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Interchain interaction and fractionally charged solitons
in a commensurate charge-density-wave system
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We have studied the effect of interchain interaction on thermally excited solitons in a charge-
density wave for a Peierls system of commensurability 3. In such a system solitons with charges
+2e/3 are expected. It is shown that the interchain coupling in some cases will generate soli-
tons with lower and higher charge than 2e/3. The effect of discreteness is taken into account
and gives rise to chaotic deformed solitons as the interchain coupling increases. The model may
be applied to tetrathiafulvalene tetracyanoquinodimethane (TTF-TCNQ) under 19-kbar pres-
sure.

There has been considerable interest in studying
elementary nonlinear excitations (solitons) in coupled
electron-phonon models for one-dimensional conduc-
tors, such as polyacetylene. ' In particular, it has
been shown' that solitons in systems near commen-
surability carry charges given by fractions of the ele-
mentary charge e. Attention has been drawn to the
analogy with relativistic field theory models, where
states with fractional fermion charge also appear. 4

In this Communication we investigate numerically
fractionally charged solitons in a phenomenological
charge-density-wave (CDW) model for a Peierls sys-
tem of commensurability 3. In such system it is ex-
pected that the solitons (or "P particles" ) carry
charges + 2e/3. ' However, we shall here also take
into account the Coulomb interaction between neighbor-

ing chains. We find situations where this coupling
generates two types of solitons with different charges.
With increase of the interaction, which corresponds
to lowering the temperature, the charges of the soli-
tons change: The charge of one type of solitons in-
creases, the charge of another type decreases. In this
process the charges take real values less than 2e.
When the soliton width is comparable to the lattice
spacing, the discreteness will influence the solitons
and deform them in a "chaotic" way. The model
may in some temperature intervals be applicable to
the organic conductor tetrathiafulvalene tetracyano-
quinodimethane (TTF-TCNQ), which under 19-kbar
pressure has commensurability 3 in the b direction. '

The charge-density wave is of the form
p(x) =&exp[i(qpx+$(x)]. We assume that the
amplitude P does not depend on x, but we allow for
local deformations in the phase P. qp =2kF ls the
wave vector for the CDW and the associated Peierls
distortion. Due to the commensurability of 3 the

CDW has a threefold degenera-te ground state, and the
effective commensurability potential for the phase P
is taken to be of the form

V, (Q) = Vp(1 —cos3$) ( Vp & 0)

with an effective coupling constant Vo proportional to
Q3

The physical system behind the model is a transfer
salt with two different types of chains. We assume
that the sublattice of one chain type orders first and
study the CDW with phase g on one of the chains of
the other type, as it starts to order.

For TTF-TCNQ one would expect that there is a
coupling between p and the ordering period in the a
direction perpendicular to the chains, as found at
normal pressure. From experiments at 19 kbar it is
known that this period is one lattice unit at low tem-
peratures. ' In that case the neighboring CDW's have
the same phase q (Fig. 1). The dominating contribu-
tion to the interchain coupling is the Coulomb in-
teraction, which is restricted to neighboring chains.
Coulomb interaction tends to bring neighboring
CDW's in antiphase

V~„(P) = 2Upcos($ —g) (Up & 0) (2)

Up is an effective interchain coupling proportional to
V;„(g) has periodicity 2m in @. We assume that

the phase q is at a lock-in (commensurate) value 0,
27r/3, 4m/3 and express the potentials in the variable

V($) = Vp(1 —cos3@) + 2Upcos@ (3)

The potential9 (3) is symmetric around P = m, but
becomes asymmetric when q is not commensurate.
In such cases the solitons have integer charges +2e. '0

26 1086 %~982 The American Physical Society



26 RAPID COMMUNICATIONS 1087

F

Q
b

~ ~0

I—I

a4rr/q.

~ ~ ~ ~

~ ~

' ~ ~ ~ ~ ~

~ y ~ ty
~ te

'«hr/q.
'

FIG. 1. Soliton excitation on a period three CDW with phase @. The CDW interacts with the neighboring CDW s (phase q).
lp& and lg~ are the widths of the type-I and -II solitons; 4p& and b, p&& are their phase shifts. F and 0 refer to the different chains

in TTF-TCNQ.

The discreteness of the lattice is taken into account
following Aubry" and Bak and Pokrovsky. " By de-
fining P„as the CDW phase on the nth site of the
chain and including the local strain energy, the poten-
tial energy on one chain becomes

H = X A. (rtr„r —P„)'+ Vrr(1 —cos3rtr„)

with larger phase shift (type II). The physical picture
of the kinks is shown schematically on Fig. 1. The
kinks stretch (antikinks contract) the CDW over a
finite number of lattice sites and may be considered
as defects in the CDW. In a dynamical description
these charged kinks account for the conductivity
when sliding of the CDW is suppressed by commen-
surability pinning.

Figure 2 shows the potential and a phase-space
+2Urrcosrtr„ (4)

The static excitations in r/r„("r/r„particles"') which
minimize the energy are found by differentiating (4)
with respect to P„

0.2-

0.1
W„+r ——W„+A sin3$„8sing—„,
4.+r =4.+ W.+r, (5)

0

where A = 3 Vrr/2lr. , 8 = Urr/)r and the phase differ-
ence is defined by the last equation. These equations
are a two-dimensional discrete area-preserving map-
ping depending on two parameters A and 8, which
are proportional to the coupling constants Vp and Up,
respectively.

We investigate the rtr„excitations within a "phase-
space" plot (Q„, W„), which can be generated by
iterations of the mapping (5) with different initial
points. In the continuum limit (5) turns into the
equation err =A sin3$ —8 sing, which is the triple
sine-Gordon equation without a kinetic term. The
triple sine-Gordon equation is not a integrable sys-
tem, but numerical investigations have shown the ex-
istence of two different solitons (kinks). '3

The potential V(rtr) = Vrr(1 —cos3$) +2Urrcosr/r
has extrema for rt =0, n, and

r 1/2
3 Up

rtr = arcsin + —— (mod2m )
4 6Vp

When there is no interchain coupling (Urr ——0) the
mapping (5) will connect the ground states
(0, 2m/3, 4w/3) by solitons of the same type with

phase shift 2n/3. However, when the interchain cou-
pling is nonzero the ground-state degeneracy be-
comes twofold and two types of solitons appear, a
usual sine-Gordon kink (type I) and another kink
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FIG. 2. (a): The pinning potential fEq. (3)] and (b):
phase-space plot (P„,8'„) for A =0.08 and 8 =0.025. The
relative strength of the coupling constants is Urr/ Vrr =0.46.
The curves between the ground states (G& and G2) consist
of discrete points and are generated by many iterations. A
soliton (or antisoliton) is created by following this iteration
from one ground state to the other. These curves are weak-
ly chaotic. The other curves are invariant, regular trajec-,
tories. Each curve is generated from one initial point.
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plot (mod2m) for 2 = 0.08 and B = 0.025 with

Uc/ Ve= 0.46. Clearly there are two types of kinks
running between the ground states (Gt and Gq) in
the upper half of the phase space, whereas the corre-
sponding antikinks are in the lower part. The kinks
are generated by discrete points, and their width are
numerically found to be lp~- 20 lattice spacings and

lp~~ 24, which are of the order of magnitude es-
timated for TTF-TCNQ. ' The curves in the phase
space near the ground states describe soliton lattices,
which on an infinite chain have infinite excitation en-
ergy.

The charges of the solitons are calculated as fol-
lows. The charge transfer p between two different
chains determines the period A. &k of the CDW,F

)teak
——2b/p, and the density of condensed electrons

in the CDW, n, = p/b Cha.nges in the phase P„ im-

ply a local modulation in n„which in the continuum
limit is given by' 5n, (x) =n, qe'')7„$(x). The charge
carried by a soliton is obtained by integration over
the phase gradient

e"=—en, qr)' J '7„gdx = —en, qt)'hQ

Equation (6) determines the extrema of the poten-
tial, and the phase shift A$ between the ground
states is easily obtained as a function of Us/Vs. The
charges of the solitons on Fig. 2 are for type I

et" /e =-0.61. . .

and for type II

et)/e = —1.38. . .

The corresponding antisolitons have charges of the
opposite sign. With further increase of interchain
coupling, which corresponds to lowering the ternpera-
ture, the type-I and -II solitons exhibit shorter and
longer phase shift, respectively. That is, the charges
pass continuously all real values; type I gets lower
charge, type II higher charge (2e is the highest
value).

Figure 3 shows a phase-space plot for Ut)/ Vc= 3.
The charges of the solitons are in this case calculated
to et'/e = —3, et't/e =—1

s
. The width of the soli-

tons has now decreased to lp~- 14 and lpga 9 lattice
spacings, and the effect of discreteness has indeed
become very pronounced. In both phase-space plots
(Figs. 2 and 3) the solitons are located in a chaotic
regime. However, whereas the chaotic regime of Fig.
2 is very small and almost invisible, it has clearly
broadened with increase of the interchain coupling
(Fig. 3). Physically, the chaotic regime indicates that
the lattice deforms the solitons, so that two soliton
excitations of the same type and width at different
places of the chain usually have different shapes.
Whereas the type-II soliton in Fig. 3 is very chaotic
the low-charged type-I soliton is still rather regular.
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FIG. 3. Phase-space plot (@„,8'„) for A =0.1 and
8 =0.2, with Uc/Vs=3. The curves between the ground
states has broadened compared to Fig. 2, and the solitons
show clear chaotic behavior. This chaotic regime is generat-
ed from one initial point.

This is because the width of the type-II soliton is
smaller than the width of the type-I soliton.

The strengths of the commensurability and inter-
chain couplings have not yet been calculated as a
function of temperature and pressure for TTF-
TCNQ. Probably the strength of the effective inter-
chain coupling used in Fig. 3 is overestimated. How-
ever, our goal is to describe qualitatively the effect of
interchain interaction and discreteness on the soli-
tons. The excitation energy is smaller for the low-
charged than for the high-charged soliton. Experi-
mentally one should therefore observe a net decrease
in the charge of the current carrying solitons, as the
temperature is lowered below the sublattice ordering
temperature.

In conclusion, we have shown that the interchain
coupling can affect the charges of soliton excitations
in the charge-density wave for a Peierls system of
commensurability 3. With increase of interchain in-
teraction the charges move continuously away from
the commensurate values + 2e/3 and + 4e/3.

After this work was completed we learned about an

unpublished work by M. J. Rice and J. Timonen' on
a continuum version of a model similar to the one
presented here. Their results are in agreement with
ours, but these authors also discuss situations in
which the interchain coupling will destroy the frac-
tionalization of charge, which corresponds to cases
where q does not have commensurate values. We
are grateful to J. Timonen for informing us about
this work. Also, we are indebted to Per Bak for sug-
gesting corrections to the original version of this
manuscript and to P. Cvitanovic and P. L. Christian-
sen for valuable discussions. This work has been
supported in part by the Danish Natural Science
Research Council.
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