Ref. 1.
As anticipated, the flow is nonuniform, with the
streamlines assuming an "hourglass" form. In par-

where the explicit form of the original "pressure"

P is not needed in the present work. The result-

ing linear equations for the primed variables be-

come

BV
+(ei V) „+(v„' V)ei —VP' zT'+ @i+ e—i e& z V'. v—

' =0,Vn
ps

2 aT'
V T' — +He1.VT' —Rv~=0,

(28)

(29)

V ' vn —6'2vn =0 . (30)
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Here,

e,=yaT/T',

p gdP.

p„~ (Bp,4/Bc)rp
~

are small parameters of order 10 —10, comparable with e&, and

~ =
~ &pp~ ~

d g~T/&+ tt

(3 la)

(31b)

(32)

is the Rayleigh number, now expressed in conventional dimensional quantities. Since Eq. (28) indicates that
v„' and T have similar dimensionless magnitudes, Eq. (30) has been simplified by omitting several terms of
relative order T or smaller. In addition, the Prandtl number is no larger than 0.1. Thus the third term in

Eq. (29) is smaller than the other normal fluid contributions and will be omitted for simplicity.
This set of equations does not constitute a self-adjoint system owing to the explicit two-fluid contributions

(proportional to b T/T). Consequently, the time dependence is not necessarily described by real exponentials
of the form exp(crt), which would be the case for a one-component fiuid (e; =0). Since these parameters are
small, however, is it reasonable to expect the onset of convection to occur through a steady instability, when

o first vanishes for some solution of these linear equations. Thus we assume that the critical Rayleigh num-

ber is determined by the eigenvalue problem

V v~ zT —VP—+(E &
V )v~ +(v~ ' V )E]+ E]+ 6) —E3 2 e2vpgg —0,

ps

—v~+R 'V T'=0,

V ' vn —62U~ =0,

(33)

(34)

(35)

subject to the boundary conditions

(36a)

(36b)

v„'=T'=0 on z=+»
aT'v'„= =0 on r =I

on the walls of the container. If e; a11 vanished,
the solution would have u' and T' even under in-
version about the midplane, but the two-fluid
corrections introduce a small odd component. In
this way, the true solutions do not have a definite
parity. Nevertheless, it is evident that any solution
(v„',T', P'} will be accompanied by another one
(—v„', T', P') that a—lso sa—tisfies the same equa-
tions. Thus the theory predicts that linearized
small-amplitude convective flow patterns occur in
pairs (differing in the direction of v„') with the
same Rayleigh number, even though the unper-
turbed normal flow —e& provides a preferred
sense. In particular, the observed preference in a
cylinder with unit aspect ratio for a toroidal con-
vection pattern with center falling' cannot be ex-
plained within the framework of a linearized
description.

The critical Rayleigh number may be determined
as a perturbation series in the small parameters e;.
In zero order, the problem is that of a classical
one-component Auid in a cylinder with insulating

sidewalls. Theoretical investigations have shown
that the resulting flow is axisymmetric for I )0.8,
and we shall therefore assume that v„' retains that
character even when the two-fluid corrections are
included. With the four-component vector
U =(v„'„,v~, T',P'), Eqs. (33)—(35) can be written
compactly as

LU=O, (37}

v'„"= V X ey"'(r, z) .

The resulting velocity components are

(38)

(39a)

and the perturbation expansion then follows by
writing R =R +R +R + . , L =L
+L "+L' '+ . , and U=U' +U"i+U' '

+ . . It is easily verified that L' ' is self-
adjoint. Furthermore, the inner product
I=—(U' ',L' 'U' ') provides a variational basis for
the zero-order problem.

The actual determination of U' ' proceeds by
noticing that the corresponding velocity field is
solenoidal and can be represented with a vector po-
tential
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r ar
(39b)

Given f' ', the temperature T' ' can be found with
a Green's function G ( r, r ') that satisfies the dif-
ferential equation

and the boundary conditions

1G=O forz=+ —, ,

aG =0 forr=I .
ar

V G(r, r ')= —5(r —r ') (40) A straightforward calculation yields the explicit
solution

G(r, r ')=(2n) ' g g exp[il(8 9')]—tu&(z)w&(z')G~&(r, r'),
I= —oo @=1

where

(42)

and

V2cospn. z, p odd

V2sinpmz, p even (43)

II(p r )Kl'(pmI )
G&z(r, r') =I~(par ) K&(p~r )—

I; (p~r)

As a result,

T' '(r, z)= —R' ' f d r'G(r, r ')u (~r', z') .

(44)

(45)

(46)

A little manipulation then shows that the variational functional I can be rewritten wholly in terms of g' ' as

a
'

I= —f d' g' ' & + P' '+R' ' f d'rd r'u~'(r)G(r, r')u~'(r'),
az2

where &„ is defined in Eq. (19) and u„', ' is given in

Eq. (39b).
It is evident that itj' ' satisfies the boundary con-

ditions

a.t)~0~

=0 onz=+-,',
az (47)

d C
=~m Cm

dz4

2 4+sfm =amfm

(48)

and the boundary conditions from Eq. (47). Chan-
drasekhar tabulates the eigenvalues A,~, and the
radial ones am have been found numerically
(a =4.611, az=7.799, etc.). We therefore write
g' ' as a series

P' '(r,z)= gA „f (x)C„(z) .
mn

(49)

rg' '=0 on r =1
r ar

These constraints are readily incorporated by intro-
ducing the eigenfunctions C (z) and f~(x) that
obey the equations (as before, x =r/r)

Substitution in Eq. (46) gives a quadratic form in
the parameters A~n, and minimization of I pro-
duces a set of linear homogeneous algebraic equa-
tions with coefficients that can be evaluated analyt-
ically. The critical Rayleigh number R' ' follows
from the determinant of coefficients. Figure 2
shows the resulting dependence on the aspect ratio
obtained in the simple approximation or retaining
only the two terms Am &

and A~+ ~ ~ where m is of
order I". This curve is qualitatively similar to that
in Ref. 3, obtained with more elaborate trial func-
tions. The basic new feature is the use of the
Green's function in solving for T' ' instead of in-
troducing a separate expansion with a second set of
parameters. For I =1, our approximation gave
R' '=2285 and A2&/A&&

——7.66&10, which
exceeds the value 2262 found in Ref. 3 by only
1%. In addition, an improved choice that retained
A» and Ai2 gave R' '=2265 (with Ai2/Aii
=2.63)& 10 ). The accuracy of this latter result
illustrates the power of the variational techniques.

The remaining steps in the perturbation expan-
sion are now easily performed. Given the vector
potential f' ', the velocity field v„' and the tem-
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2200—

2000—

I 800—

with the last term representing the small nonzero
divergence. Finally, the curl of Eq. (33) and use of
the Green's function from Eq. (40) to "solve" Eq.
(34) yield a single inhomogeneous equation for
g'" in terms of the zero-order solution g' ' and the
original normal fluid flow that characterizes the
conducting state [Eq. (15)] before the onset of con-
vection. Since g'" is odd under reflection about
the midplane, it can be expanded in a series of the
form

tP'"(r, z) = gB „f (x)S„(z),
mn

(55)

FIG. 2. Unperturbed critical Rayleigh number R ' '

for onset of convection in cylindrical cell with aspect ra-

tio I =R/d.

I (0)U{1) L (1)U(0) (50)

and the requirement that the right-hand side be
orthogonal to U' ' implies that there is no first-
order shift in the critical Rayleigh number,

(51)

Similarly, the second-order contribution of Eq. (37)
becomes

perature T' ' are fully determined and the pressure
P' ' follows from the radial component of Eq. (33).
Thus the components of U' ' are known explicitly.
The first-order terms in the basic equation (37)
give the condition

and the orthogonality relations then give a set of
hnear equations for the B „'s in terms of the (as-
sumed known) A's from Eq. (49) and various ma-
trix elements of the function I from Eq. (24).
Since the shift R' ' in the critical Rayleigh number
is expected to be small (and perhaps unobservable,
based on the value found for an unbounded slab),
we considered only the approximation X= 2

I',

which replaces the nonuniform normal flow of Fig.
1 by a uniform vertical flow. Although this
simpler expression violates the boundary condi-
tions, it should provide a qualitative guide for as-
pect ratios I )0.8. The resulting R' ' depends
only weakly on the aspect ratio I and approaches
the value found previously for an unbounded slab
as I ~ oo. The small values of the parameters e;
for T= 1 K and molar concentration 0.0047 indi-
cate that current experiments are unlikely to detect
such shifts.

IV. DISCUSSION
L (o) U(2) L ( ) U( ) L (2) U(0) (52)

u~ =— rP' '(r,z),(1)
r Br

(53)

where f'" satisfies the same boundary conditions
as in Eq. (47). The corresponding u„'„" follows
from Eq. (35) as

(1) a (1) (0)
unr = — 0 +&6'

Z
(54)

and the same orthogonality condition now provides
an explicit equation for R ' ' in terms of inner
products of U' ' and U'".

It is first necessary to evaluate U"' by solving
Eq. (50). Since the corresponding normal fluid
flow is no longer solenoidal, it cannot be represent-
ed with a vector potential. Nevertheless, it is pos-
sible to assume that v~' has a form similar to Eq.
(39b)

The present work has direct relevance to recent
experiments of %arkentin, Haucke, t.ucas, and
Wheatley' on superfluid He- He mixtures. First,
the accepted theory of two-fluid hydrodynamics"
for dilute mixtures predicts that the critical Ray-
leigh number (32) for the onset of convection near
1 K should be close to that for a classical one-
cornponent fluid in a cell of the same aspect ratio.
Numerical calculations by Charlson and Sani and
those shown in Fig. 2 indicate that R should be
-2.3)& 10 for I =1, falling nonmonotonically to-

ward —1.7)& 10 for large I". In contrast, the ob-
servations' for I =1 found -1.7)& 10 in the inter-
val 0.8 K (T & 1.0 K for molar concentration
0.0047. Experimental studies for cells with larger
I might help resolve this discrepancy.

The second point of interest is the form of the
convective flow. In the present approximation of
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azimuthal symmetry, the normal fluid velocity for
0.8 & I & 1.7 is a single toroidal roll with the coef-
ficient A» in Eq. (49) much larger than the others.
Near the local maximum in Fig. 2 at 1 =1.8, how-

ever, the coefficient A2t becomes comparable, and
the interval 1.8 & I & 2.7 corresponds to convective
flow with two toroidal rolls. ' Thus for 1 =1, the
two-fluid hydrodynamics predicts a single toroidal
roll, and this pattern appears to be seen experimen-

tally. ' On the other hand, the linearized perturba-
tion theory also predicts that the critical Rayleigh
number is identical for the two convective states
that differ only in the sense of the small-amplitude
.flow, in contrast to the observed preference' for
that with center falling. Nonlinear calculations for

classical one-component fluids" have shown that
finite-amplitude effects can stabilize one or the
other of the two patterns. In the present case of
two-fluid hydrodynamics for superfluid mixtures,
the problem is considerably more complicated ow-
ing to the presence of parity-breaking normal fluid
flow, even at threshold. This interesting problem
deserves further study in connection with the ex-
perimental observations.
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