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The mechanism of polarization of insulators in a static electric field is still not clearly

understood. The current situation presents an anomaly. The model which describes the

high-frequency dielectric behavior quite well is found to be inadequate for the static case.

In fact, with the same set of parameters within any single phenomenological model, it has

not been possible to describe satisfactorily both the dielectric constants and their pressure

derivatives. In search of a suitable model which can achieve this we have, in the present

work, tried to analyze the mechanism of polarization from first principles. The interest-

ing finding of this analysis is that there are two types of short-range polarization effects

having entirely different origins: One of which (the second-order exchange interaction)

contributes both to the static and high-frequency dielectric properties and the other (the

first-order exchange interaction) to the static one only. We have suggested a model based

on this analysis. The present calculation of the pressure derivative of the static dielectric

constant of alkali halide crystals within a simplified version of this model together with

our earlier calculation of the same for the high-frequency dielectric constant provides a
fair overall description of the entire dielectric behavior of insulators. In addition, the

present investigation also discusses the approximations which yield the well-known

modds for ionic solids which include polarization.

I. INTRODUCTION

The properties related to the high-frequency
response of the electron system of insulators have
been extensively studied both theoretically and ex-
perimentally. There has been quite significant ad-
vancement of our understanding about the details
of the mechanism of electronic polarization in the
case of the alkali halide crystals. In a previous pa-
per' we have discussed at length the different
theoretical models and indicated their success and

limitations. The idea of an effective anion state in

the crystal is used there to modify the shell-model

dielectric theory, which, we have shown, accounts
more or less satisfactorily for the behavior of the
high-frequency dielectric constant and its variation
with pressure. So it is expected that the same

theory should describe the behavior of the system
while responding to a static electric field, to be
specific about the low-frequency dielectric constant
and its variation with pressure. But it is not so.
Moreover, it is to be noted that all ihe existing
model calculations are inadequate if we demand a
simultaneous description of the low- and high-

frequency dielectric behavior of the alkali halide
crystals including their pressure variation. In addi-

tion, from a critical analysis of the two Szigeti re-
lations for the alkali halides on the basis of the ex-
isting models we have concluded that the shell
model is good for some ionic crystals and for oth-
ers the deformation dipole model may be better.
Further, the shell-model calculation of the pressure
derivative of even the static dielectric constant
alone is not satisfactory.

The above discussion, apart from showing the
anomalous situation, seems to indicate clearly the
presence of some new effect which has been
neglected in the pressure-derivative calculation of
the low-frequency dielectric constants. And the ef-
fect appears to be such as to affect the static polar-
ization mechanism and not to disturb the high-
frequency one. For the high-frequency probe, like
the electromagnetic wave, the electron system alone

participates in the polarization mechanism of an

ion and the modified shell-model dielectric theory
mentioned above seems to be adequate for it. In
case of the static electric field both the electronic
and ionic displacements are important. Hence it is
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quite plausible that the finer details of the ionic
response will be important for the low-frequency
dielectric behavior of the insulators while it may
not affect the high-frequency dielectric properties
in any substantial way. In order to have a suitable
model which will describe both the dielectric con-
stants and their pressure derivatives within the
framework of a single model we propose to analyze
the energy expression of an assembly of ions that
constitute an insulator with special emphasis on
the terms that are responsible for the polarization
effect. An interesting finding of this analysis is
that there are two types of polarization mecha-
nisms having entirely different origins; one affects
both the dielectric constants and the other, which
is related to the effective ionic charge, contributes
only to the static dielectric constant. Unfortunate-
ly, the first-principles calculations become intract-
able after this and cannot be rigorously pushed to
evaluate the properties in which we are interested.
Based on this microscopic analysis we have sug-
gested a model which incorporates both mechan-
isms. A simplified version of the model is em-

ployed to calculate the pressure derivative of the
low-frequency dielectric constant of several alkali
halide crystals. It is found that the present model
offers a fair overall description of the dielectric
behavior of the crystals in their entirety. The
present analysis also provides insight into the po-
larization mechanisms envisaged in the current
phenomenological models. '"

In the following section we discuss the energy
expression and identify the terms responsible for
the polarization effect. In Sec. III we develop the
model based on this analysis and deduce the dielec-
tric equations within it. In Sec. IV we consider an
application of the model to some alkali halide crys-
tals. Section V discusses the results of our calcula-
tion.

II. ENERGY EXPRESSION
FOR AN ASSEMBLY OF IONS

The analysis we pursue in this section is due to
Sengupta et al. The model we shall discuss in the
next section based on this analysis has certain dis-
tinct advantages over the pure phenomenological
one in the sense that we need not have to introduce
the crude classical notions such as shells, springs,
etc., as in the well-known shell model. All interac-
tion terms occurring in the final model will corre-
spond to some definite microscopic origin. This
approach is somewhat analogous to the analysis

advanced by Tolpygo long before the advent of
the polarizable models for ionic solids. In the fol-
lowing we shall emphasize the polarization part of
the entire analysis.

Unlike Lowdin's treatment we shall employ for
the discussion of the energy expression a straight-
forward Heitler-London method of construction of
the wave function first used for ionic crystals by
Paul et al. Denoting by the one electron wave
function the ion at site G, where v=G, i,a (i and o
indicating the spatial and the spin quantum num-
ber, respectively), we construct the antisymmetric
wave function for the crystal. We associate with
every lattice site 6 a positive nucleus of charge
ZGe and electronic charge, nGe, and
eoe =(ZG nG)e—is the net ionic charge at G.
With an even number of electrons the electronic
states are occupied including both spin states
o =+1, the normalized antisymmetric wave func-
tion for the ion is given by

20'

where AG is a normalized antisymmetric operator
acting on the electrons of the 6 ion, 4G being the
ground-state wave function. The antisymmetric
ground-state wave function for the entire solid is
given by

po ——A@G, 40 ——. g@G .
G

The operator A antisymmetrizes 4p with respect to
the interchange of electrons belonging to different
ions. Using the standard set for numbering of
electrons, the Hamiltonian of the solid is given by

H =Ho+ V, V= —, g' VGG
GG'

w'here Hp is the Hamiltonian of the isolated ions
with electrons distributed according to the stand-
ard set, and VGG represents interaction between the
electrons and nucleus of the G ion with those of
the 6' ion. In the above V is that part of the total
potential which results from interaction between
ions and is small compared to the energy of the
isolated ions. The energy of the solid is given by

pH4

JVoc'odr
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+ g'CGG 4(Gv, G'v'),
GG'

(Sa)

where the excited states are indicated by the sym-

bol v, e.g., when only the 6 ion is excited

4(G,v) =4)42 4G (Sb)

To bring out only the essential point we make
some simplifying assumptions. In the above,
4(G, v) and 4(Gv, G'v') are the excited states of
the crystal in which only the 6 ion and only 6 and
6' ions are excited, respectively. Since we are in-
terested in the dipolar deformation of the ions, the
individual ion excited states are considered to be p
states only. In absence of any external field which
is not necessary for our problem we can take the p
functions to be real. Further the assumption of the
single excited state for each ion leads to the well-
known assumption of the energy denominator, the
Unsold approximation. The electron-electron in-
teraction in VGG will lead to the double excitation
envisaged in the last term of Eq. (Sa). More than
double excitation is disallowed in the present ap-
proximation.

The coefficients CG and CGG are given by the
following expressions:

In Eq. (4) PG corresponds to an isolated ion and no
effect of perturbation due to other ions has been
considered.

In order to consider the effect of perturbation
we introduce the following modified wave function

4'0 ——@o+g CG@(G,v)

The coefficient CG is expressible in terms of the
dipole moment developed in the 6 ion and we keep
its value arbitrary. The wave function (Sa) implies
an electronic dipole moment of the 6 ion given by

mG ———2eCG O'G r; —RG
i

where 4G„ is for the 6 ion in its excited state.
Many workers' "have assumed mG to represent
the total electronic dipole moment of the G ion,
but it actually represents that part of the dipole
moment which arises due to perturbation of the
wave function. There is another part to it which is
contributed by the overlap between the unperturbed
wave functions. We demonstrate it by introducing
the total dipole moment operator for the crystal,

M= —ger, +gzGRG,

where i runs over all electrons and 6 over all nu-
clei. The expectation value of M can now be writ-
ten as

(1(,IMIe,')
(10)

where M operates on 40. We can use the standard
set for numbering the electrons in the operation M
and can write

M= —e g (r; —RG)+geGR
i, G

=M, +M; .

CGG

(
00 g Vvv Gv, 0)

G'

00 g Vvv Gv, G'v')
Gt

EG+EG
(7)

The second part is the ionic moment with respect
to the origin chosen arbitrarily and the first part is
the electronic dipole moment operator. Now the
mean value in Eq. (10) separates out into two
parts, an ionic and an electronic one. For the elec-
tronic part (M, ) we get, retaining terms up to the
second-order exchange (S,V )

&M. & = (c'o
I
M. (~ —1)

I
@o)+2&CG(@o

I
M.

I
C'G. &

G

+2 g [CG (4O
I
M, (A —1)

I &G,) —2CG (4O
I
M,

I
4&G, )(A —1)oo] .

G

(12)

The above expression for (M, ) shows that there
are three distinct contributions to the electronic di-

pole moment. The first term denotes the deforma-
tion dipole moment, the second term gives the di-



26 MODEL CALCULATION OF THE PRESSURE DERIVATIVE OF. . . 1021

pole moment due to perturbation of the wave func-

tion, and the third term, which gives the second-
order exchange dipole moment, is due to both
overlap and perturbation. Neglecting the third
term we write the total dipole moment as

purely Coulomb overlap energy and vanishes when

the charge distribution between ions does not over-

lap.
(b) First order in V and first order in S:

Eii ——S Voo —Voo

(M, &= g pg+ gmg= QVg
6 6 6

(13) = —, Q'P(GG')+ g pgEg +
GG'

where the deformation dipole on 6 due to overlap
of its nearest neighbors (NN) is given by

pg ———2e g QS~ I 4g;

where the ellipses represent three-body terms and

Eg is the monopole field at the G ion due to all

other ions, where
6' i i'

(NN of 6)

x@g;(r—rg )d&,

(14) and

Voo=&~'0
I

V
I

~'0&

Vpp ——(4p I
V(A —1)

I
4p&, (17b}

1

2

Zge

R.—rs I

Zg~e 2 2

+
IRg —~, I

(15)

where g =G,i and rng is given by Eq. (8). Hence
we find that the resultant dipole moment pg con-
sists of two parts, one pg arising out of overlap
and another mg due to perturbation of the wave

function. It is to be emphasized —a point over-

looked by most authors ' '"—that the first term
of Eq. (12}will be present even in a rigid-ion
model of the ionic solid.

With the above analysis we next write down the

energy expression of the solid and discuss the
terms of different order. We make a multipole ex-

pansion of V in Eq. (3}

V=-, g' Vgg
G, G'

S~=l —f Po4od&

where $(GG') is the two-body overlap energy be-

tween the ions 6 and 6'. Usually the Coulomb
overlap energy in Eq. (16) is merged with this ener-

gy and the total overlap interaction is expressed by
the Born-Mayer potential. This is, in fact, the
dominant term in the first-order exchange interac-
tion. If we are confined to the S approximation,
many-body terms other than three body will van-

ish. The expression has been discussed in detail by
Paul et al. who showed that the three-body terms
are the Lundqvist term. ' A model consisting of
terms up to this order only may be termed a rigid-
ion model in the sense that all the energy terms
arise due to unperturbed wave functions.

(c) Second order in V and zero order in S:
This is the pure second-order perturbation term.

or

V= —, g'(mgmg +mgds + mgds+dgdg ) .
GG'

(15b)

E2p ——2g C„Vp„—g'Ep C„,

where

V,.=(O
I

V
I
v&,

(18a)

The monopole-monopole term depends on the nu-

clear coordinates only and is not an operator.
Hence the operation V is of the same order as the
operator. We write down the terms in the energy

expression as follows.
(a) First order in V and zero order in S:

where C, may be either Cg or Cgg. It is to be
noted that C themselves are first order in V and
hence both the terms in Eq. (16) are of the order of
V . Using the multipole of the expansion of V in
(15b) and expanding the sums in terms of Cg and

Cgg we get after some simplifications

mg &, ~GG'
E2p — Qmg Eg+ g 2 g g

g 2&g GG ~gg
Eio= g + 2 g Eco(GG') .

ggi Egg gg&

(16)

(18c)
The first term is the monopole-monopole interac-
tion between the ions. The second term is the where ag is the polarizability of the 6 ion and
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366 is the van der Waals coefficient. The higher-
order van der %aals terms are not included in this
approximation. The second term is the self-energy
term which involves only m6 and not the total di-

pole moment pG in Eq. (13).
If we retain terms up to order (2,0) the resulting

expression almost corresponds to the phenomeno-
logical deformation dipole model. One has to add
for consistency the van der Waals and the
Lundqvist three-body term.

(d) Second order in V and first order in S:
E„=2+'c,(v'" —v s' )

under some simplifying assumptions. Let us con-
sider two ions 6 and 6' separated by a distance

R66. %e take the Z axis along R66 and assume
that the dipole moments m6 and m6 are also
along this direction. In this case C6 reduces to a
single component and we may write the first term
in Eq. (19a)

E» = g'c. ( Vo",—Verso, )

mGp~(GG') mG $0„(GG')
+

2e1l G (G 2enG (G~

(19c}

s' 2g c„v,„—g'c'„v~
v v g=(C& g(;—R ) 4 „) (19d)

with

—g'c„c„z,„s„',
vp,

(19a)

S = (0
~

(A —1) [ 0), S,= (0
~

(A —1}
~
v),

Sq, ——(p i
(A —1)

i
v),

(19b)

Vo, =(0
~

V
~
&), Vo", ——(v

~

V(A —1)
~

0),
where C„ is C6 or C66. In this order terms in-

volve both overlap and exchange with the per-
turbed wave functions and all of them imply
short-range interactions. %e shall presently dis-
cuss the precise approximations under which the
most important term in Eq. (19a}will lead to the
short-range polarization mechanism envisaged in
the shell model. Before that we consider the
second term. The portion within the parentheses is
identical with Eq. (18a) and hence the second term

is very clearly interpreted as the modification of
the second-order energy (18a) due to overlap. This
includes, for example, the change in the van der
%aals energy when the charge clouds of two ions
overlap. These effects are too difficult to estimate.
Until now no attempt has been made, to our
knowledge, to tackle them and no phenomenologi-
cal model tries to include these terms. The most
significant is, however, the first term. We consider
only those terms for which C, is CG. One may try
to replace C6 in terms of the dipole moment
through Eq. (8), but difficulty arises since the ex-
cited states here are the p states which are three-
fold degenerate. The three p states in 46 consti-
tutes a vector and hence C6 is also a vector and a
dot product between C6 and 46 is implied in Eq.
(8). However, we can get an idea of this term

and P~(GG') is the overlap interaction between G
and G' ions when an electron in the 6 ion is in an

excited state. If we further make this assumption
that the overlap does not substantially alter when

only one of the electrons in the ions concerned is
excited, we can set $~(GG') =$0„(GG')=P(GG').
This is quite justified since the overlap interaction
involves all the electrons belonging to both the ions

and as such the perturbation of a single electron
will not significantly alter the total interaction en-

ergy. With this assumption E2~ reduces to

I
&zi =—

where

+ P(GG'),
IG IG'

(19e)

'gg =2eaG(G

+ (t(GG'),
Y6p Y p

(20)

where P(GG') =b exp( EGG /p) is th—e overlap in-

teraction and —Y6 is the shell change of the 6
ion. The similarity between the expression (19e)
and (20) is quite striking and in fact Eq. (19e) fur-
nishes a direct quantum-mechanical justification of
(20) which is the pivotal assumption on which the
shell model is based. As the actual quantum-
mechanical evaluation of the entire second-order
exchange interaction is extremely difficult we sim-

plify it in view of the above discussion by writing

which is identical with the phenomenological
shell-model expression for the change in overlap
interaction between two ions when they have dipole
moment. This is given by (see Sarkar and Sengup-

13)
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IG Pig~
Rgg — +

6 6'
—$(Rgg ) .

(21)

The last term in Eq. (19a) for which C„ is Cgg is
also neglected. In this approximation the entire ef-
fect of the second-order exchange interaction is to
alter the short-range overlap interaction obtained
from the first-order exchange due to the formation
of the dipole moments in the ions.

%e restrict our analysis up to this order. It is
expected that the terms beyond this may not be
important. However, no investigation has so far
been attempted to prove the importance or unim-
portance of them. If these are to be considered one
has to extend the quantum-mechanical calculation
to S order.

III. MODEL

In this section we utilize the above analysis to
construct the model we propose for the investiga-
tion of the dielectric properties. The total energy
expression for an ionic solid with arbitrary position
of ions is given by (see also Refs. 11 and 13)

~2
W= —,'g' ' ' —gp, ;(E;+—,E";)+g

&j lJ j'

&~J &J l,J

+2+/(P , ijg,mm )J (22a)

with

p, ; —p;+mi ~

where p; and rn; are the deformation dipole due to
first-order exchange charges and the dipole mo-
ment due to the perturbation of the wave function,
respectively. E; and E"; indicate the monopole and
dipole field, respectively. Since we are interested
in the polarization effect only we also neglect the
three-body interaction term, i.e., the Lundqvist
term in the first-order exchange. The first term in
Eq. (22a) corresponds directly to Eq. (16). The
second term corresponds to Eqs. (17a) and (18c).
The third term is the self-energy term and is the

the major effect of the second-order exchange term

by

E2l-p(Rgg, mg, mg )

same as the second term in (18c}. It is to be noted
that since self-energy involves the perturbation of
the wave functions, m; and not the total p;
represents this. The first three terms represent the
pure electrical contributions. The fourth one is the
van der %aals interaction and corresponds to Eq.
(18c). The fifth one is the two-body overlap in-
teraction term in Eq. (17a},and the last term
represents the change in overlap interaction due to
the perturbation of the wave functions and corre-
sponds to Eq. (21).

Before we proceed further with the calculation it
will be instructive to discuss the polarization
mechanisms of the deformation dipole model and
the shell model in light of the above analysis and
energy expression. We find' from the above
analysis that the total dipole moment in an ion is
caused by two factors —one is due to redistribution
of exchange charges which arise when the overlap
between the two ions take place with unperturbed
wave functions. This is, in fact, the quantum-
mechanical origin of the short-range polarizability
first suggested by Szigeti' and Hardy and Karo
later developed this idea in their deformation di-

pole model. The corresponding dipole moment is
expressed by p in Eq. (14). Consequently there is
no self-energy term corresponding to this deforma-
tion dipole. Again, expression (14) shows that it is
essentially a short-range effect and it vanishes if
overlap is absent. Further it is to be noted that
this dipole polarizability does not contribute any-
thing to the high-frequency dielectric constant of
the solid which we shall discuss later. The second
effect is due to perturbation of the wave function
caused by the Coulomb field of the other ions.
This gives rise to the usual long-range electric field
polarizability given by mg [see Eqs. (8) and (18a)].
Apart from this the perturbation may also be due
to a short-range effect due to second-order ex-
change envisaged in Eq. (21). This is also connect-
ed with the overlap interaction which involves per-
turbation of the wave function. And in fact this is
the origin of the short-range polarization mecha-
nism in the shell model. If we exclude p; in W,
the energy expression becomes identical with that
of the shell model. And if we exclude the last
term in Eq. (22a), it reduces to the energy expres-
sion of the deformation dipole model. To conclude
we state that the shell model and the deformation
dipole model describe two entirely different short-
range polarization mechanisms which are comple-
mentary to each other and unlike the deformation
dipole model the short-range polarization mechan-
ism in the shell model affects both the high-
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frequency and the low-frequency dielectric con-
stants. Hence any complete theory must include
both of them. In literature there are several com-
parisons' ' of these two models and nowhere has

their quantum-mechanical origin been so clearly
traced.

Next, in order to develop the dielectric equations
we assume the following forms of the overlap in-

teraction in Eq. {22a):

BR'

Bm.
(23)

determines, in fact, all the lattice mechanical prop-
erties.

Now expanding r,j in Eq. (22a) about the equili-

brium position the dynamical equations can be
written in the usual six-vector notation as follows

{see Sarkar and Sengupta' )

$(r,j ) =b exp( r,j.Ip—),

P(r,jm; )=b exp ——r;1—
p mp.

—{t(r;,),

(22b)

(22c)

[(Z+D)C(Z+D )+R]U

+[(Z+D)C —Rp ']M=mco U,

[—C(Z+D ) p'R—]U
(24)

r"
p; = QD(ji)U. = —gm (r,j)

i r)~

m (r J )=C exp( —r ) /p'),

(22d)

where b and p are the usual short-range interaction
parameters and mp; is a parameter having the di-
mension of charge. It has been shown in Refs. 13
and 16 that if we substitute n; = P; /E; and

mp; ——F; the usual shell-model expressions are ob-

tained (7 and K being the shell charge and core-

shell spring constant). In writing Eq. (22c) we

have assumed that the dipole moment is associated

only with the negative ion which, as is well known,

corresponds to the negative ion polarizable shell

model. A comment appears to be in order regard-

ing the specific form we have chosen for P(rj, m;).
We have been guided by two considerations. Start-

ing from the Clementi wave functions, Basu and

Sengupta' have directly calculated numerically the

change in the overlap function when the negative

ion is perturbed by a dipolar distortion and have

shown its variation with the distance of separation
between the two ions. It has been found that the

change in overlap function in the presence of a di-

pole moment may be quite adequately represented

by the form given in (22c}. On the pure empirical
level this form as already demonstrated (see Ref.
13) is identical with that of a shell model. The
form for p"; has been assumed after Hardy and

Karo.
Equation (22a) represents our complete model

for the present calculation where all the terms have

a priori quantum-mechanical justification. This
equation together with the so-called adiabatic con-

dition

+(C+u '+p, 'Rp ')M=O,

PZg ff D(11)E,ff

Rp—Ro(&i —&2 }— p2,
mp

(25)

~ ~

m2 U2 = Z2Eeff DpEeff

Rp—Ro(U2 —U))+ p
mp

and the polarization per unit volume

~ —Z] U1+&2U2+p2+p2 ~

d

and the adiabatic equation is

(26)

0= —m pE,fr+
mp Rp

+ p2 —Ro( U2 —U) )
cx2 mp

(27a)

of

p2 ——a2E,f~+ b2 U,
(27b)

where

where U=(U„Uz) and M=(M„Mz} are the dis-

placement and the dipole fluctuation vectors, Z, a,
and m are the 6X6 matrices for the ionic charge,
the ionic polarizability, and the ionic mass, respec-

tively. R, C, and p are the overlap interaction, the

Coulomb interaction, and the short-range polariza-

bility matrices, respectively. D represents the ma-

trix corresponding to the deformation dipole.
The above equation in the limit of the q =0 con-

dition will yield the dielectric equations. The force
equations are given by
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a2 —1
1 Rp+ 2

mp

Ep and the restrahlen frequency cop are related
to the b's by the following equations:

Roa2
b2=( —1)

mp

Hence

P = [Z') —D(22)] U+apE, rr, (26')

and

e~ =1+4~b22,
2—C07p= —b

& ~

4mb )2
2

Ep=E 00
b

(31a)

(31b)

(31c)

where

Rpa2
Z] Z] ——Z2

mp

Using the above expression for p2 in Eq. (25) we

can write the force equation as

An inspection of Eqs. (30) and (31) immediately
shows that there is a contribution to the high-
frequency dielectric constant only from the dipole
moment generated out of the perturbation of the
wave function. This is evident since the term az
consists only of two parts:

~ ~

m; U; =Z;E,g+ Cg U, (28)
1 1 Ro

+ 2a2 F2 mp

where

Rpb2
Ci ——Rp+ = —C2 .

mp

Next using W=mU (m is the reduced mass) and
the Lorentz expression for E,~f, we can write the
Huang relations, '

~ ~

m=b»%+b»E,
(29)

The first one is the pure second-order perturbation
effect and the second one is the second-order ex-
change effect. No contribution from the first-
order exchange effect occurs to e„. Unlike the
case of e„, there are contributions both from the
first-order exchange and the second-order exchange
interaction to Ep. The factor Z~' consists of three
parts:

Rpa2Zi' ——Zi —Dp—
mp

I

m

(Z I' )'
3v

4m
1 —— a2

3v

a2 1
b22 =

v 4m
1 — a2

3v

P=b )2%+b22E,

where

(30a)

(30b)

(30c)

The first term is the ionic charge. The second and
third terms arise out of the first-order exchange
and the second-order exchange interaction, respec-
tively. In the shell-model dielectric theory the
term Dp does not occur. Hence we presume that
this additional effect may be important in describ-
ing the pressure derivative of the static dielectric
constant. This is more so in view of the fact that
it has strong dependence on the interionic separa-
tion. ' In the next section we consider an applica-
tion of the above model to discuss the pressure
derivative of the static dielectric constants.

with

R pa2
Ci ——Ro-

mp

Zi ——Zi —Dp .

The three macroscopic dielectric properties, namely
the high- and low-frequency dielectric constants

IV. CALCULATION OF THE PRESSURE
DERIVATIVE OF e

In the present model we have altogether six
parameters, namely b and p, the short-range over-
lap parameters, m p and a2, the polarization param-
eters connected with the perturbed wave function
(these correspond to Y and K of the shell model),
and C and p', the first-order exchange parameters.
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TABLE I. Calculation of the pressure derivative of the low-frequency dielectric constants
(dao/dp in 10 "). All entries are to be taken with a negative sign.

Crystal

Present calculation
Without first-order With first-order

exchange exchange Expt.

KC1
KBr
KI
NaC1
NaBr
RbC1
RbBr
RbI

41.96
52.32
62.29
67.45
99.02
40.25
32.94
82.58

45.0
54.53
64.70
68.81
99.70
47.35
58.74
72.76

49.85'

70.01'
57.44b

79 78
49 98'
57.74'
66.06'

In a complete calculation we must organize a fit
of the different lattice mechanical properties of a
crystal in terms of the above parameters and with
the values of parameters thus determined we
should calculate the pressure derivative. But since
in this preliminary application we are not interest-
ed in an exact fit, rather we want to make a rough
estimate of the additional effect we have obtained
for the static dielectric constant, we use the values
of the parameters used earlier for the calculation of
the pressure derivative of the high-frequency
dielectric constants for the same crystals. Of the
two additional parameters, namely C and p', C is
determined from the experimental value of the res-
trahlen frequency using the expression (31b). The
other constant p' is fixed at 1.90 A from the exper-
imental value of the pressure derivative of a crystal
taken arbitrarily. We presume that the value of p'
like the overlap parameter p will remain more or
less the same for all crystals. We have had
recourse to this procedure because in this method
two things may be clearly demonstrated. Firstly,
with the present set of parameters the previous cal-
culation for the pressure derivative of the high-
frequency dielectric constants remain unaltered.
Secondly, it will give a rough idea about the order
of magnitude of the effect of first-order exchange
interaction. The results of our present calculation
with and without this effect are shown in Table I
together with observation.

V. DISCUSSIQN

The present investigation indicates that the two
types of polarization mechanisms obtained from a

microscopic analysis of the energy expression are
important in describing the low-frequency dielec-
tric constant and its pressure derivative. It is of
further importance to note in this connection that
the shell model of the deformation dipole model is
more or less adequate in describing the dielectric
constants but in order to discuss the pressure
derivatives a combination of both the short-range
polarization mechanisms is necessary. In particu-
lar this is required for the pressure derivative of
the static dielectric constants. This is understand-
able in view of the fact that the finer details of the
polarization effect will be magnified in these prop-
erties.

An examination of the results of the present cal-
culation shows that the inclusion of the first-order
exchange effect improves the agreement in the
right direction in the majority of cases. Our
choice of the crystals has been motivated by our
previous calculation for which the parameters are
available. For the two crystals Nacl and waar,
there is no significant improvement. This is
presumably because the assumption of the same
value of p' for all crystals is too stringent. It is
preferable to fix the value of p' for each crystal
separately. However, this preliminary calculation
definitely indicates the significance of this interac-
tion. In addition, the present results together with
our previous calculations for the pressure deriva-
tive of the high-frequency dielectric constants show
that it is possible to describe both the high-

frequency and low-frequency dielectric behavior of
the alkali halide crystals in the framework of a sin-

gle model and with the same set of parameters.
Before we conclude it is to be noted that we have
emphasized in the present work the importance of
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the two polarization effects on1y in the dielectric
properties of the crystals. But it is evident from
the dynamical equations that the first-order ex-
change dipole will also affect the phonon frequen-

cies: In a future communication we plan to inves-
tigate the relative importance of these two effects
on the dispersion of phonons.

'Lalit K. Banerjee, A. N. Basu, and S. Sengupta, Phys.
Rev. 8 20, 1706 (1979).

2A. D. B. Woods, %. Cochran, and 8. N. Brockhouse,
Phys. Rev. 119, 980 (1960); W. Cochran, Crit. Rev.
Solid State Sci. 2, 1 (1971).

D. Roy, A. N. Basu, and S. Sengupta, Phys. Rev. 8 5,
4987 {1972).

"J.R. Hardy and A. M. Karo, Philos. Mag. 5, 859
(1960).

5P. A. Varotsos, Phys. Status Solidi 8 98, 339 (1978).
S. Sengupta, D. Roy, and A. N. Basu, in Current

Trends in Lattice Dynamics, edited by K. R. Rao (In-
dian Physics Association, Bombay, 1979), p. 63.

7K. B. Tolpygo, Zh. Eksp. Teor. Fiz. 20, 497 (19SO).
P. O. Lowdin, A Theoretical Investigation into Some

Properties of Ionic Crystals (Almqvist and Wiksels,
Stockholm/Uppsala, 1948).

9S. Paul, A. K. Sarkar, S. Sengupta, Phys. Status Solidi
8 54, 321 (1972).

OS. S. Jaswal, Phys. Rev. Lett. 35, 1600 (1975).
"R.Zeyher, Phys. Rev. Lett. 35, 174 (1975).

~S. Q. Lundqvist, Ark. Fys. 6, 25 (1953); 9, 435 (19SS);
12, 263 (1957).

S. Sarkar and S. Sengupta, Indian J.Phys. 49, 836
(1975).

~~A. Ghosh and A. N. Basu, . Phys. Rev. 8 17, 45S8
(1978).

~58. Szigeti, Proc. R. Soc. London Ser. A 204, 51
(1950).

' K. Kunc, M. Balkanski, and M. A. Nusimovici, Phys.
Rev. 8 12, 4346 (197S).
S. Ghosh, A. N. Basu, and S. Sengupta, Phys. Rev. 8
23, 1818 (1981).

~8A. N. Basu and S. Sengupta, Phys. Rev. 8 14, 2633
(1976).

t9M. Born and K. Hnang, Dynamical Theory of Crystal
I.attices (Oxford University Press, London, 19S4).

20R. P. Lowndes and H. H. Martin, Proc. R. Soc. Lon-
don Ser. A 316, 351 (1970).

2~J. Fontanella, C. Andeen, and D. Schucle, Phys. Rev.
8 6, 582 (1972).


