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Onset of convection in dilute superfluid He- He mixtures.
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The thermohydrodynamics of a dilute superfluid 'He- He mixture confined between

parallel horizontal planes is studied with the two-fluid equations of Landau and Khalat-
nikov. When heated from above, downward normal fluid flow concentrates 'He impuri-
ties near the cooler bottom plate, creating a potentially unstable density gradient. The
linearized equations for the convective amplitudes contain nonclassical two-fluid terms

Q I

proportional to v„V and to V v„, which alter the critical Rayleigh number from that
for a classical one-component fluid. This shift is expected to be smaller near T =1 K.

I. INTRODUCTION

Over the past decade, cryogenic studies of con-
vection' have stimulated new interest in the
Rayleigh-Benard problem of a fluid heated from
below. Although pure He acts like a typical clas-
sical fluid above the transition temperature Tt„, the
appearance of the superfluid component below Tx
means that the corresponding thermal conductivity
is effectively infinite. Consequently, heat transport
in bulk pure He II has a qualitatively different
character from that in normal HeI. The situa-
tion changes considerably in dilute mixtures of He
in He. This system also becomes superfluid but
has a finite effective thermal conductivity. Thus
even an unbounded slab of the dilute superfluid
mixture can support a uniform temperature gra-
dient. In analogy with classical fluids, this con-

ducting state should be stable up to a critical tem-

perature difference, beyond which a spatially
periodic steady convective flow should appear. Re-
cent experiments on cylindrical geometries"' have

indeed found such behavior and confirmed the

similarity to that of a classical one-component
fluid.

The onset of convection in classical fluids has
been studied in great detail. ' For a pure sub-

stance, the instability signals the appearance of
steady convection, but classical mixtures can also
exhibit oscillatory instabilities, leading to time-

dependent flow. In all these classical cases, how-

ever, the initial (preconvective) heat-conducting
state is stationary. In this regard, superfluids
should act differently, owing to the presence of

normal fluid and superfluid counterflow. In par-
ticular, an externally applied temperature differ-
ence produces a chemical-potential gradient. For
pure He, this can be balanced only by a ("foun-
tain") pressure; the resulting dynamical equilibrium
has a finite normal flow determined by the viscous
Poiseuille drag at the sidewalls. Thus the effective
thermal conductivity depends on the geometry,
varying as 8 for a cylindrical channel of radius
R, and becoming infinite as R ~ oo. In a dilute
mixture, however, the additional mechanism of a
concentration gradient can balance the external
temperature gradient, leading to a steady counter-
flow even for an infinite sample without lateral
boundaries. Since the He impurities are part of
the normal fluid, they tend to accumulate in the
colder regions, which become less dense than the
remaining fluid. A gravitational instability is
therefore expected to occur when the fluid is heat-
ed from aboue, in contrast to the usual classical
case.

Superfluid hydrodynamics differ significantly
from classical hydrodynamics, for example, in the
appearance of two distinct components. Conse-
quently it is interesting to ask whether the onset of
convection in dilute superfluid mixtures should
also exhibit specific two-fluid effects. The present
work examines this question for the realistic case
of a convection cell bounded above and below by
rigid planes. Section II derives the general non-
linear hydrodynamic equations for convection in
dilute superfluid mixtures. These equations are
then linearized in Sec. III for the simplest case of
an unbounded slab. The principal two-fluid effect
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is the appearance of new first-order terms associat-
ed with the nonzero normal fluid velocity v„ in
the initial conducting state and the nonzero diver-
gence of the velocity perturbation v„'. These
correction terms are small, however, and their ef-
fect on the onset of convection is treated in Sec. IV
with an expansion procedure. A subsequent paper
will present a similar analysis of a cylinder, which
is the geometry used in recent detailed experi-
ments. "

II. BASIC FORMULATION

The fundamental equations of two-fluid hydro-
dynamics in mixtures express the conservation of
mass, momentum, impurities, and entropy, aug-
mented by the dynamical equation of the super-
fiuid. ' ' A completely general treatment is

prohibitive, however, and it is convenient to
rewrite the equations in a form that applies for
slow hydrodynamic motions. Thus we shall follow
the usual Boussinesq approximation in classical
one-component fluids, ignoring changes in p„
and p, except for their gravitational effects.
Furthermore, the irrotational character of the su-

perflow permits the introduction of a velocity po-
tential 4 obeying the relation v, = —V4. Conse-

quently, the equation of mass conservation
(V j =0) can be rewritten immediately as

V' v„=(p, /p„)V 4.
In contrast to the case for a classical one-

component fluid, the normal flow is not, in gen-
eral, solenoidal.

The equation for momentum conservation con-
tains the gravitational force density, which may be
expanded to first order in the temperature and con-
centration changes to give

pgz [1—a&,(T —To) P, (c ——co)],
where To and co are fixed reference values of the
temperature and concentration. Here

c —n3m3(53m3 +n4m4)
—1

is the mass fraction of He atoms Exp,

p'(dp/—dT)~, is the usual thermal expansion
coefficient (denoted Pr in Ref. 4) and P,

p'(dp/—dc)zz is of order unity (-0.6 for the
experiments in Ref. 4). Equation (2) omits an ad-

ditional small term arising from the pressure
change. Use of Eq. (1) allows us to cast the
momentum-conservation relation in the form

BVn
+(v. V)v. +V~+P.(v. v. )V v.—=nV'v. +Pgz[cp, (T To)+P,—(c —co)j

a
(4)

where

84I' —I p. +,p.U.
Bt

1

( 3
'rI y g2 pg) ) V v „+pgz,

ably to give

ac +v Vc+cV v„—D V c+ V' T =0.
at T

and p is the ordinary pressure.
It is helpful next to consider the equation for the

concentration of He impurities; it may be written

a(pc)
Bt

+V.(pcv„+ i )=0, (6)

where i is the impurity flux (denoted g by
Khalatnikov ), and v„appears explicitly because
the He atoms are part of the normal fluid. To
first order in the gradients, i may be expanded to
yield

i = PD[Vc+(kr/T)V TJj, —

with D the diffusion coefficient and kz the ther-

mal diffusion ratio. Once again, an unimportant
hydrostatic pressure term has been omitted. The
previous approximations simplify Eq. (6) consider-

—p Yod(v„—v ). (9)

Here, we use Khalatnikov's notation, with p and s

the chemical potential and entropy per unit mass

of solution, and j o——P„(v„—v, ). For small

~

v„—v, ~, the last term can be included explicitly

by writing

p =po( T,c,p) —(p„/2p)( v „—v, ) (10a)

As in pure He II, the dynamical equation of su-

perfluid motion involves the gradient of the chemi-
cal potential~ here in the combination

p —Zc/p+ 2 v, , where p and Z are related by the

thermodynamic identity

dp = —sd T+p 'dp+p 'Zdc
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Zc apo
p — =pp —c

p Bc

1 Pn 3 Pn, )2—c vn —vs
a

= p4(T, c,p)

The derivative with respect to c and some straight-
forward manipulations then give the desired quan-

tity

p4~p~ —k?? Tclm3 .

It follows immediately that

Bp4 —kg T
ac yp m3

and

1'= 1+$40m3/k??c,

(15b)

(16a)

(16b)

(2p—) (pno cp—n~e)(vn —vs)

where, as shown in Ref. 3, P4 ——Po —caPo/ac is the
chemical potential of the He atoms in stationary
fluid (v„=v, =0), and pno

——p„—m 3c is the nor-
mal fluid density for pure He at the same tem-

perature and pressure. In this way, the dynamical
equation for the superfluid takes the form

~vs 1 pno cp& z+ V p4(T, c,p) —— — P, (v„—v, )
P P

which is of order 1 for the experimental situation
considered in Ref. 4. Equations (13) and (16a)
then yield the relative concentration change across
a cell of thickness d:

Ac b, T Psgm 3d

T k T

Experimental values from Ref. 4 indicate that
AT/T is of order 10 —10 at onset of convec-
tion; in contrast, the buoyancy correction' (the last
term) is of order

+? Us~+(p(3 —g?)V v„= gz .— (11)

gdm 3

(ap, /a. )„=k, T
=' (18)

In the steady unperturbed heat-conducting state
before the onset of convection, the normal and su-

perfluid velocities are small, and the chemical po-
tential p4 therefore obeys the approximate rela-
tion

and hence negligible. As a result, the equilibrium
concentration and temperature variations occur at
constant p4 and pressure.

More generally, Eq. (11) can be expanded to re-
late the deviations in c and T as

Vp4( T,c,p) = —gz . (12) fc 4 —pkc cp — (T —To)+ V'v
T (Bpq/Bc)zz

The hydrostatic condition Tp =—pgz and a little
algebra show that the associated unperturbed tem-
perature T and concentration c obey the relation

yc - cPcgVc= — V T- Z
T (Bp4/Bc)z~

where

(13)

aine T (~P~/~T)„
BlnT ?s, c (Bpq/Bc)„z

is a dimensionless parameter characterizing the su-

perAuid. In the dilute limit, p4 may be written ap-
proximately as ' ' '

(19)

apart from terms that lead to smaller corrections
of the same order as in Eq. (18). The last term in

Eq. (19) (proportional to V v„) arises from the
viscous forces on the superfluid and provides the
leading correction to the condition p4 ——const. " In
some cases, this term can be neglected. For exam-
ple, a combination of Eqs. (1), (8), and (19) yields
the approximate equation

ps

Pn

p4-p40+. (k?? T/m4)ln(1 —x)
aT +v„VT

T at
D

y — V' T,T c

=p40 kl? Tx/m4, — (15a) (20)

where p4o is the chemical potential for pure He II
and x =n3(n3+n4) ' is the mole fraction of He.
For dilute solutions, x and c are related by
c=m3x/m4, so that Eq. (15a) becomes

that relates the temperature directly to V.v„and
V 4, apart from corrections of relative order

(0, —pk, »l?I'(ap, /ac)„]-' .
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Steinberg" estimates that the ratio (gi —p(3)/v„
.(which he denotes m) depends significantly on tem-
perature and concentration, being of order 1 for
the experiments in Ref. 4. Here v„=g/p„ is the
"normal" kinematic viscosity, and D =v„
=10 cm s ' are comparable in magnitude. '

Use of Eq. (16a) therefore shows that the correc-
tions to Eq. (20) are of order 10

In other cases, however, the last term of Eq. (19)
can be significant. A combination of Eq. (4) and
(19) yields

vnV vn
2~ av„ I - p „- „pgP, „gi—p(3—(v„.V)v„— VP+ gzapq (T —To) —(V.v„) v„—vg — z

dt
" " p„p„"' " " ' p„(dp~/dc ) ~~

(21)

ap~ =a~ —1'CP~/T, (22)

thus relating it to measurable quantities. In the
present case of dilute mixtures at low temperature,

n&& is invariably negative, reflecting the physicalPP4

fact that heat flush tends to move the light He
impurities toward cooler regions.

Before studying the equation for the conserva-
tion of entropy, it is helpful to rewrite Eqs. (20)

where a~„= p'(d—pld T)~„, is the thermal ex-

pansion coefficient at constant p4, . Some elementa-

ry thermodynamics show that

and (21) in dimensionless form, with distance in
units of the thickness d, time in units of d /X, ff,

U„ in units of v„/d =g/p„d, and T in units of
(v„/

~ az& ~

d g)(p„/p), where X,tt is the effective

thermal diffusivity (defined in detail below). Typi-
cal values are Staff 0.2 cm s ', p„/p=10
v„=10 cm s ', and ~az&, ~

=S&(10 K
Thus for d =1 cm, the characteristic units are 2 s
for t, 10 cms ' for v„, and 2X10 K for T.
Temporarily using an asterisk to denote a
dimensionless dependent variable, we obtain the
corresponding dimensionless form of Eqs. (20) and
(21):

k~
V2 T5fc 0v-*- ~ ' 'T* -.* vT*+v +

Vz v'„— —( v*„V)v"„—VP*+z sgn(ap„}(T' To)—
(23)

p gdPc

p„(Bp,4/Bc )T~

p4
vn

where P is measured in units of p„(v„/d) and '
+=vn/jeff (25)

&(ps)
V Q

at
+' T

(26}

Here s is the entropy density, Q is the entropy flux
vector, and we have omitted the entropy creation

is the appropriate Prandtl number (-0.05 for the
values in Ref. 4}. Apart from the last term, which
is a specific two-fluid contribution proportional to
V.v*„, Eq. (24) is essentially the same as for a
one-component fluid.

We now consider the entropy equation, which
can be written as

I

terms from the right-hand side. As shown by
Khalatnikov, Q is given by

Q/T =ps v „+( q —i Z /p ) T (27)

where

Zq= —vVT —T i
BT pT

kT g Z
T Bc pT

(28)

and ~ is the diffusive thermal conductivity of the
normal component, here associated with rotons,
phonons, and the He impurities. ' In Eq. (28), the
partial derivatives are taken keeping fixed the
remaining variables of the set (T,c,p), and the fluid
is assumed to be stationary with v„=v, =0.
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Equations (10b) and (9) together give the relations
T

Z 8 P —P4
Bc p Bc c

~~4

c Bc
(29)

s 1 ~94
c c BT

a V —V4

BT c
a z

BT p

Q s . i dP4—=—(pcv„+ i )+— y—
T c " T Bc

kT KV'T

T
(31)

I

3s
Bc
(30)

where the last form arises from a Maxwell relation

[see Eq. (9)]. A combination of Eqs. (27)—(30)
readily yields

In taking the divergence of Q/T, we shall drop
terms quadratic in the gradients, consistent with
the omission of entropy-creation terms in Eq. (26).
Use of Eq. (6) then gives

8 s
c—— +cv .V

Bt c
f}P4 kr V i+
Bc c pT

=0 . (32}
pT

The quantity s/c may be considered a function of
T, c, and p, and the pressure dependence is again
negligible. The relation (19) allows us to eliminate

c explicitly to give

+v~ VTs BT
BT c „, Bt

kT
V V v„=0,

c
Keff 2

+

V T+(g) —pg3) y —+v„.V Dy ——
p Bt

(33)

~94 pDc
Keff =K-

Bc T c
(34)

(35)

and Eq. (33) then becomes

Equation (16a) shows that Bp4/Bc is intrinsically negative, so that a;ff exceeds a. The additional contribu-
tion to the thermal conductivity arises from the hydrodynamic transport of entropy by the normal fiuid. It
is natural to introduce a modified specific heat

T

8 s
Cpp —Tc

PP4

+v„VT X ffV T+—
JPP4

k
y —+v .V' —D y — V V' v =0, (36}

where

Xeff jeff/Pcpp4

is the effective thermal diffusivity. In terms of the dimensionless variables introduced previously, it has the
form

D rk

V„C
(37)

A combination of the previously given parameters
with4 C~„=10 erg (gK) ' shows that the overall

coefficient in the last term is -2.5&10 . Since
V v„' '=0 in the unperturbed state and the per-
turbation in V v' will turn out to be -0.01 times

—+9'v„V —V T*=O .
at

(38}

I

that in T', Eq. (37) can generally be approximated
as
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The coupled nonlinear equations (23), (24), and (38)
form the basis for our subsequent work.

It is also essential to consider the appropriate
boundary conditions. If n is a unit vector perpen-
dicular to a rigid impenetrable surface, then the
mass current and impurity current must have zero
perpendicular component

(p~vg+pgvg) n 0 q

(pcv„+ i ) n =0.
(39)

(40)

This latter condition can be rewritten with Eqs. (7)
and (19}as

n v*„+.(D/v„)(y —kr/c)(n V T*)T* '=0,
(41)

III. LINEARIZED EQUATIONS FOR SMALL-
AMPLITUDE PERTURBATIONS

The rest of this paper will consider an unbound-
ed horizontal slab of thickness d, with the lower
and upper surfaces maintained at temperatures T
and T +ET, respectively. Since the unperturbed
velocity v„arises from a small applied tempera-
ture difference AT, we shall neglect quadratic
terms in studying the initial unperturbed steady
state. Thus the second term in Eq. (38) can be om-
itted, impaling that T (z) has a linear profile, with
constant V T =zhT/d. In addition, the normal
fluid velocity v„ is constant throughout the fluid,
with dimensionless magnitude

apart from negligible corrections of relative order
—1

(u )'=— kz- gT
c

(45a)

2 Bp4

Bc

Furthermore, the tangential component of the nor-
mal fiuid velocity must match that of the wall, so
that

n)& v„=O (42)

at a stationary surface. Finally, the heat current at
the boundary follows from Eq. (31), which may be
rewritten in terms of v,ff as

—+ TgQ= (pcv„+ t ) —~gffVT,
c

(43)

omitting corrections of order 10 [see the discus-
sion below Eq. (37)]. Use of Eq. (40} then implies
that

n Q= a,.rrn V—T. . (44)

Thus the heat flow through the boundary follows
the usual phenomenological description with ~,ff as
the thermal conductivity. Equations (41) and (44)
together imply that n v„=0 at a perfectly insulat-

ing wall, but it need not vanish in more general sit-
uations.

determined by Eq. (41). As expected, u„ is directed
opposite to the temperature gradient. The corre-
sponding equilibrium concentration gradient is

Vc = (yc /T )—V T (45b)

which follows from Eq. (19) because V.v„. Note
also that the steady downward flow of He impuri-
ties (with a flux pc v„) is precisely cancelled by a
steady upward diffusion with flux

i =pc D(y kr/c )b, T /—Tu.

As seen previously, D=10 cm s ' for
x =0.0047 and T= 1 K, ' and y —kr/c is of order
1, so that (u~)' is small, of order b, T/T & 10 in
the experiments of Ref. 4. Thus the neglect of
quadratic terms in Eq. (38) is well justified for the
initial state.

The small-amplitude perturbations are obtained
by linearizing about this nonclassical heat-conduct-
ing state with finite v„. It is convenient to use
only the dimensionless equations and henceforth
omit the asterisks. To first order in the small
quantities (denoted by primes), Eqs. (24) and (23)
become

2, 1 Bv
D Bv„p gdp

V' v„' — —u„,
" —VP'+z sg (na~„)T'+

dt "'
Bz ~"4 p„(Bp4/Bc ) zz

~nz+~sz z V ' vn 0

(46)

V.v„' — +ETu' +u — + y —— V T'=0 .1 aT', , OT' D
8t Bz y„T c

(47}
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It follows from the first and fifth terms of Eq. (46)
that v„' and T' are comparable in magnitude.
Since v„, (10 and T &10 in dimensionless
units, Eq. (47) can be simplified to give

where e; are small parameters of order
10 2 —10 3, given by

0~1= Vnz ~ (ssa)

@AT
Vn Vnz

TO
(48)

and the dimensionless quantity AT is just the
relevant Rayleigh number

l a~„„l
gd'b, T

jeff +'
(50)

Here hT is the temperature difference in conven-
tional units and v=g/p=v„p„/p. As a result, Eq.
(49) becomes

aT p aT 2+Hvnz —7' T'+Rv' =0.
at az

(51)

The corresponding boundary conditions follow
directly from Eqs. (41) and (42). In principle, the
second term of Eq. (41) implies that the perturba-
tion v„' has a small perpendicular component, but
its overall coefficient is of order 10 . Thus all
components of v„' can be taken to vanish at both
surfaces. In addition, T' vanishes at the top and
bottom plates because they are maintained at a
fixed temperature.

These linearized equations evidently have solu-
tions with exponential time dependence e '. Al-
though the presence of the normal-fluid flow v„
renders the equations non-self-adjoint, the correc-
tion terms are small, and we shall assume that the
onset of convection occurs when o. first vanishes
for some normal mode of the system. Thus the
equations constitute an eigenvalue problem (we
now drop the primes on the small perturbations}:

2~ avn
V v„zT VP+F.

~

—+ e—
&

—e3 ezzU~ =0,
a

(52)

'V' T—v~=0,

Thus V v„' is smaller than v„', by a factor of
—10 —10,justifying the simplification intro-
duced in obtaining Eq. (38). In a similar way, Eq.
(38) becomes

aT p aT+ Hvnz + HATv' —V' T'=0,2

at az

(49)

e2= AT/To,

gd/3,

p„ 1
(ap, lac)„ &n

(55b)

(55c)

LU=O (56)

in an obvious short-hand notation.
If E; =0, these equations reduce to the familiar

Rayleigh-Benard problem for a classical one-
component fluid. Since the e's are small, it is na-
tural to solve Eq. (56) perturbatively. The zero-
order problem becomes L' 'U' '=0, where

L(P)

a2 2

0
0 0 —lq

a —g —1 —a
~'"-'(a' —~') 0

a 0 0

(57)

is manifestly self-adjoint and a denotes d/dz. Al-
though this zero-order problem can be solved ex-
actly, it is more convenient for our purposes to use
a different procedure that also applies to the more
general case of a container with sidewalls. The
solenoidal velocity field described by U' ' can be
obtained from a vector potential through the
prescription

Here Eq. (54) has been used to eliminate V.v„
from Eq. (52}, and a smaller correction term
9'e&BT/Bz has been omitted from Eq. (53). Al-
though these three small dimensionless parameters
all reflect two-fluid effects, each represents a dis-
tinct physical contribution. The product @~a/az
characterizes the convective transport by normal
fluid flow, e2 is a measure of the normal fluid
compressibility [see Eq. (54)], and the third param-
eter arises from dissipative forces on the superfluid
[see Eq. (11)].

Translational invariance on the xy plane indi-
cates that all quantities can be assigned a plane-
wave dependence e' ". lt is easy to see that v„&
vanishes in this case. The remaining four variables
v, v, T, and P depend only on z and can be tak-
en to form the elements of a vector U. Corre-
spondingly, the coupled differential equations may
be written

V n ~2Vnz (54) „'"= V X [ ""1('"( )y"],
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with

u =~q|i
(0) ~ (0)

(59a)

(59b)

Z [ ~).(~(+q') 2-q'(C)'
i C.' }

+q R' )(l
~

m)]A~ =0, (67)

Evidently, f( ' and Bg( ' both must vanish at the
1

upper and lower surfaces (z =+ —,). The corre-

sponding pressure follows from Eq. (52) as

P' '= —(iq)
—'(()'—q')ay(", (60}

while the temperature T' ' can be found from Eq.
(53) with a Green's function G (z,z') that satisfies
the equation

(()'—q')G (z,')= —gz (61)

and the boundary condition G(+ —,,z') =0. An ele-

mentary calculation yields

where

(68a)(c)
I
c.' ) =fd»c, ()c. ,

(l
i
m) =f f dz dz' C)( z)G (z,z') C (z') . (68b)

Note that T' ' and u
' ' are even in z, whereas u

'

and P ' ' are odd. Keeping only the single term A 1

yields the approximate critical Rayleigh number
' = 17 19 and q, =3.102, whereas a two-term ap-

proximation yields the improved estimates 1709
and 3.1 14, respectively. These agree well with the
known values 1708 and 3.1 17, indicating that the
variational procedure converges rapidly.

sinh[q(z & + z )]sinh[q(z& —
z )]

G (z,z') =-
q sinhq

In this way, T ' '
may be written as

(62)

IV. INCLUSION OF TWO-FLUID EFFECTS

The full problem in Eq. (56) can now be studied
by expanding in powers of the small parameters e;.
The first-order correction to Eq. (56) is given by

T' '(z) = R' —' fdz'G(z, z')u' '(z') .

It is easy to verify that the inner product

y —(U(0) g(&)U(o))

L (0)U(1) L (1)U(0)

where

(69)

U(0)t(z)L, (o) U(o)(z)
1 /2

—1 /2

provides a variational basis for this problem.
When expressed in terms of the single real function
f( '(z), it takes the simple form

I= —fdz f' '(z) (8 —q ) g( )(z)

(L "')„=(L"'}»——&)(),

(L ())) R())(()2 2}(R(0))—2

« "'
}42= —&z

and the other elements vanish. The condition that
the inhomogeneous term —L ' "U' ' be orthogonal
to the solution U' ' yields

+q R ' 'f f dz dz'g '(z)*G (z,z')g (z') Z ")=0 (70)

8"C)(z)=A(C((z) .

Thus we can write

P( '=(iq} ' QA(c)(z)
l

(65)

(66)

with undetermined coefficients A~ . They obey cou-
pled algebraic equations obtained by minimizing I.
A straightforward analysis gives

(64)

The boundary conditions on g( ' suggest an expan-
sion in the complete set' of even eigenfunctions
C((z) that vanish and have vanishing slope at

1

z = + —, and obey the fourth-order differential

equation

because the remaining contributions vanish by
symmetry. Thus there is no first-order shift in the
critical Rayleigh number from the classical value,
and it is therefore necessary to proceed to second
order in the expansion.

The first step is to solve the coupled equations
(69) for the first-order corrections. Since P' v'„" is
nonzero, it is no longer possible to use a vector po-

tentiall

. Nevertheless, the function u„',"can be used
in an equivalent way. In particular, u~ ', T"', and
P ' "are all expressible in terms of u~ ' and its
derivatives, and simple manipulations lead to the
single inhomogeneous equation

(d q) u"' qR' 'f d—z'G(z, z')u—"'(z'}

= —lq(E) —e2)(B —q )'Bli( '(z) . (71)
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This can be so1ved with an eigenfunction expansion
of the form

U„',"(z)= g BtSt(z),
I

(72)

I (0)U(2) L (1)U(1) I (2)U(0) (73)

(L' )22 ez(e——,p/pg —e3),

(L ~21) — R ~2~(c)2 2)(R ~+)—2

and the other elements vanish. The condition that
U' ' be orthogonal to the right-hand side now ex-

plicitly determines the leading correction R' '.
The final expression is a ratio of two quadratic
forms in the coefficients AI and BI. %hen evaluat-

ed with the approximate two-term solutions for A „
A2, BI, and B2, it yields

R' '= 24.6e)@2+10.2(et —ep)

—19.9@2(etp/p, —e3) (74)

for the shift in the critical Rayleigh number aris-

ing from the two-fluid contributions in the hydro-
dynamic equations. For comparison, the simpler
approximation of retaining only A I and BI gives
coefficients 25.5, 11.1, and 19.9, respectively, im-

plying a reasonable rate of convergence. For
T=0.8 K, x =0.0047, and d = 1 cm, the observa-
tions of Ref. 4 imply eI-6.5&10
e2-6.4)& 10, and e3-2)& 10 because

(g&
—p(3)/v„= 1 in this case." As a result, R' ' is

-0.02, far too small to be detectable. Since the
observed R should be near 1708, it is clear from
Eq. (50) that b, T/T varies like d . Thus a reduc-

where Sl is the odd counterpart of CI. Substitution
into Eq. (71) and use of the orthogonality of the
eigenfunctions lead to a set of linear algebraic
equations for B~ in terms of the now known quan-
tities AI. Note that v' ' is odd in z, in contrast to
the zero-order contribution v~'. Thus the actual
convective flow has no definite parity. This specif-
ic two-fluid effect is likely to influence the non-

linear behavior beyond threshold.
The second-order contribution to Eq. (56) is

tion to d =0.5 cm should increase el and e2 each
by a factor of 8, and the corresponding R' '=1.4
might just be observable in careful experiments.

The small magnitude of e3 indicates that super-
fluid dissipation does not play an important role in
the experiments of Ref. 4, performed near 1 K.
For higher temperatures, however, Steinberg" has
remarked that (gt —g'3)/v„becomes large, leading
to qualitatively different behavior, similar to that
for a classical two-component fluid. An experi-
mental study of this question would be valuable.

At present, the only systematic study of convec-
tion in dilute superfluid He- He mixtures has
used a cylinder with unit aspect ratio
(I =—R/d =1), which differs considerably from an
unbounded slab. Thus conclusions based on the
present study can only be suggestive. Nevertheless,
two features of the experiments deserve mention.
First, the onset of convection invariably occurred
for R, =1700, whereas the classical prediction' for
a cylinder with insulating sidewalls and I =1 is
R, =2262. Second, in such a cylinder, the classical
one-component fluid undergoes a transition to ax-
isymmetric toroidal flow with the same R, for the
two patterns (center falling and center rising)
differing only in the sense of motion. ' In con-
trast, the experiments found a clear preference for
the center-falling pattern. It might initially be
thought that the nonzero v„ in the preconvective
heat-conducting state could provide a preferred
direction, thus splitting these two degenerate flow
patterns. More careful analysis for a cylindrical
container (presented in the following paper) now
suggests that the onset of these two states remains
degenerate. Thus the explanation of the observed
preference for flow with center falling probably re-
quires the inclusion of the nonlinear terms omitted
from the present work. This interesting question
requires further study.
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