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Both magnetotransport and EPR experiments have shown the importance of the aniso-

tropic character of the k fintera-ction between conduction and 4f electrons. For noble

metals with rare-earth impurities the magnitude of the anisotropic terms can be under-

stood in terms of the hybridization of the conduction electrons with the outer Sd electrons

of the rare-earth impurities. To obtain a consistent description of the magnetotransport

properties we have included the spin-orbit coupling of the 5d electrons as well as their
crystal-field splitting. The various parameters entering our model have been determined

by fitting the isotropic transport properties as well as the anisotropic magnetoresistance
arising from quadrupole scattering and the Hall effect due to skew scattering. We have

used this model to calculate the Sd virtual bound state contribution to the g shift and

linewidth of rare-earth impurities in noble metals. After estimating the s contribution we

obtain a consistent fit for the g shift and linewidth of several rare earths in noble metals.

I. INTRODUCTION

The conduction-electron —local-moment (k -f)
interaction plays a central role in the understand-

ing of the magnetic properties of alloys and com-
pounds. Early attempts to describe the effects of
k fscattering -were based on the isotropic ex-

change interaction Js.S. However, this approach
cannot explain the anisotropic transport effects
(anisotropy of resistivity and extraordinary Hall ef-
fect) and also in many systems cannot account for
other properties such as the EPR g shift and
linewidth. Huang-Liu, Ling, and Orbach' and Pert
and Levy have proposed a model for the k fin--
teraction based on a virtual bound state (VBS)
description for the rare earths's outer 5d electrons
and on taking into account all the components of
the 4f Sd Coulomb inter-action, i.e., orbital and
multipole terms as well as the isotropic spin in-
teraction. Conduction electrons in virtual-bound
states sense the highly anisotropic 4f charge densi-

ty because the 5d electrons's radial wave function
is much closer to the 4f electrons than the diffuse
spherical Bessel functions which are the radial
wave functions for conduction electrons in plane-
wave states. This model gave the correct order of

magnitudes for much of the magnetotransport and
electron paramagnetic resonance (EPR) data; how-

ever, some shortcomings were evident. First, while
one could explain the orbital contribution of the
extraordinary Hall effect, the large spin contribu-
tion as evidenced for gadolinium impurities in met-
als is not accounted for, and second, by using
phase shifts g determined from the fits to magne-
totransport data, one obtained g shift and linewidth

extremely different from those observed.
To remedy these discrepancies it was noted that

the spin-orbit coupling of the conduction electrons
had to be taken into account. Fert and Friederich
considered the role of spin-orbit coupling in pro-
ducing skew scattering of conduction electrons by
local moments, and Orbach and Huang-Liu
showed that the introduction of spin-orbit coupling
might improve the agreement with EPR experi-
ments.

We have extended the VBS picture of the kf-
interaction by (i) including the spin-orbit coupling
of the conduction electrons, which we study in two
limiting cases, the free 5d VBS and the cubic
crystal-field split 5d t2s VBS, (ii) inc-luding the p
character of the conduction electrons (sl ~ phase
shifts) in our calculation of the transport proper-

26 1099 1982 The American Physical Society



1100 G. LACUEVA, P. M. LEVY, AND A. PERT

ties, and (iii) calculating when necessary the T ma-
trix to second order in the distorted-wave Born ap-
proximation.

Specifically, we considered the following trans-
port data for silver and gold with rare-earth im-
purities, the residual resistivity pp due to the spher-
ical scattering of the conduction electrons by the
impurities, the thermoelectric power S/T, the iso-
tropic and anisotropic magnetoresistance, and the
extraordinary contribution to the Hall resistivity.
We have calculated these properties based on the
above model of the k fscatt-ering and fit the phase
shifts riI and the Sd 4f inte-raction parameters Aq
to obtain the best fit to the data. We were able to
obtain reasonable fits to the data with both the free
5d VBS and the cubic crystal-field split 5d t2g
VBS. Of the two models, the t2s is the preferred
one because the effective spin-orbit coupling
parameter A, is much closer to its atomic value.

To check the validity of the parameters
(ri(, c(,,Ak) we found in our fits to the transport
data, we recalculated on the basis of the same
model the contribution from the d wave scattering
to the g shift hg and linewidth AH of the rare-
earth resonance in silver and gold. Only the model
with the 5d t2g VBS gave acceptable values; the
free-5d VBS model gave 5d contributions to Ag
and AH which were much smaller than the experi-
mental values. The most encouraging result of our
study has been that we were able to fit the reso-
nance data on rare-earth impurities in silver and
gold by using the parameters determined from our
analysis of transport measurements.

In Sec. II we derive the scattering matrix ele-

ments due to the k-f interaction on the basis of a
5d VBS with spin-orbit coupling for the crystal-
field split tzg ground state. We have carried out
our calculations to second order in the distorted-
wave Born approximation in order to include ef-
fects such as the anisotropy of the magnetoresis-
tivity of Gd + (an S-state ion) which comes from
the spin-orbit coupling of the 5d electron. Our
matrix elements are expressed in terms of the
conduction-electron phase shifts gI, their spin-orbit
coupling A, , and the 5d 4f interaction paramete-rs

A~. In the next section we use these scattering ma-
trix elements to calculate the transport and reso-
nance properties of interest in terms of the above
parameters for the case of a 5d-t2g VBS. In the
Appendix we consider the case of the full Sd VBS
(without a crystal-field splitting). Comparisons be-
tween experiments and theory are made in Sec. IV
and in the concluding section we summarize our
findings.

II. DERIVATION OF THE SCATTERING
MATRIX ELEMENTS

The scattering potential V can be written as the
sum of two terms,

V= Vp+v (2.1)

where T' ' is the T matrix for a system in which
Vp is the full potential,

~

k' 'o') is an incoming
wave for the scattering in the potential Vp alone,
and ()'r&k ) is the scattered wave function in the
presence of Vp and v.

Since i()'j~k ) is written as

p
— p+l'g

we can approximate it to second order by

iy+ )
i

1
(+) )+

i
1

(+)
(ek Hp —Vp+i ri)—

(2.3)

where 6 is the Green's function for the scattering
in presence of Vp only.

We can write the T matrix elements as:

(p) ( )
k' '+dTk

where

+dT(~)-

kyar,

k'a' (2.4)

T@k' k, , =(k'o'i Vp i

k'+'o. ), (2.5)

where Vp is a spherical term which takes into ac-
count the attraction of about two electrons (mostly
in 5d and 6s states) and U is the Coulomb interac-
tion, direct and exchange, of the conduction elec-
tron with the 4f electrons that depends on the
orientation of the 4f moment. Since Vp is 1 order
of magnitude larger than v and is comparable to
the conduction-electron energy, we cannot treat it
in the Born approximation. Rather, one first takes
Vp into account to modify the wave functions in
the vicinity of the impurity and obtains an expres-
sion for the perturbation in terms of phase shifts.
Then the contribution to the T matrix from v is
calculated by using these phase-shifted wave func-
tions and the Born approximation, i.e., the
distorted-wave Born approximation.

The matrix elements of the T matrix for the sys-
tem we are studying can be written as

kcr, k'cr' kcr, k'cr'+( IUIl k
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dT'~k'. -„.=(k'-9'I v
I

k'+'o), (2.6) ~ko, k'cr' g I kcr, k'cr'+d kcr, k' c'r+d kcr, k'cr'
(Q) (g) (g)

(2.7)dT'~' -„, , = ( k' 'o'
I
vGv

I

k'+'o. ),
and (k'o'

I

is the unperturbed plane-wave state.
The transition probability 8'z -„, , is related to
the T matrix by

+ ' ' '
I
'@&k —&k ) .

To second order in the perturbation v, the transi-
tion probability is given as

kcr, k'cr'
g [ I kcr, k'O' I

+ kcr, k'cr' kcr k'cr'+(g) 2 (g)+ (g)

+
I
dT'k'.

, k'. I
+(T'k'.

, k.dT'k'.
, k. + c c )1@&k—&k ) (2.8)

I

k''-b
& =QC.'-, (k)

I jm, &+ (2.9)

The wave function
I

k'+-'o ) for a spin-orbit split

t2g state can be written, according to Friedel's
theory of nonmagnetic virtual bound states, as

where e„j is the energy of the center of the VBS
resonance. The matrix element (d

I
Vo

I
k ), which

represents the mixing of d and conduction elec-
trons, is related to 6 by

Only the part corresponding to the admixture of
local d states has been written and

I(d I
Volk& I'= ~ E (2.11)

where (jmj I
ao ) is a transformation matrix ele-

ment (Clebsch-Gordan coefficient) from the uncou-

pled basis to a spin-orbit coupled one and .6 is the
half-width of the VBS. The phase shift qJ is given

by

gJ ——tan
eri —e(k)

(2.10)

(dlV k)
C~z(k)=e 'sinrll F~(Q k )(jm/I aa ), where &(EF) is the density of states per unit

volume per one spin direction at the Fermi level,
and Y~(Qk ) are Kubic harmonics.

The admixture of 5d states into the conduction-
electron wave function gives the main contribution
to the matrix elements of v between

I

k'+-'o )
states so that these matrix elements can be written
in terms of the elements of the 4f -5d interaction.
Writing this interaction in tensorial notation we
have, for one 4f electron,

H =XF"(3
I I

C'
I I

3)(2
I I

C'
I I

2»f'" u»"'
k

3 3 k
+g( —1)"+"(2k+1)G"(2I

I

C"
I I

3) '2 2 „'[—,uf"'u» '+2(sf s»)(uf 'u» ')],
r, k

where I' and G are the direct and exchange Slater integrals; the tensor operators u'"' are defined by

(nl
I

lu'"'I ln'1') =5„„5',
and the reduced matrix elements of the spherical harmonics are defined as

l k I'
(lllC lll )(1)[(21+1)(2l+1)]'000

(2.12)

(2.13)

(2.14)

where the large parentheses denote a 3—j symbol and the curly bracket in Eq. (2.12) a 6 —j symbol.
To obtain the interaction for n 4f electrons one replaces sf and uf"' by sums over all the 4f electrons.

From the Hamiltonian Eq. (2.12) we find for v the following expression:

v= —&~OAos. J —P&Ai 1 J+153/7&~A3(s Xu )»'J+33 35/2%3A3u» 0 (J)

—6~5&~& A( 4'sXu')»0 (J) —73/10/3&5A5(s'Xu )».0 (J)+
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where J is the total angular momentum of the 4f
shell, and

+o=(gJ —1)

%3=(2—gJ),

The sums are over the 4f electrons; the values of
these coefficients are given in Table I. Finally,

Ao ———„(36'+—,6 +—„G ),

J g(s ' X u )'(i) J

(J gu (i) J 3v'105

H4 ——

J g(s'X u') (i) J
l

J g( sXu )(i) J

(J
I
lo'I

I
J)

5 14

A = (276' —863——G5)
105 31

where I' and 6 are the Slater direct and ex-
change integrals. By using Eq. (2.9) in Eqs.
(2.5) —(2.7), we obtain for the T matrix elements

—4
km, k 'rr' e 'sin31o+6oo'e 'sin3)~g Yt (Q k ) Y~m(Q k )

4m.

+pe jsin3ijg'&m2o'Ijmj)&jmj
I
m&o) Y &(Qk)Y 2(Q-„,)

m1

m2

(2.15)

The prime on the sum over m
&

and mz indicates the restriction

mj ——m ~+o.=m&+cr' .

The matrix elements of the perturbation v are

gg'e P[i(g, +31;)jsin31jsinrjj &m4o'I j'mj &&j'mj
I

U
I jmj &

F jj' m3

m4

X &jmj I
m3cr) Y" (Q k, ) Y (Q k ), (2.16)

TABLE I. The coefficients Hk entering in the 4f Sd interaction [Eq. (2.14)]-.

Hp

~3X 10'

%4x 10

9'5X 10

0
0
0

Tb

1

2
1

2
I

12

9.06
—4.95

1.88

Dy

1

3
2

3
I

15

5.7
—5.17

Ho

1

4
3

4
1

4p

—5.45
—1.03

Er

1

5
4

5

2

75

—2.28
—6.25
—1.18

Tm

1

6
5

6
1

12

—9.05
—8.27

Yb

1

7
6

7
1

7

—28.4
—15.5

5.87
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where

mj ——m 3+0. ,

I
mjr =m4+0

and v is given by Eq. (2.14).
For the dT' ' matrix element we have to take into account the noncommutativity of the operators present

in v. This noncommutativity gives rise, for example, to the Kondo effect. We have

where

ko', k'cr' W ~ ( k e k'"'e, "~k "cr", km fk'n [~k'gr', k "n" & Vk "gr", kraal)'- (ek ek—+"ip
(2.17)

V k, , k, . „——( k' 'o'
I
v

I
k "cr"),

and fk-~ is the Fermi occupation factor for the intermediate states
I
k "o").

The term in Eq. (2.17) containing the commutator gives only a spin-dependent contribution to the resis-

tivity. This term does not enter our calculations; as we will see the spin-dependent part of the resistivity pb
has to be evaluated to first order only since it enters squared in the expression for the total resistivity.

By rewriting the first term in Eq. (2.17) in terms of
I jmJ ) states we find

dT I rkm, k'a' g~(g )
J J Jgg'exp[i(il +rl )]sinful sing'(m4o'

I
j'm, )(j'm;

I
vgv

I jm, )
F jj' m3

x(jm,.
I
m, o) Y (Qk, )Y (Qk), (2.18)

where

and

mj =m3+0
I

mj ——m4+o. ,

1'g ~

(j'mj IvGvI Jmj) 2 sin'gj"(jmj'I vI J mj")(J mj IvI jmJ") .
~ ri rr

(2.19)

III. CALCULATION OF TRANSPORT
AND EPR PROPERTIES

A. Transport properties

and

(a)
Pry = k (k.u)(k'. v)

BE'k

The magnetoresistance and the extraordinary
Hall resistivity for a given spin direction (cr) can
be written as'

fi

8~ ne

0
1

0

gf fk fk'
(g )

k~T

X[(k—k') u]W'k k, ,d kd3k' (3.1)

XR'k k, d kd k',
(3.2)

where Wk 1,
' ' a d W k p' ' are the sym-S A

metric and antisymmetric parts of the transition
probability Eq. (2.8); u and v are unit vectors, u

in the direction of the current and v perpendicular
to it, and n is the number of conduction electrons
per unit volume for one spin direction. Equation
(3.2) is for elastic scattering only; the more com-
plex expression for inelastic scattering is not need-
ed.
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We write the resistivity p'-„' which depends on

the direction of the spin o. and the current u as
follows:

dT'" ~, and T' 'dT' ' + c.c. We will give only
the terms different from zero.

(+ )

p u =p~ +pb (3.3)

In a polycrystal (isotropic medium) the dependence
of the resistivity, i.e., p'-„-+',P„Pb, on u can be sim-

ply expressed as a function of the angle 0 between
u and the magnetic field H. All resistivities can
be written as

Isotropic term, spin -independent part

p, (
~

T' '
~

) =D [sin'(r)p —ri] )+ —,sin'g]

+ 1 Sill ('g3/2 Il] )

2 0 2+ —,sin (Il]/2 —Il ] )
iso aniso

p =p(H) +p(H) (3.4) 6 3 2+ Sill Y/3/2+ Sl]1 7)1/2]
where pIH] is independent of 8 (depends only on
the magnitude of the field) while p]H']' is propor-
tional to (cos 8——, ).

By using Eqs. (2.8), (2.15), (2.16), and (2.18) with
Eqs. (3.1) and (3.2), we can calculate p,'", p',""',p'6",
psm", and p„'~ '. For each of these terms we will

write successively the contributions coming from
the various terms in the scattering probability Eq.
(2.8), i.e., from

~

T' ' ~, T' '*dT" ' + c.c.,

where

2mc

+fine n (EF )

(3.5)

(3.6)

c is the concentration of rare-earth impurities and
n (EF ) is the density of states at the Fermi level
per atom and for one spin direction.

2. p( T dT] ' +c.c.}

a. A nisotropi c term, spin-independent part

O2

p',"'"(T' "dT"'+c.c. ) = I [cosy]/2sin I)3/2sinI)]/2+cosr13/2sinri3/2sin g]/27

7+ ]5 sln113/2slnf/]/2slnI)]cos('g]/2+7)3/2 711]A5

+ [cosY/3/2sln f)3/2+ 3O
slnI)]s]n 'g3/2cos( I)3/2 91]A 6] (3.7)

where

Qp
—( 3 /2 )

'
[J-„——,J (J+ 1 )],

A, =-,' ~y, +-, +&4+-, &9&,

and

3
A 6 = —,9' 3A 3

—+4A 4
—&5A s

b. A nisotropi c term, spin-dependent part
T

8D (J, ) 3

Pb
'""'(T"'"dT' "+ c.c.) = 216

(A3 A4)sin r13/2COSI)3/2 —A]S111 I)]/2COSY/]/2
2

1 2+ -A2(sin I)]/2sin2113/2+sin I)3/2s]n211]/2)
2&2

(3.8)

where
1 4

A ] = —
&

H pA p
——,9' ]A ] —2H 2A 2,
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a,ncl

A2 = —V 2( 3 HpAp+ 3 R]A ] —4 %2A2)

A3-———,HpAp ——,9']A]+ —,9'2A2,

54
A4 —— %2A2 .

5

c. Isotropic term, spin-dependent part

iso (P)4 (1) Z ) ~ 3
pP (T dT +c.c.)=

3A
10A 3sln YJ3/2cos7)3/2 A I sin q I//2cosg1/2

—2v~2A2(sin q]/2sin2q3/2+ sin 2}3/2sin2q]/2}

2 2+ q s]nq][ —10A3cos(2g3/2 —g])s]n 'g3/2

8+ ~ A2sing]/2sing3/2cos(Q3/2+ g]/2 YJ])
4 2

+A]sin 'gl/2cos(2']/2 —'91)] (3.9)

3. p( idT'"i }

a. Anisotropic term, spin-independent part

p',""'(
i
d T'"

i
) = ( (J-„WJ-„)——, ( J W J ) )

X [(2A3 —A4A3 ——,A4)sin g3/2 —A2sin 2}]/2sin 2}3/2
—2 — 2 —2 . 4 2 2 2

3+i'2A ]A2sin g]/2sinv)3/2cos(7)3/2 g]/2)

3+]/2A2(A3+A4)sing]/2sin 2}3/2cos( g3/2 7}]/2)] (3.10)

where

( J WJ)=gP( )

aP
1 —exp

(E~ Ep)/kJ]T-
(E Ep)

k~T

. - (a
i
J

f

P).(P[ J i(].) (3.11)

and

1
P( )

———exP( E lkl]T) . —a

b. Isotropic term, spin-independent part

pg~'((dT
i

)= [(10A3+ A4}s]117)3/2+A] sin g]/2+8A2sin g]/2sin g3/2]
(1) 2 D(J ~J) 2 10 2 4 2 4 2 2 ~ 2

4A 9

+ (0 8'0 )(2A6 sin g3/2+43& sin q3/2 sin q]/2) .2 -2 4 2 2 ~ 2

Q2
(3.12)
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4. p(T' "dT' '+c.c.)

26

Anisotropic term, spin-independent part

(T(0) dT(2)+c c )

, (J'-„——,'Z(v+1))

1 2 2 1 3X —A)A2cos2g»zsin g»2sin g3/2+ A2(A3+A4) cos(g(/2+g3/2) sin g3/2sing(/2
2 2

3 2 2+ A )A2 cos(g(/2+g3/2) sin g)/2sing3/3+ A1(A3+A4) cos2g3/2 sin g3/2 sin g)/2V2 V2

2 2 2 . 4 2 3+ (2A 3
—A4A3 — A 4) sin r/3/2 cos2g3/2 —A 2 cos(g(/3+g3/2) sing)/2 sin 'g3/2 (3.13)

5. p„y(T""dT'"+c.c.)

D sing( Ao(g/ —1)
p„+-~ = — (Jz ) [sin g3/2 sin(2g, /2

—g1) ——, sin g)/2 sin(2g(/2 —g()

——, sing) /3 sing 3/2 sin( g ) /2+ g3/2 g)}]

——,A, (2 —gJ)[ sin g3/2sin(2g3/2 g))+ 5 sin'g)/2sin(2g)/3 —g()

+ —, sing)/2sing3/2sin(g)/3+g3/3 g()] (3.14)

(+) ( —)p~ p —+

pu= (+) ( )
.

p~ +p —+

By using Eq. (3.3), we find

2
pa pb

2 2pg

(3.15)

(3.16)

The total resistivity is then calculated as follows in
a two-current model. With our assumption of
scattering due to v restricted to the I =2 channel,
there is no momentum transfer between the spin-

up and spin-down currents, i.e., p« ——0 in the nota-
tion of Ref. 8, so that the total resistivity can be
written as

By keeping only the dominant contribution to p„
i.e., that coming from

I

T( ) I, Eq. (3.5), we find

po=-, p( I

T"'I') . (3.18)

180 P—8—Ppp u

po

p',"(H)—p,'"(H =0)

p. (
I

T'
I

')

The isotropic and anisotropic magnetoresistances
are found by writing p, and pb in Eq. (3.16) as the
sum of their isotropic and anisotropic parts. We
obtain

p, (H =0)
po=

2
(3.17)

For zero magnetic field pb is zero, so that the
zero-field resistivity is written as

and

1SO

p, (
I

T(o)
I

2)

2

(3.19)
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aniso
U

aniso
pa

'2aniso
aPb

1SO

Pb

ps" p. (17'"
I

'}
aniso 1SO

Pb Pb
1SO

'2

p. (
I
7'I '}

po p. ( [
&"'/ ')

(3.20)
—

~
(Jz)

~

coth ——cz

2

a/2

makes it difficult to interpret the experimental
data.

On the other hand, for Gd impurities (S-'state

ion) the expression of bp'" can be greatly simpli-
fied. In the absence of crystal-field splitting, one
obtains by a straightforward calculation'

( J W'J ) = J(J+1)

The dependence of Ap'" on H for non-S-state
impurities is rather complicated since it contains
terms proportional to

where

sin
2

(3.21)

and

((J.WJ) —(J WJ) }

((O' WO') —(O'WO'), )

gJpgH
k T

In this case Ap'" can be written as

arising from p,'", as well as terms proportional to
((Jz)) coming from pI, . The expectation values
of ( J.WJ ), (0 .WO ), and (Jz) have been
computed by Ousset et al. for several alloys with
the appropriate crystal-field parameters. They
found that, for non-S-state ions, Ap"' is the sum of
positive and negative terms, nearly canceling each
other for certain crystal-field schemes, which where

—P
~
(Jz)

~

cotha/2— u/2

sinh—
2

(3.22}

D Ao(gq 1)—
y=

2 2 I 10sin I}3/2cos2}3/2+sin I}I/2cosI}»2+4sin It»2sin2r13/2+4sin I}3/2sin21}I/2
1626 p, (

~
To

~

)

—
5 sin'gl[ 10cos(27}3/2 Ill)sin Il3/2+Sslngl/2sln93/2cos( I3/I2+ gl/2 7ll)

—sin 11«2 cos(2ri»2 —I}l) j I

I

of the resistivity as

(3.23)

DAO(gJ 1)—
726

( 10sin I}3/2+sin"II I/2
Pll

po

+16sin 1}l/2sin I}3/2}

(3.24}

which is the quantity conventionally used- to
present the experimental data on anisotropy. " For
a polycrystalline sample we have from Eq. (3.16),

The anisotropic part of p-„also includes several

terms that we have computed. It appears that, in
the range of phase shifts consistent with the exper-
imental data, the contribution from

p '(T~' '*dT"'+c.c.) is larger than the others by
at least 2 orders of magnitude. Thus we can limit
the expression of p'-„"-'" to this term. Rather than
p'-„"'" we will write the expression of the anisotropy

an~so ani~s

pl( p~ 3 p&H(IUi 3 p«H((»
po 2 po 4 po

From Eq. (3.7) we obtain

«J')) —'"+"
po 3

where

(3.2S)

(3.26)
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3 v6D 2a =—
I [cosg]/2 sin l3/2sing]/2+cosg3/2sing3/3sin g]/3

7 Apo

7+—„sing3/3 sing»&sing] cos(g]/2+ g3/2 g ] ) ]A 5

+ [cosg3/2 sin g3/2+ —„sing] sin g3/2cos(2g3/2 —g])]A6 I,3 7 2 (3.27)

Jz is the component of J along the field direction, and ((Jz)) is a thermal and powder average of Jz.
In the two-current model, the extraordinary Hall resistivity is written as

1

Pxy= 4(Pxy+Pxy) r

where p„'y
' are given by Eq. (3.14). At sufficiently high temperature we can write

gJJ(J+1)pgH
Jz

3k' T

so that p„y/po can be written as

p
[(x]gJ(2 gJ)J(J+I)+a2gy(gJ 1)J(J+1)]-H

po T '

where

pgA iD 2 2
CK) = »ng][»n'g3/2(2g3/2 g])+ —, sin g]/2 sin(2g]/2 —g, )

9hkgpo

(3.28)

(3.29)

+ —, sing ]/2 sing3/2 sin(g»2+ g3/3 g, )], (3.30)

and

p~DAo sing&
CX2 =— [sin g3/2sin(2g3/2 g\) ——, sin g]/csin(2g»2 —g])

186k~po

——, sing]/2 sing3/2 sin(g]/2+g3/3 g] )] (3.31)

The first term cz& is proportional to the oribtal ex-

change coefficient A
~

and exists only for non-5-
state ions (g+2). The second term a2 is propor-
tional to the spin exchange coefficient Ao and re-

sults from the spin-orbit splitting of the VBS. It
exists even for Gd but cancels when g3/2 —YJ]/2,
i.e., no spin-orbit splitting of VBS.

B. Evaluation of the g shift and EPR linewidth

%e will now derive expressions for the g shift
Ag and linewidth AH in terms of the same param-

eters used in the resistivity calculation. The transi-
tion probability between two states of the 4f
conduction-electron system is given by

n k o~pk '0'

2m T i 5akrr~l3k'rr' l (&k~ ok~+&~ —&p) '—
(3.32)

where a, ((3 are the 4f states and ko, k'(r' the Sd
(VBS) states. Summing over all the possible states
of the conduction electron we find

,~p= Q f k dk f k'dk'f(), ~)(l f(k~)) f dQk f dQk
~

T—k lyk, ,
~

5(,„,, +E s ) .
O'CT

(3.33)
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By replacing the integral over k by one over energy

~I

N(ek)dek
k dk —+

4~

and taking into account that for p,&H «kz T we
can neglect E Ep —in the argument of f and N,
we can write the transition probability Eq. (3.33) as

k~T
W~ p

—— N (EF)
8 A

For an isotropic doublet,

(a
/

J /P)(P
/

J
/

a) =—
2 gg

and we find from Eqs. (3.36) and (3AO)

keg -2 . 4 -2 . 4
2 ~ ( 10A 3 sin q3//+A &

sin ri~/2
'ITpgk gJ

+8A 2 sin q3/2 sin q~/q) .2 2 ~ 2

f i
T k pk i

dQkdQk' (3.41)

If we note that

2 fn fn ~ akim Pk O' I'

(3.34)
For Gd, if we take as the ground state a pure

7 7J= —, state, we have eight levels
~

—,mj ). The
dominant part of the interaction u Eq. (2.14), i.e.,
the bilinear spin exchange, only connects adjacent
levels and we can write

(3.35)

is the same angular integration that gives us the
isotropic magnetoresistance, we obtain

g W„ „(E„—E„ )
1 1 nn'

TJ 2

k~T
W~ p

—— N (EF)R,"', (3.36)
~n n+~

n =n+1. (3.42)

where, from Eq. (3.12)

By using Eqs. (3.36), (3.37), (3.40), and

R,'"= (a
i
J [P)(Pi J [a)

F

)( ( 10A 3 sin g3//+A ~
sin g&/z

2 ~ 4 2 ~ 4

+8A2 sin r)»&sin q3/p)
2 2 2

g W~ p(E Ep)—
1 a,p

2 QE2

The relaxation time T& is given by'

(3.37)

(3.38)

we obtain for Gd the following:

AH kayo
( 10sin q3/2+sin g~/218~i,a2

+16sin q3//sin ri~/q} .

(3.43)

For a doublet this is just

1 = 8'~ p+ 8'p
1

and since we consider 8'~ &-8'p ~ we have

1 =28' p,
1

and the resonance width is

(3.39)

To obtain the g shift produced by the local-
moment —conduction-electron interaction we have
to evaluate the thermal average of the conduction-
electron operators appearing in the interaction in
the presence of a magnetic field. The average
values of the conduction-electron operators are
given in linear-response theory as'

( 1 ) =y (a
~

I
~
P) (P

~

—pgH 1 —2psH s
~
a)

H A 1 2%8' p

AT

gpss

T) T gpgT
(3.40)

X&(a,P,0), (3.44)
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a,P
s

I &) (I3
I

@AH'1 —2p~H s

XS(a,f3,0), (3.45)

3 I Sinf) 3/2 SinYJ 1 /2S(—,—,0)=

lf we restrict the exchange interaction to the first
two terms in Eq. (2.14) the g shift is given by'1

where a,P are the states of the system. The static
susceptibility S(a,P, O) is given by'

s1n rl3n
hg= 1

pgHz

Ap(gJ —1)
(SZ)

s1n gl/2S( —,, —, ,0)= (3.46)

A1(2 —gJ )g
(3.47)

and and by using Eqs. (3.44), (3.45), and (3.46) we find

~o(gJ —1)g 5 . , 2 . , i4 .
bg = — ( —, sin rl3/1 9 sin 1)1/2+ —, sin1)3/2sin7) i/2)

mgJE

A1(2 —gJ )g |p 2 2+ . ( 3»n'1)3/2+ —, »n 1)1/2 + 9 sin1), /2sing3/z) .
&gJ~ (3.48)

IV. COMPARISON O'ITH EXPERIMENTAL
RESULTS

A. Transport properties

In order to test the model in the most detailed

way, we have gathered data from several types of
measurements: residual resistivity, ' ' thermoelec-
tric power, ' *' isotropic and anisotropic magne-
toresistances, " and Hall effect. %e distinguish
two sort of properties: (i) those which depend
essentially on the VBS parameters, i.e., phase
shifts, and (ii) those which also depend on the
parameters associated with the 4f-5d interaction,
i.e., the parameters A0, A 1, etc., which are com-
binations of 4f 5d Slater-type i-ntegrals.

%e begin by considering experimental data on
the properties of the first of these categories in or-

der to obtain reliable estimates of the phase shifts
in the model: q0, qi, q&/2, and g3/2 we could
determine these phase shifts for each alloy, that is,
one set for Au:Gd, another for Au:Tb, etc. How-

ever, we find a reasonably good agreement with the
experimental data for a/I the heavy rare-earth met-
als (A) in a given host can be obtained with a
unique set of phase shifts. Thus, for simplicity, we

shall assume that the phase shifts are the same for
all the heavy A' elements in a given host.

The first condition imposed on the phase shifts
arises from the Friedel sum rule which, for a
trivalent ion in a monovalent noble metal
(hZ =2), is written as

IO+ 91+91/2+ I3/2 (4.1)

The residual resistivity of the alloys is the first
piece of experimental data we use. The theoretical
expression of the residual resistivity is written as
[see Eqs. (3.5) and (3.18)]:

mc ~ 2 4 - 2
po ——

2 [ sin (r)p —1)1)+—, sin rI|
1rne An(EF)

+ —, sin (1)&/2 —1)&)

6 3 2+ ~
S111 7)3/2+ g

Sin 1)1/2) .

(4.2)

The experimental values for heavy rare-earth im-
purities are 5.2 pQ cm/at. %%uo(po(6. 6
pQ cm/at. % for Ag:9P (Ref. 14), and pp-7
pQcm/at. % for Au:9F (Ref. 15).

The second set of experimental data to deter-
mine the phase shifts comes from data on the ther-
moelectric power (TEP) of Ag:Lu and Au:Lu al-

loys, A:—S/T = 1.79 p 10 V K for Ag:Lu, l

and A =1.1&10 V K for Au:Lu. ' For alloys
with Lu there is no anomalous contribution to the
TEP from inelastic k fscattering and the TEP-at
low temperature can be ascribed to the formation
of a VBS.' The general expression for A is given
as
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m k~T BlnppA=
E,

' (4.3}

where pp is given by Eq. (4.2). The only phase
shifts which strongly depend on the electron ener-

gy e are those associated with the narrow d VBS
(i.e., rl&/2 and g3/3), so that we can neglect the con-
tributions from the I =0 and l =1 channels. By
using Eqs. (4.2) and (4.3) and from the definition
of the phase shift rlj,

sin 'gj.

we obtain

m AD 4
A = [ —,sin2(g3/2 7)f)sin q3/26le l~cp

i —,sin2(g|/2 —gi }sin pi/2

6+ —,s1n2g3/2sln g3/2

+ —,sin2ql/2sin rli/3] . (4.4)

The VBS half-width b, for Sd elements in Ag has
been determined by optical measurements and by
combining thermoelectric power and de Haas —van
Alphen data. A reasonable mean value appears to
be 6=0.45 eV. On the other hand, there are no
measurements of 6 for Sd elements in Au. Infor-
mation on b, for the gold-based alloys can be found

by comparing the residual resistivities and the TEP
of the silver- and gold-based alloys. Their residual
resistivities are nearly equal while the TEP of
Au:Lu is definitely smaller than that of Ag:Lu (by
almost a factor of 2). The only way we can obtain
this result is to assume similar phase shifts for the
silver- and gold-based alloys with a larger 5 in
gold. We have taken 5=0.6 eV which gives good
agreement not only for TEP but also for the whole
set of experimental data we consider in this paper.
This larger value of 5 may be due to the stronger
d character of the conduction electrons in gold.
We will discuss this in Sec. V.

In contrast to po and A, the magnetoresistance
and Hall effect depend on the 4f 5d interaction-
coefficients as well as the phase shifts. However,
some ratios of experimental quantities give us
direct information on the phase shifts alone. We
first consider the ratio of the skew scattering coef-
ficients a& and a2. According to Eqs. (3.30) and
(3.31), this ratio depends only weakly on gp, g„
and g3/2+ g]/2 but, as the existence of a2 results

from the spin-orbit splitting of the 5d VBS, a2/a&
is strongly dependent on the difference q3/2 g$/2.
This ratio is also proportional to Ao/A I but we
can reasonably take for Ao/A i the ratio of the
atomic values of Ao and A I. We show in Fig. 1 an
example of the variation of the ratio e2/e& as a
function of the spin-orbit splitting parameter,

Z 3/2r=
Z i/2+Z3/2

The ratio
l a2/ai

l
increases from zero for r = —,,

which corresponds to an unsplit VBS with

g3/2 —xf ] /2 to a value of about 1 1 for r = 1 which
corresponds to a completely split VBS. This type
of graph allows us to derive the splitting parameter
r from the experimental values of a2/ai' , —3.65
for Ag:A' and —6.647 for Au:O'. We find that,
for both Ag- and Au-based alloys, the splitting is
relatively small; r =0.74 for Ag:A' and r =0.83 for
Au:8'. As the ratio a2/ai depends weakly on the
phase shifts r)p, rl& and r) &/2+7/3/3 in the range of
values consistent with the Friedel sum rule and the
other data, this procedure gives us an almost in-
dependent determination of g3/2 —gl/z.

Another piece of information on the spin-orbit
splitting of the VBS is given by the absence, to
within experimental accuracy, of anisotropy of the
magnetoresistance in the Gd alloys:

(4%
1SO

p

in both Ag- and Au-based alloys. According to
the results of our calculations of the preceding sec-
tion, the spin-orbit splitting of the VBS induces an
anisotropy of the magnetoresistance for Gd alloys;
see Eqs. (3.8), (3.10) and (3.13). In Fig. 1 we also
show the value at saturation of the relative aniso-
tropy plotted as a function of the spin-orbit split-
ting parameter r. The anisotropy is zero for r = —,

(unsplit VBS), it increases very slowly (quadratical-
ly in r ——,) and reaches significant values only for
strongly split VBS. For the values of r derived
from the Hall effect, the anisotropy is negligible, in
agreement with the experimental results. Therefore
there is no contradiction between the negligible an-
isotropy of the magnetoresistance and the signifi-
cant skew scattering of Gd alloys: They are both
consistent with a rather small spin-orbit splitting.

Next, we consider, for alloys with Gd impurities,
the ratio

iSO 1/2
~psat

CK2

po
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-5

r

expt

CX)
A

0.1

0.666 0.7 0,9
(t ) I = Z3~ (Zp)+Z)p)

1

(3/2)

FIG. 1. Variation of the ratio of extraordinary Hall
resistivity coefficients a&/a& and of the ratio of anisotro-

pic to isotropic resistivities for Gd as a function of the
spin-orbit splitting of the VBS. The curve for

[(p~~
—p, )/(

~

bp'"
~

))od differs slightly from that previ-
ously shown (see Ref. 18), because differrent values of
the phase shifts are used.

where aq is the skew scattering coefficient and
bps",', is the value at saturation of the isotropic
magnetoresistance. From the expressions for az
and bP'", Eqs. (3.31) and (3.22), it is seen that this
ratio depends only on the phase shifts and not on
the 4f Sd coefficient A-o. Moreover, it can be writ-
ten as

1SO
~Psat

Po
=sing~f(t)I),

where the function f (alt) does not vary much for
the range of phase shifts consistent with other
data. Thus, from the experimental value of this ra-
tio, "" we obtain an independent and reliable
determination of the phase shift g~.

In Table II we present the two sets of phase
shifts adopted for the Ag:8' and Au:A' systems

and the corresponding screening charges Zp, Z~,
Z3/Q and Z ~ ~q . These phase shifts obey the
Friedel sum rule, Eq. (4.1) and give reasonably
good agreement for the residual resistivity, the
thermoelectric power and the three ratios men-
tioned above. The calculated and experimental
values of these quantities are also listed. AII the
calculations have been performed with n (EF)
=0.15 eV ' per atom for one spin direction.

Having analyzed experimental data on quantities
depending only on the phase shifts, we now consid-
er experimental data on properties depending on
the 4f-5d interaction. The anisotropic magne-
toresistance induced by non-S-state impurities can
be written as (see Sec. III):

P~~ P& ((~2 ))
&(1+1)

Po 3
(4.5)

where a is given by Eq. (3.27). Experiments have
been analyzed by using Eq. (4.5) and from the fits
experimental values of the coefficient a have been
derived for most heavy-A impurities in Ag and
Au. When one calculates a by placing in Eq. (4.5)
the phase shifts derived above (see Table II) and
atomic values of the parameters A3, A4,A5, one ob-
tains value of a somewhat larger than the experi-
mental ones. Good agreement throughout the A
series can be obtained simply by taking effective
values of A3,A4, A5 lowered with respect to their
atomic values by a factor of about 1.68 for Ag-
based alloys and 2.26 for Au-based alloys. The
values of the coefficient a calculated with these ef-
fective values of A3,A4,A5 are listed in Table IV
together with the experimental values of a. The
effective and atomic values of A 3,A4, A 5 are listed
in Table V. In Figs. 2 and 3 we plot the variation
of the calculated and experimental values of a
through the heavy 4' series. The variation predict-
ed by our model is slightly different from the vari-
ation of the Stevens coefficient aJ, i.e., from that
expected from only quadrupole k fscattering. -

TABLE II. Phase shifts giving the best agreement with experimental results; see Table III
and corresponding screening charges.

Z$ Zj

1.3
0.181

0.34

0.478

0.83

0.345

0.216

0.608

1.29

0.22

0.21

0.82

0.42

0.13

0.62
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TABLE III. Calculated and experimental transport properties of Ag&' and Au&' alloys. The first five lines have
been calculated with the phase shifts of Table II and, for the TEP, with the values of 6 indicated in the text. The skew
scattering coefficients a~ and a2 have been calculated with the same parameters and the values of A o and A ~ given in
Table V.

(po) pQ cm/at. %
(A =S/T) V/K~

a2/al

Calculation

5.46
1.55 X 10-'

—3.62

Ag host
Experiment

5.2-6
1.79 y10-'

—3.65

Calculation

5

1.137X 10
—6.647

Au host
Experiment

7
1.1& 10

—6.647

QptSO

po

. )/g sat

Gd

(K/6) -1.28 y, 10-' —1.28 X 10-' —3.57 X 10-' —3.57X10-'

pii
—p~

QplSO

sat

Gd

0.007 0.04 0.097 0.04

(al) K/6
(a, ) K/6

0.425 X 10-'
—1.54' 10-'

0.43 X 10-'
—1.57X-' 0.335y 10-'

—2.23 g 10
0.34' 10-'

—2.26)&10 '

These slight differences are due to contributions
from the coefficients A4 and As which in contrast
to A3 are not proportional to aJ. We also remark
that the anisotropy of Au:Yb does not depart signi-
ficantly from what is predicted by the calculation;
see Fig. 2. Therefore covalent mixing does not
make a large contribution to the anisotropy of the
resistivity. While covalent mixing is important in
Au: Yb to account for the temperature dependence
of the resistivity' and the very large isotropic
magnetoresistance relative to that of alloys with

other rare earths, it does not appear very impor-
tant for anisotropic transport properties; i.e., aniso-

tropy of the magnetoresistance and Hall effect. s

The isotropic magnetoresistance must be dis-
cussed separately for alloys with non-S-state im-

purities and with Gd. For non-S-state impurities
the expression for the isotropic magnetoresistance
[see Eqs. (3.9},(3.12},and (3.19}]is fairly compli-
cated and includes several terms having the same

Ag:Dy
Ag:Ho
Ag:Er
Ag:Tm

C
{at.%)

1.06
0.96
1.95
2

a )& 103

calculated

0.98
0.38

—0.32
—1.44

a &(103

experiment

0.96
0.38

—1.25
—2.55

Au Tb
Au:Dy
Au:Ho
Au:Er
Au:Tm
Au. Yb

0.98
1.4
1

0.91
0.86
1.5

0.75
0.51
0.23

—0.11
—0.65
—2.24

1.02
0.51
0.19

—0.23
—1.36
—2.31

TABLE IV. Calculated and experimental values of
the quadrupole scattering coefficient a for a series of
Ag:A and Au:A alloys. The concentrations of rare-
earth impurities are also listed. The calculated values

were arrived at by using Eq. (3.27) with the phase shifts

given in Table I and the parameter A3, A4, and A5 in

Table V.

C$
I

qp I

IU I
I

I4— I
I4 'i EI' Tm

Ho ',
yO

'I

'I

rare earth impurities in ',

Ag \

\

x exp'.
~ Cole, I

\

Stevens c(ref.
I
t
I
I
I

I
I
I
I

I
I
I
I
I
I

X

x \

Gd Tb Dy

CLo
o
lh

t$

Ch

th
CLI
L

Yb Lu

l
I
I

I
I
I
I

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I

I

I
I
I
I
I

I
I
I
I
I
I

I

FIG. 2. Variation of the calculated and experimental
values of the resistivity anisotropy coefficient a [see Eq.
(4.5}]for heavy rare-earth impurities in Ag.
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O
th

cf

non-S-state ions, is much smaller than the aniso-
tropic magnetoresistance and therefore difficult to
extract accurately from experimental data. For
these reasons we have left out the quantitative in-

terpretation of the isotropic part of the magne-
toresistance of alloys containing non-S-state impur-
ities.

In contrast, the interpretation of the isotropic
magnetoresistance of Ag:Gd and Au:Gd alloys
does not raise such difficulties. Its theoretical ex-

pression is written as [see Eqs. (3.9), (3.12), (3.19),
and (3.21)]:

1SO

= —y((~ ))'
po

FIG. 3. Variation of the calculated and experimental
values of the resistivity anisotropy coefficient a [see Eq.
(4.S)] for heavy rare-earth impurities in Au.

where

Pi &&z—)
I

coth ——a a/2
2 sjnh a/2

(4 6)

order of magnitude. This has been discussed in de-
tail by Ousset et al. For crystal-field-split 4f lev-

els there are negative and positive contributions to
p'" that vary differently as a function of the field.
The combination of these terms can explain that
the experimental isotropic magnetoresistance is
generally negative at low field and becomes posi-
tive above about 100 kG. However, Ousset et al.
have been unable to obtain a quantitative fit of
their experimental curves by using our theoretical
expressions with the phase shifts of Table II. This
is probably because the total effect is the sum of
nearly canceling terms, so that small errors in the
coefficients of these terms can significantly change
the final result. This may also be due to the weak-
ness of the isotropic magnetoresistance which, for

gJPaII
k T

and P,y are given by Eqs. (3.23) and (3.24).
The experimental results show a negative mag-

netoresistance in excellent agreement with the
preceding expression. %hen one uses the phase
shifts derived above (see Table II) and calculates p
and y from Eqs. (3.23) and (3.24), the best agree-
ment is obtained by taking a value of Ao reduced
with respect to its atomic value by a factor of 2.12
for Ag:Gd and 2.56 for Au:Gd.

Finally, we apply the model to the Hall effect.
The theoretical expression of the contribution from
skew scattering to the Hall effect at high tempera-
tures can be written as [see Eq. (3.29)]:

TABLE V. Effective values of the 4f Sd parameters giv-ing the best fit for the magneto-
transport properties and the corresponding atomic values. The atomic values are derived
from atomic spectra; see Refs. 20 and 21. As the 4f Sd integrals for O'-ll ious with one Sd
and one 6s outer electrons do not change significantly throughout the heavy R series, me

take the values for Dy II (4f9Sd 6s configuration) (Ref. 21).

Ao

Al
A2

A3

A4

A5

Atomic value
(cm-')

1719
58.8
96.97

1890
880

1444

Ag:A
Effective value

(cm ')

811.8
35.1

57.6
1122.3
522.9
857.7

Atomic value
(cm ')

1719
58.8
96.97

1890
880

1444

Au:A'

Effective value
(cm ')

672
33.2
37.9

834.74
388.6
637.7
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E
Pxy = [a~gq(2 g—g)J(J+ 1)
Po

+a~J(gJ —1)J(J+I)]—,H
T ' (4.7)

where the two terms in the square brackets arise
from 4f-5d orbital exchange and spin exchange to-
gether with spin-orbit splitting of the 5d VBS.
The expressions for a& and n2 are given by Eqs.
(3.30) and (3.31). According to Fert and Frieder-
ich, the experimental results throughout the A
series can be accounted for by Eq. (4.7) with

and

a 1
——0.43 X 10 K/G,

a2 ———1.57X10 s K/G for Ag:A,

2
3 jeff+—

2
sin g, cosrf,

4 g2 2g 2g
(4.8)

0, 1
——0.34 X 10 K/G,

&2= —2-26X 10 K/G for Au:A .

Good agreement, for each alloy system, is obtained

by inserting in Eqs. (3.30) and (3.31) the values of
the phase shifts determined above (see Table II),
the values of /(0 already used in the interpretation
of the magnetoresistance, and a value of A I re-
duced with respect to its atomic value by nearly
the same proportion as Ao. The experimental and
calculated values of nl and u2 are compared in
Table III and the effective and atomic values of Ao
and A 1 are listed in Table V.

In summary, our theoretical model allows us to
consistently interpret a large number of transport
data: residual resistivity, thermoelectric power,
isotropic magnetoresistance of alloys with Gd, an-

isotropic magnetoresistance of alloys with non-S-
state impurities, and the spin and orbital terms of
the skew scattering contribution to the Hall effect.
Good agreement is obtained by assuming that the
4f 5d Slater-type in-tegrals are reduced with respect
to their atomic values by a factor of about 2. This
reduction results from the wider radial extension of
the 5d wave functions in the VBS relative to the 4f
wave function. We also find that a relatively small
spin-orbit splitting of the 5d VBS explains the ex-
perimental observation that alloys with Gd exhibit
a significant skew scattering but no measurable an-
isotropy of the resistivity. If one uses the relation

3 ~cff ' 2
g3/2 7f ]/2 — sin

2

our result on (q3/2 gl/2) corresponds to

A,,ff-0.216 in Ag,

A,,ff-0.64 in Au .

These effective values of the spin-orbit constant of
the 5d electrons are larger than the atomic ones, as
expected by the theory of Yafet. The enhance-
ment factor of A, appears to be about 2 in Ag host.
In Au it should be about 6, which is surprisingly
large. This could be due to the additional effect of
the spin-orbit coupling of the Au host.

In a previous publication, a first version of our
model was presented without spin-orbit splitting of
the VBS. The introduction of the spin-orbit split-
ting in the present model allows us to account for
the spin component of the skew scattering, the a2
term. Also the general agreement with experiment
is better. In particular, in the previous model, it
was necessary to reduce the 4f 5d excha-nge in-

tegrals with respect to their atomic values but not
the direct integrals. In the present model all the
4f-5d integrals have to be reduced in the same

way, which seems more reasonable. Also, as we
shall see in the next paragraph, the present model
gives also a better interpretation of the EPR data.

In the Appendix we develop another version of
our model with spin-orbit splitting but without
crystal-field splitting. The agreement with experi-
ment is definitely worse which justifies a posteriori
our model with the large crystal-field splitting, i.e.,
t2z only VBS.

B. Electron paramagnetic resonance

We have calculated hH/b, T and the g shift by
using in Eqs. (3.41) and (3.48) the values of the
phase shifts, VBS width, and 4f Sd coefficients-
determined from the transport properties. The cal-
culated values are listed in Table VI together with
the experimental values for those alloys for which
experimental data exist, except Au:Yb for which
additional effects coming from covalent mixing
should be taken into account. It turns out that
the calculated values of AH/hT, and to a lesser
extent those of Ag, are too small. These results in-

dicate that the 5d VBS is not sufficient to account
for the magntiudes observed experimentally and
that another contribution is present. In fact, this
model only takes into account the exchange
scattering in the 1=2 channel and ignore any ex-
change scattering in other channels, in particular,
in the l=0 channel. We will now show that add-
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TABLE VI. Experimental and calculated EPR linewidths and g shifts. The d contributions have been calculated
with the parameters derived from the magnetotransport properties, and the s contributions with J,=0.075 eV.

AH
hT
G/K

bT
G/K

AH
AT

G/K

hH
hT
G/K (~g)~ (~g), ~ ~g ~expt

Au:Gd

Au:Er

Ag:Er

Ag:Dy

Ag:Gd

"'Reference 26.
Reference 27.

'Reference 28.
Reference 29.

'Reference 30.
Reference 31.

~Reference 32.

2.49

0.37

3.69

9.62

2.96

1.12

1.12

2.8

2.96

5.45

1.49

4.81

12.42

13.96

7+2'

2.7+0.05'
2d

10.5+1.5'
7+1'

18.5+2~
23+5'
19+7'

0.023

0.033

0.056

0.085

0.04

0.011

0.013

0.013

0.021

0.011

0.034

0.046

0.069

0.106

0.051

0.05+0.01'
0.045b

Qd

0.05+0.4'

0.07+0.05
0.08+0.01'

ing and 1=0 exchange scattering allows us to im-

prove the agreement with EPR data but does not
significantly alter the agreement already found for
the transport data.

We assume an additional exchange interaction of
the form

ISO

= ——[m.(gJ —I )J,n (EF)]
po po

X sin rlocos go((Jz))
4po

H, =J, N 's S5(r) . (4 9) + —,(( J 8'J)~ 0—( J 8'J)H)

2
vrgks (gJ —1)J,n (EF)

(4.10)

The contribution to the g shift is

(b,g), =g J,n (EF )
gJ

(4.1 I)

Finally, the isotropic spin exchange H, contributes
to the isotropic magnetoresistance but not to the
anisotropic magnetoresistance or to the Hall effect.
A straightforward calculation gives us the contri-
bution to the isotropic magnetoresistance as

There is no interference between exchange scatter-
ing in the I=O and l=2 channels so that H„Eq.
(4.9), provides an independent contribution to
hH/hT. For a doublet ground state with

gyromagnetic factor g, this contribution is given by
the classical expression

(4.12)

By taking a value of J,=0.075 (Ref. 24) and add-

ing the s and d contributions, we obtain for
AH/hT and Ag good agreement with the experi-
mental results; see Table VI. The s and d contri-
butions are of the same order of magnitude. We
have also calculated the s contribution to hp'", Eq.
(4.12), and find it is small; about 10' of the d
contribution, and therefore it is not significant for
the transport properties.

We conclude that the contribution from s ex-
change scattering can be neglected for the magne-
totransport properties but is significant for the
EPR properties. In our analysis about one-half of
the linewidth arises from the s contribution.
Another difference between EPR and magneto-
transport is that the EPR is less sensitive to the
anisotropy of the k finteraction. Whereas the-an-
isotropy is essential to explain some magnetotrans-
port properties, e.g., the anisotropy of the resistivi-
ty results from quadrupole scattering, the term a&
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of the Hall effect from orbital exchange and the
term az from the spin-orbit coupling of the d elec-

trons, the EPR depends mainly on the isotropic
parts (s and d) of the k-f exchange interaction.
For example, we find that the contribution from
orbital exchange to (b,H/b, T)d for Dy or Er im-

purities does not exceed 30% of the contribution
from spin exchange.

As discussed in the Appendix, we also tried to
interpret the EPR data within a 5d VBS model
without crystal-field splitting of the d states.
Again we fix the phase shifts and the 4f 5d-
parameters to fit the magnetotransport data and
then calculate (hH/hT)~ and (bg)d with these
values of the parameters. We find that, for all the
alloys, (hH/b, T)z is smaller than the t2s VBS
model values and thus much smaller than the ex-
perimental values. By using the model of Huang
Liu et al. , which is similar to the 5d VBS model
but without spin-orbit coupling, ' and the 4f 5d-
parameters derived from magnetotransport data
one also obtains values of (b,H/b, T)d much smaller
than the experimental ones. This gives us an addi-
tional reason to prefer the t2g VBS model.

V. DISCUSSION OF RESULTS AND
CONCLUSIONS

We have found that the model for the local-
moment —conduction-electron interaction based on
a virtual bound state description for the rare-
earth's outer Sd electron and on all components of
the 4f-Sd Coulomb interaction is able to provide a
consistent description of a large amount of trans-

port and resonance data. In the present analysis
we included the spin-orbit coupling of the conduc-
tion electrons so that the model can account for
the spin contribution to the extraordinary Hall ef-
fect a2, which is most evident for Gd + as the or-
bital contribution u~ is zero for S-state ions. We
are able to obtain good fits to all the data by
choosing similar values of the screening charges
and 4f 5d interaction par-ameters for the silver-

and gold-based alloys, by using the linewidth 6 of
the VBS in silver found from optical data (5=0.45
eV) and by adjusting b, for gold-based alloys to
give the correct magnitude of the thermoelectric
power. This leads to a larger value of the
linewidth (b, =0.6 eV) in gold, which also provides
good agreement for all data depending on A. It is
generally admitted that the d VBS of a transition-
metal or rare-earth impurity in gold should be re-

pelled upwards by the presence of the 5d level of
Au close to the Fermi level. Our results indicate
that the Sd VBS of rare-earth impurities in gold is
not only repelled but also broadened (stronger mix-

ing than in silver), so that in toto the VBS occu-
pancy is not very different in gold and silver. The
stronger mixing in gold can be explained by the
strong d character of the conduction band at the
Fermi level, which is also related to the proximity
of the 5d level of gold to the Fermi level.

Of the two models used in our analysis the one
with the crystal-field-split 5d tzg VBS produced a
slightly better fit to the transport properties than
the full Sd VBS scheme. However, at least for the
silver-based alloys, the clear advantage of the
crystal-field-split VBS is that the spin-orbit cou-
pling parameter A, -=0.22 eV is much closer to the
atomic value for 5d electrons. For the gold-based
alloys the parameter A, in both schemes is much
larger than the atomic 5d value, albeit the A, for
the 5d-tzg VBS is closer to X5d. This increase may
be due to the additional contribution to A, from the
host conduction electrons in gold. Another reason
for our preference of the crystal-field-split VBS is
that it allows a better interpretation of the EPR
data.

The major improvement over previous analyses
of the transport and EPR data for rare-earth im-

purities is that compared to their atomic values all

the 4f 5d interactio-n parameters need about the
same reduction factor (1.9 to 2.5) to fit all the
data. This reduction for impurities in metals is
due to the differential expansions of the 5d orbital
relative to the 4f shell. It arises from the screen-

ing by the conduction electrons of the nuclear
charge. The screening by conduction electrons is
more effective for the Sd electrons and therefore
this orbital expands more in a metal than the 4f
shell.

The reason for the uniformity in the reduction
factor is only partially due to our inclusion of the
spin-orbit coupling and the p-wave phase shift of
the conduction electrons. It is mainly due to our
using new spectroscopic data to determine the
atomic values of the 4f Sd interaction par-ameters.
From our analysis we find that for non-S-state ions
the multipole, e.g. , quadrupole, part of the k-f in-

teraction A3, is comparable in size to the bilinear
spin interaction AD. For the conduction electrons
to perceive the multipole components of this in-

teraction it is necessary to consider their resonant
mixing with the rare-earth impurities s 5d elec-
trons, i.e., the virtual bound state. Therefore those
early analyses which neglected the higher-rank
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components of the k fi-nteraction and the VBS
character of the conduction electrons about the im-

purity (considering only isotropic spin exchange be-
tween the local moment and conduction electron in
plane-wave states) are incomplete.

For Gd impurities a small anisotropy on the k f-
interaction still exists due to the spin-orbit splitting
of the Sd VBS. We find that this splitting is rela-
tively small so that the anisotropy effects depend-.
ing linearly on A, , e.g., the extraordinary Hall ef-
fect, are larger than higher-order terms, e.g., the
anisotropy of the resistivity. Finally, the previous
discrepancies between transport and EPR proper-
ties based on the VBS model have been resolved by
our adding a necessary factor of 5 reduction to the
previously calculated linewidth.

Aside from providing a unified description of
diverse physical properties of rare-earth local mo-
ments in metals, our study will be useful in the fu-
ture in at least two areas. First in estimating the
crystal-field splitting of S state ions due to the
simultaneous effects on outer electrons of the

crystal-field, spin-orbit coupling and the resonant
mixing with conduction electrons. Second, when
one considers two rare-earths, the resonant mixing
of the outer d electrons with the conduction elec-
trons of the host metal couples the ions. By in-
cluding the higher-rank multipole 4f Sd in-terac-

tions one can find the magnitude of the multipolar
pair interactions mediated by the conduction elec-
trons.

ACKNOWLEDGMENTS

We want to thank Professor N. L. Huang-Liu
and Professor R. L. Orbach for valuable communi-
cations which led to our resolving the numerical
differences in our expressions for the linewidths.
This work was supported in part by the National
Science Foundation under Grant No. DMR78-
25008 and the Centre National de la Recherche
Scientifique under the United States —France
Cooperative Science Program.

APPENDIX: EVALUATION OF THE MAGNETOTRANSPORT
COEFFICIENTS FOR A 5d STATE WITH SPIN-ORBIT COUPLING

To test the validity of the assumption that only t2s states are occupied, one can consider a different limit,
namely to take into account the full Sd level with spin-orbit coupling. In this case the states are given by

5/2

~

k +-o.)= g QCJ~ (k) ~gmj),
j=3/2 m.J

where

(d
i Vp ik)

(Al)

1 3 5
and j =l+ —,= —,, —, for a d electron.

Consequently the T matrix elements are given by
T

(0) 4 0~ l'goT k -„,~, = —— e singo+5 e sing&
4m

X g &) (&k)&) (&p )

+ g e 'sinrij g' (2—,m 'a' j~mj. ) (j mj ~

2
2 m 0 ) F2~(Q j ) F2~ (Q k, )

j m
m'

(A2)

where the prime over the summation symbol denotes

mj ——m+0,
I t

mj ——m +o. ,
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(jm, ~

2 —,mo&=( —1)
+ J3/2j+1

1

2
2

—m m crJ

=5j 5/2 ( —, +2omj) —5j 3/2 ( —,—2omj)
i/2

(I) 4
dT k k

~ ~
—— g exp[i(gj+rjj )]sinrjjsinqj

JJ-

X g'(22m'o'Ij'mj' &&j'mj'
I
v ljmj &&jmj I22mo&1'2 (11k )1'2~(11k )

(A3)

(A4)

where

mJ ——m +0. ,

I I I
mJ

——m +cr,

dT~&' z, , —— g exP[i(qz+nj )]sinqzsin21j

kyar-+

k 'cr'

where

)& g'&2am'o'Ij'mz &&j'mj
I
vGvljmj&&jmj I

2mo

m'

(A5)

mJ
——m +0. ,

I
mJ m +0

and (j'mj
~

vG v
~ jmj & is given by Eq. (2.19).

The matrix element of the perturbation v is the following:

(j'm,
~

v
~
jm; &

= m, (Jz&.Ao+o 4 6
A 1 +1 ~A2+2 Sj,5/25j', 5/2

Ap&p 21
A 1 +1+ ~A 2 +2 l)j,3/2~ i', 3/2

1/2
Ap&'p A1%1

+ Jz —m.
4 J 5 5

21

4+5 A2w2 sj~j

+ (01'1 &

2 35
3mJ 4

3 7 1

2v5 v5 3+5A3%3 ~ A4%4+ ~ A5%5 5j 5/25j 5/2

5+ m ——
J 4

21 3 7

2&5 &5~ A3+3+ r A4+4 r A5+5 ~J,3/2~J', 3/2

25+ mJ —mj

' 1/2
3 3 4

A3 H3+ A49'4 — A g %5 5j~j3/5 3/5 33/5
(A6)
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By using these expressions and the Wigner-Eckart theorem (to obtain the elements with mj Qmj), we ob-
tain expressions for the resistivity similar to those of Sec. III. In particular, the expressions for the magne-
totransport properties we are going to compare with experimental data are as follows:

1. Impurity Resistivity

po
———[sin (7)o—

71 I)+sin (7I5/2 —7)I)+sin (713/2 7)I)+2sin 7)5/2+sin q3/2],2

where D is given by Eq. (3.6).

(A7)

2. Hall Resistivity

E

=[aIgj(2 gj)J(J—y 1)+a2gj(gJ 1)J(J—+1)]—,
po T '

where

7DpBA1S1091 2 9
CX1 = [2sin 7)5/2sln(2715/2 —7/I)+ 7 sill 713/2sin(27)3/2 711)

2ShkBpp

(A8)

+ —,sin713/2sin7I5/2sin(715/2+7)3/2 7/1)] (A9)

7DpBc4 psing ~ 2 3
CX2 = [ sin 715/2sin(27)5/2 —711)——,sin 7)3/2sin(2713/2 711)

506kBpp

7 sln7)3/2»n7)5/2»n(715/2+ 7/3/2 711)1 (Alo)

3. Anisotropic Magnetoresistivity

P~~ PI ((J2 ) )
J(J+1)

Po
(Al 1)

where

633/6D I
a = [ 884sin 7)5/2[

—sin715/2cos715/2+ —sinqlcos(27)5/2 —7) I)]
200hpp

10

2 2 2 1+ I 86sln 7/3/2[ I sing/3/2cosY/3/2+ )~ sln7)leos(27)3/2 —7)I)]

2 2 2+85sln7I3/2sln715/2[
&

sln7)3/2cos715/2+ sln7I5/2cos713/2+ sl ) nc7sI( o13 7+/Y2/5 /721] }]I

(A12)

3 I
84 , %3/I3 ———34—%4——,/I 5 H5,

4
B5——333&3+3A4&4 —

3 A5 H5,
2]

B6 ~3~ +3~ + 7~5+5
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For Gd we must include higher-order terms in the expression of
p~~

—pl since this first contribution is
zero, and we obtain

P)(
—P~

Gd

3v 6DAO

806 Pp

x ( J w J )( —,Sill g5/2+sin g3/2+8 sill g3/zsin g5/2)
7 ~ 4 ~ 4 2 2

+—„[(Jz ) ——,J(J+1)]I8 sin"g5/zcos2g5/2+4sin gl/zcos2g3/z

—8 Slng3/zsln g5/zcos(g3/2+ g5/2) —2 sings/zsin g3/zcos(g3/2+ g5/2)

+35[sill g3/zslll g5/zcos2g3/2+sin 'g3/zslllY/5/zcos('g3/2+'g5/2)]

, [sin g5/zsin g3/zcos2g5/z +sin gs/zslng3/zcos( g3/2+g5/2)]]

28D I(Jz) I sill g5/2[ 7 slng5/zcosg5/2+ )() sin'gicos(2g5/2 —gi)1
25Pp

+sin g3/2[
—'
, sing 3/zcosg3/2+ —,'0 sing Icos(2g3/z —g I ) 1

—sing3/zsing5/2[ —,sing3/zcos'g5/2+ —,sing5/zcosg3/z

1+ —, sing icos(g3/2+ g5/2 g I ) ] I

X j 7 sin g5/z[cosg5/zsing5/z slngicos(2g5/2 —gi)]

—2 Sill g3/2[slng3/zcosg3/2 —
5 Slngicos(2g3/2 —gi)]

—8 Slng3/zslng5/2[slng5/zcosg3/2+Slng3/zcosg5/2 —
5 S1117IICOS('g5/2+'gl/2 —'gl)] )

(A13)

TABLE VII. Phase shifts giving the best agreement with experimental results (see Table

X) and corresponding screening charges.

Ag:A

ZI

Au&
ZI

1.56

0.04

0.52

0.14

0.99
0.08

0.66

0.27

1.56

0.42

0.99
0.25

0.53

0.23
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TABLE VIII. Effective values of the 4f-Sd parameters giving the best fit for the magne-

totransport properties compared with corresponding atomic values.

Ap

A)
A2

A3

A4

Ag

Ag&
Effective value

(cm-')

1078.2
54.9
87.3

1475
686.7

1126.8

Au&
Effective value

(cm-')

987.6
27.6
79.96

986.4
459.6
753.6

Atomic value
(cm-')

1719
58.8
96.97

1890
880

1444

4. Isotropic Magnetoresistiuity

1SO lid 2
Qp D~~ p ~ —+ ~ ~ 35 4 5 . 4 2 2

( ( J p' J )H
—( J ~ 8 J )o)( 4 sin t)&~2+ —,sin t)3~2+ 20 sin t)3~2sin rjs~2)

Po Gd 50~'po

DA(J)
I 7sin r)»z[c—os'&&2sinr)5~2 ——,sint)icos(2t)5~2 —ri&)]

1006 pp

—8sinrI3/2sinr15~2[sinrisy2cos'g3g2+sln713y2cost)sy2 —
5

sin'g, cos('g5)2+ri3y2 t)1)]I

(A14)

By following the procedure described in Sec. IV we obtain a set of parameters t)'s and A's (see Tables VII
and VIII) which give us the results shown in Tables IX and X.

For the EPR properties we notice that by using Eqs. (3.40), (3.34), and the expression derived above for
the resistivity, we obtain for the linewidth (d contribution),

AH keg -2. 4 2 ~ 4 2 2 2
2 2

(35B
~
sin rIs~2+ 10B3sin r13~2+80B2sin t)3~2sin g&&2),kT ~peak gJ

where

(A15)

TABLE IX. Compared experimental and calculated transport properties of Ag:A and Au:A alloys. The first five

lines have been calculated with the phase shifts of Table VII and, f'or the TEP, with the values of 6 indicated in the

text. The skew scattering coefficients a& and a2 have been calculated with the same parameters and the values of A p

and A I given in Table VIII.

pp (pQ cm/at. %%uo)

A =5/T {V/K )

Ap

a~
]/2 sat

Calc.

6.5
1.54 X 10

—3.62

Ag host
Expt.

5.2 —6
1.79 X 10

—3.65

Calc.

5.46
0.72 X 10

—6.75

Au host
Expt.

7
1.1X10 '

—6.647

ap
QplSO

pp
(K/6) —1.29X10—' -1.28 X 10-' —3.5X10-' —3 57X10

p)~
—pi

QplSO

a) (K/6)
a, (K/G)

. Sat

. Gd

0.04

0.437 X 10
-1.58 X 10-'

0.04

0.43 X10-'
—1.57X10 '

0.05

0.327X10 '
—2.21 X 10

0.04

0.34 X 10-'
—2.26 X 10
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TABLE X. Calculated and experimental values of the quadrupole scattering coefficient a
for a series of Ag:A~ and Au:8' alloys. The experimental concentrations are also listed.

Ag:Dy
Ag:Ho
Ag:Er
Ag:Tm

c (at. %)

1.06
0.96
1.95
2

a )& 103

Calculated

0.84
0.02

—0.95
—2.67

a )&10
Experiment

0.96
0.38

—1.25
—2.55

Au: Tb
Au:Dy
Au:Ho
Au:Er
Au: Tm
Au: Yb

0.98
1.4
1

0.91
0.86
1.5

0.51
0.28
0.06

—0.20
—0.94
—2.94

1.02
0.51
0.19

—0.23
—1.36
—2.31

AQHQ 4 6
B)—— + —,A) H)+

5 ' v'S

Ap&P A)H)
B2 ——

5 5

21

4&5
A3%3,

Ao+o 21
B3—— ——,A ) H)+ A3%3 .

5 V5

For the g shift, using Eqs. (3.44), (3.45), and (3.47), we obtain

~0(gJ i)g 21 . 2 4 . p 8bg= ( —,sin q&/z ——,sin q3/2+ —,sinful&/zsinq3/2)
KgJ

A)(2 —gJ)g, 4 q ~4 2 8

( —,sin g5/z+ —, sin q3/p —,sing~/2sing3/p) (A16)

The values obtained for these two quantities when we use the parameters of Tables VII and VIII are given
in Table XI.

TABLE XI. Experimental and calculated EPR linewidths and g shifts. The d contributions have been calculated
with the parameters derived from the magnetotransport properties, and the s contributions with J,=0.075 eV.

Au:Gd

hH
hT
G/K

1.87

hH
hT
G/K

2.96

hH
hT
G/K

4.83

hH
hT
G/K

7+2' 0.0003 0.011

(~g)t, t

0.0113

( ~g )expt

0.05+0.1'
0.045b

Au:Er

Ag:Er

Ag:Dy

Ag:Gd

0.48

0.86

4.4

8.4

1.12

1.12

2.8

2.96

1.6

1.98

7.2

11.36

2.7+0.05'
2d

10.5+ 1.5'
7+1'

18.5+2~
23+5'
19+7'

0.008

0.029

0.025

—0.0004

0.013

0.013

0.021

0.011

0.021

0.042

0.046

0.0106

Qd

0.05+0.04'
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