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Stress dependence of the metal-insulator transition in doped semiconductors
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The single-particle energy bands are calculated for a lattice of donors in many-valley semicon-
ductors with a moderately strong central-cell potential using a pseudopotential constructed by the

method of polarized orbitals. The variation of the metal-insulator transition with uniaxial stress

is found to be in a direction opposite to that expected for effective-mass donors, as seen experi-

mentally in phosphorus-doped silicon and arsenic-doped germanium.

Doped semiconductors are unique among random
systems in that the metal-insulator (MI) transition in

shallow impurity bands can be "tuned" by applica-
tion of uniaxial stress readily available in the labora-

tory. This versatility arises from a strong coupling of
the impurity band to a uniaxial strain field, and al-

lows the study of the localization transition in a single
sample of impurity density, n, as the density at the
MI transition, n~~, is swept through it. ' Thus the
physical properties (e.g. , dc conductivity) of the sys-
tem near n~& can be explored in detail with greater
control than using different samples2 to vary n

through n~q.
Many calculations have recently been done of a

correlation-driven MI transition in a lattice of hydro-

genic atoms, based on the ideas of Mott, without
radical simplifying assumptions as, e.g. , in the Hub-
bard model. ' Effects of disorder emphasized by An-

derson, which would modify n~~ somewhat, are not
included. However, in a stress experiment, only the
donor wave functions (and their overlap) are altered
while the disorder is effectively held fixed; hence
these calculations may yield relatively accurate results
for the variation in n~& with stress. '0 In fact, for
effective-mass (em) donors in many-valley semicon-
ductors (e.g. , Ge:Sb) the same resuft is obtained" for
the ratio of n~~ at high stress and the stress-free
case, within both the Mott-Hubbard, and Anderson
pictures of the MI transition.

Despite this simplification, these calculations can-
not be readily applied to systems such as Si:P or
Ge:As —the predicted increase in n~y with uniaxial
stress" is the reverse of the experimental situa-
tion. '" This can be traced to the presence of a
moderately strong central-cell potential which re-
rnoves the degeneracy of the em ground state. "
Here we investigate the case of a large central-cell

splitting of the donor ground state, which persists
even at n = nM~ (Besides the. stress variation of n~~,

evidence for this comes from Raman measurements
on SI',.P and GeAs which exhibit the valley-orbit split-

ting for densities near, and even somewhat beyond

n~q. '4) We show that in this case, using the method

of polarized orbitals, "a calculation of the same de-
gree of sophistication as for hydrogenic donors is
possible. The variation of n~~ with uniaxial stress
comes out to be not only of the right sign, but of ap-
proximately the correct magnitude, for systems with
moderate central-cell effects. In light of recent exper-
iments, ' calculations are presented for phosphorus-
doped silicon; results for other donors in Si (or Ge)
with a nondegenerate ground state can be computed

similarly.
The idea, in brief, is as follows. Application of

uniaxial stress mixes the ground state of the isolated
donor with the somewhat more extended valley-orbit
split excited states. " This, in turn, causes both a
broadening of the occupied (D+, or hole) band, and
a lowering of the empty (D, or electron) band be-
cause of change in the effective potential due to the
occupied band. Both these effects (the latter being
the dominant) reduce n~&, which is signaled by cross-
ing of the D+ and D bands. '6

The envelope functions for the ground and excited
states are assumed to have a spherically symmetric
hydrogenic form with radii ag and a„respectively. '

Thus
'P ( r ) =f,(r ) $Qq( r )/A;

J

y, =f, (r) XAq Pq,
J

where qhj( r ) —exp(ik& r ), k~=+kox, +koy",
+ koi are the Bloch waves at the conduction-band
minima and fs(r) = (4ras3) ' 2exp( —r/as) and

f, (r) = (n a,') 't'exp( —r/a, ) are the ground- and
excited-state envelope functions, respectively. For
the two excited states of interest the vectors A are
A '= (1, 1, —1, —1, 0, 0)/2 and A = (1, 1, 1, 1 —2,
-2)/ 412.

A uniaxial stress leads to a strain Hamiltonian H,
with nonzero matrix elements':

and permutations for @+~ and P+„where 3h is the
deformation potential and ~„„the strain tensor, This
mixes the wave functions %"g and %", ; restricting one-
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self to this subspace, the total Hamiltonian matrix re-
lative to the ground state energy in the unstrained
crystal becomes

0 J3/s, et J3he2

H —Eel = J3be& Ep+43/2b e2 J3/2he) . (3)

J35eg 43/2het Ep ~3/2~&2

et= (e —e~)/J2 and e2 ——(e +a~ —2e„)/J6 are
the orthorhombic and tetragonal strain components
and Eo is the energy of the excited states in the un-
strained crystal relative to the ground state.

For small strains the ground-state wave function is

given by

We now come to the computation of the D band.
The D state, in the one-electron picture, is the
"outer" electron in a donor with two electrons. The
outer electron sees very little of the central cell; thus
the D state has the full valley degeneracy of 6. Be-
cause of this, as it hops from site to site it is unlikely

to encounter a donor with an inner electron possess-
ing the same spin and valley quantum number. Con-
sequently, the exchange repulsion may be ignored,
and the appropriate D bandwidth is that for a "fer-

romagnetic" configuration of the occupied donor lev-
els 6

The effective one-electron pseudopotential for the
D band V (r) is determined by adding to the Har-
tree term

Up(r) = JI d r'I Ws( r ) I2v( r, r )

the second-order shift in the energy of the inner elec-
tron(r );

U2(r) = —(qr Iv(H —E ) 'vIqr, )

where v( r, r ) = (2/I r —r I 2/r) i—s the perturba-
tion due to the outer electron ( r ).

By allowing for the virtual excitation of the inner
electron to a p state, this "polarized orbitals"
method" yields the asymptotically exact U(r) both
for r ~ and 0, and gives a binding energy for the
D ion within 0.01 Ry. Further, we find that it is

readily generalized to the many-valley finite central-
cell case, and for the wave function (4), the potential
U can be evaluated analytically. This is because (i)
the interaction v( r, r ), being a long-range one,
does not mix different valleys; and (ii) the intermedi-
ate p state in Eq. (6) has no amplitude at the impuri-

ty site. Consequently (H —Es) is effectively diago-
nal in valley space, despite the central-cell potential.
We thus obtain

with

U(r) =[(ps(e)I@s)I' us(r)+3(h'/Ep2) $e' u, (r)
i a 1

u(r) = —2e 2"(1+x)ap/r —x 4[9/2 —e 2"(9/2+9x+9x2+6x3+3x" +2x'/3)]

Here x = r/as for us and r/a, for u, ; a p is the em

Bohr radius and u is in em Rydbergs.
We compute the position of the D band by ap-

proximating the Wigner-Seitz cell of volume
n ' around each donor by a sphere [radius
rws= (3/4n n)' ] The tot. al potential is the sum of
U(r) due to the central and the neighboring donors.
For the latter, we take a uniform distribution of
donors outside rws, with density n, leading to a

potential V(r) = n f d'r' U( r —r ). The bottom
'ws

of the D band is then given by the energy of the
nodeless solution to the radial Schrodinger equation
in the potential [ U(r) + V (r) ] with the boundary
condition of zero derivative at rws.

Turning next to the D+ band, we note that a

moderately strong central cell leads to a marked
reduction in the bandwidth. This effect is similar to
the reduction of the exchange interaction between
donor pairs, ' and is due to the phase mismatch of
different Bloch waves at neighboring donor sites.
Specifically, for the wave function (1), the transfer

I

integral between sites a distance R= (X, Y, Z) apart is

given by

Tp(R) =
3

(coskpX+coskp Y+coskpZ) T&(R), (9)

where T~(R) = 2(1+8/as) exp( —8/as) is the
transfer integral for the envelope function fs in em
Rydbergs. ' The rapid oscillations of the cosine fac-
tors (on the scale of the lattice spacing) imply an

averaging of Tp(R) for even very small randomness

Consequently the bandwidth [~ I Tp(R) I
in a tight-

binding description] is reduced relative to the corre-
sponding hydrogenic case by a factor'

(I r (R) I &/&, (&)

= ( I coskpX + coskp Y + coskpZ I ) /3 0.33 . (10)

There is a further reduction, by a factor =0.75 due
to the antiferromagnetic arrangement of the donors
in the ground state. These reductions in band-

width, which carry through for strain-induced
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changes, imply that the variation in nMI with strain is
dominated by the D band for which there is neither
a phase mismatch dictated by the central cell, nor the
spin-flip scattering effect.

Since we are interested in only the energy gap
between the D+ and D bands, we incorporate diago-
nal shifts of the D+ band in the D band energy.
These include (a) a lowering of the energy to form a
hole by V(0) because the ionized donor left behind
polarizes the lattice, and (b) the lowering of the iso-
lated donor energy due to strain [SE= —3A (at+ e2)/
Ep to lowest order]. Then with the reduced bandwith
of the D+ band, we may use the change in transfer
integral to compute the relative broadening due to
strain (as in a tight-binding description), without af-
fecting results much. 2' For the wave function (4),
after averaging over the phase factors, this relative
broadening is given to quadratic order in e; by
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= 3(A/Ep) [ Tz(R)/T&(R) 1](tt+ a2), (11)

where Tg and T, are the transfer integrals for the
ground- and excited-state envelope functions.

The calculated energy bands near the MI transition
for Si:P are shown in Fig. 1 for various values of the
strain parameter e= (5/Ep)(e~+e2)'~'. The follow-
ing input parameters ' have been used: 1 Ry=31.3
meV, Ep 13.1 meV, a, =——ap=20 A, Of=0.82a„and

l

FIG. 1. The bottom of the electron (D ) and top of the
hole (D+) band for Si:P as a function of donor separation
(n ~ ). Inset; Region near n~& enlarged for different
values of strain (solid lines, ~ =0; dashed line, a =0.07;
dot-dashed line, e = 0.14).

n~l(e =0) =3.7 x 10'8 cm 3. (The tight-binding band
is for a simple cubic lattice; results for bcc and dia-
mond structures are virtually identical. 2') The
change in nM& is quadratic for small e, "and is easily
shown to be

Bn/n~i —— 3s2(R /r—)[1+(ED+/E )(R+/R )][1+(E+/E )(r~/r )] (12)

where 2E + is the D+ bandwidth and E is the iso-
lated D state energy relative to the bottom of the
D band discussed above. R+= (1/ED+)
x (BE y/Be2) and r+= (n~l/E +)(BE +/Bn). Us-

ing only relative values for the D+ bandwidth, we find
R /r =0.4, while R+/R = r+/r within 20%, so
Bn/nM, is not sensitive to the ratio E +/E . We
therefore use the nominal value (Fig. 1). Using the
elastic constant (c~, —ct2& = 1.026 && 10"dyn cm ' and
5 = 2.7 eV for Si, 2' Eq. (12) implies that for a 3%
change in nMI, a stress S = 2 kbar in a plane normal
to the (111)axis [e.g. , (110)] is necessary. This is
in reasonable agreement with the experimentally re-
quired stresses of 2—6 kbar to convert insulating
samples believed to be within 5% of nMI into metals.
More detailed comparison is precluded on the one
hand by the experimental uncertainty in Sn and on
the other by the limit applicability of the lowest-order
expression, Eq. (12). The agreement between theory
and experiment on this scale is nevertheless en-
couraging, especially in light of the opposite sign ex-

I

pected for em donors, and validates the basic idea
behind the calculation. Inclusion of higher-order
terms in the strain and mixing of excited states by
the potentials of neighboring donors would both in-
crease the calculated stress needed for a given change
in nMI, and thus shift the theoretical result in the
direction of experiment.

Thus a calculation of the variation of n~& with
uniaxial stress in multivalley semiconductors with a
moderately strong central-cell potential is in fairly
good agreement with experimental results on Si:P.
This indicates that central-cell effects are non-
negligible even at densities =nMI, as seen in Raman
scattering. Experimental study of other donors in sil-
icon and germanium, as well as a theoretical treat-
ment to include higher-order terms in the (nonlinear)
stress variation of nMI, are called for to further check
the above ideas.
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experimental colleagues M. Paalanen, T. F. Rosen-
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