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The electrical properties of single crystals of yttria-stabilized zirconia [(Zr02)p ss-

(Y203)p &z], known to be an essentially anionic conductor, are studied in wide ranges of
temperature (400—1100 K) and frequency (1.6 Hz —100 kEIz). The dc electrical conduc-

tivity is temperature activated, and the activation energy changes continuously from 1.17

to 1.33 eV when going from low to high temperatures. The ac electrical conductivity is

an increasing function of frequency. It obeys a power-law dependence 0(e) ~ co with dif-

ferent exponents below (n =0.85) and above (n =0.64) a transition frequency co&. In the

measurable frequency range, the latter is temperature activated as the electrical conduc-

tivity. The observed frequency dispersion is attributed to interactions between mobile ox-

ygen vacancies and randomly distributed frozen-in yttrium dopant ions and is analyzed

with the help of the continuous-time random-walk theory developed by Scher and Lax.

I. INTRODUCTION

Pure zirconia oxide Zr02 is known to possess the
cubic fluorite structure only at very high tempera-
tures, above about 2600 K. However, the cubic
form can be stabilized at lower temperatures
through the formation of solid solutions with CaO,
Y203, or some rare-earth oxides. Oxygen vacan-1

cies form to preserve local charge balance. These
defects are known to be very mobile and respon-
sible for the high ionic conductivity of these ma-
terials. ' These compounds have already fotlnd
numerous applications such as oxygen sensing sys-

tems.
Numerous dc or low-frequency ac electrical con-

ductivity measurements have established that the
ionic conductivity is not proportional to the dopant
concentration as expected from simple transport
theory. In the single-phase region, a decrease in
the electrical conductivity and simultaneously an
increase in the activation energy are observed when

increasing dopant content, a very interesting fact
that has received several theoretical interpreta-
tions. ' As pointed out by Bauerle in a study of
stabilized zirconia, ac electrical measurements and
complex admittance representation allow the
separation of several contributions to the total cell

impedance, arising from bulk conduction and inter-
facial phenomena, as polarization effects at the
electrode-electrolyte interfaces, whenever the relat-
ed time constants for the individual processes are
different enough. However, a detailed study of the
electric and dielectric bulk properties as a function
of frequency has never been done and is the aim of
this paper. Experimental data are presented and a
microscopic interpretation, based upon the theory
of stochastic transport in disordered systems,
developed by Scher and Lax, is given.

II. EXPERIMENTAL PROCEDURE

The specimens used in this investigation were

[(ZrOp)p gg-(Y20s)p t2] single crystals grown by a
Czochralski technique, using a rf furnace and a
cold container, kindly supplied by Dr. Tatarintsev.
The dopant concentration was ascertained by x-ray
microprobe analysis. The lattice parameter a,
equal to 5.145 A, was measured with a convention-
al x-ray diffraction technique using germanium
powder as a standard. Several disks with different
thicknesses, approximately 8 mm in diameter, were
cut in the same boule. The two faces were coated
with gold, platinum, or silver paste. Very little
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electrode effects were observed with the latter
which was extensively used.

The electrical measurements were performed in
an arrangement that allows the separation of the
real and imaginary parts of the sample impedance.
A variable frequency alternating voltage (1.6 Hz—

L (mj

FIG. 1. Plot of capacity C„at 100 kHz and room
temperature for several samples, identified with the fol-

lowing symbols: Cl, +, 6, 0, as a function of the
geometrical factor L =A /W.

100 kHz) is applied to the ceil assembly in series

with a standard resistor. The voltage developed
across the resistor is analyzed with the help of a
double lock-in amplifier giving the in-phase and
out-of-phase components of the current with

respect to the emf from the frequency generator.
It is then straightforward to calculate the real and

imaginary parts of the admittance or impedance of
the cell assembly. The cell was introduced into a
furnace, where the temperature was maintained
constant within 0.25 K during the measurements
and varied over the range 400—1100 K.

The experimental setup was tested in the vicinity
of room temperature and at 100 kHz by inserting

samples of various thicknesses. Under these condi-
tions, the sample is equivalent to a pure capacitor.
In Fig. 1, a plot of the capacity C„versus geome-
trical factor L =A/W, where A is the electrode
area and 8' the sample thickness, suggests that a
small additional capacity, about 1.5 pF in magni-
tude, arises from the leads and/or the electronic
equipment. The slope of the observed straight line
is directly related to the high-frequency dielectric
constant of the material e„according to the rela-
tion C„=E'pE L where eo is the free-vacuum per-
mittivity. The deduced value of 25+1 is in fair
agreement with that calculated from the constant
level of infrared reflectivity, 25.7. This means
that few, if any, relaxation processes in the mi-

X
l
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FIG. 2. In the complex impedance representation (ReZ-ImZ), at a given temperature, experimental data points are
distributed along part of a circle. Intersection of the circle with the real axis allows the dc resistance Ro of the sample
to be determined at the temperature in question. Three temperatures have been considered (486, 503, and 524 K). Cor-
responding circles, the centers of which are identified with crosses, are depressed below the real axis by the same angle
a =14'.
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FIG. 3. Plot of the dc electrical conductivity as a
function of the temperature in the usual log]0(o.0T) vs

1/T system of coordinates (same symbols as in Fig. 1).
Slope of the curve gives the effective activation energy
at the temperature considered.

trarily to the first one, is sensitive to the nature of
electrodes and to the oxygen partial pressure in the
surrounding atmosphere. It may be attributed to
interface phenomena" between the electrolyte it-

self, the metallic electrodes and the gaseous phase.
It was minimized by the use of silver electrodes
and its study lies outside the scope of this paper.

As shown by the proportionality to the geome-
trical factor L, the intersection of the first circle
with the real axis gives the dc bulk resistance Ro
of the sample. In Fig. 3 logip(opT) is plotted
versus 1/T, where Op is the bulk electrical conduc-
tivity of the material and T the absolute tempera-
ture. The conductivity is thermally activated and a
gradual change of the activation energy from 1.17
to 1.33 eV is observed from high to low tempera-
ture. Such a behavior is in agreement with pub-
lished literature data. " For instance, Schouler
et al. ' reported values of 0.86 and 1.10 eV, respec-
tively, in their study of a single crystal with a
lower yttria content [(Zr02)p 9&-(Yp03)p p9]. Iil-

creasing the dopant content is known experimental-

ly to result in a higher activation energy for the
transport process and finally to lower the electrical
conductivity.

crowave and/or infrared range contribute signifi-
cantly to the dielectric function itself.

III. COMPLEX IMPEDANCE
REPRESENTATION

Conductivity in yttria-stabilized zirconia is
known to be essentially anionic over a wide tem-
perature range. As a consequence, under applica-
tion of an electric field, electrode polarization is
likely to occur in addition to transport effects in
the bulk. The original work of Bauerle has shown
that each individual contribution to the cell im-
pedance becomes apparent in the so-called admit-
tance representation (Re Y-Im Y). In the following,
for reason of convenience, the complex impedance
representation (ReZ-ImZ) was preferred. However,
the two curves in both planes are simply related
through a geometrical inversion, e.g., via Y= 1/Z.

In agreement with the results of previous stud-
ies, ' our experimental data points, in the fre-
quency range investigated and at moderate tern-

peratures, lie along parts of circles passing through
the origin, the centers of which are depressed
below the real axis by a small angle a = 14' (see
Fig. 2). When temperature is raisixl, a second cir-
cle becomes increasingly important which, con-

IV. ac ELECTRICAL CONDUCTIVITY

An obviously simplified electrical circuit provid-
ing semicircles in the complex impedance represen-
tation consists of a parallel combination of a pure
resistor and a pure capacitor. However, such a
representation is oversimplified since the actual
(ReZ-ImZ) plots afford semicircles depressed
below the real axis. One is then forced to intro-
duce frequency-dependent conductive and/or
dielectric properties. Assuming an homogeneous
medium, and a linear response of the material to a
sinusoidal electric field E(cp), the total current
density J is deduced from Maxwell's equations

J=[a(co)+j cpa(co)co]E,

where j is the square root of —1. Both functions
o(co) and e(co) obey Kramers-Kronig relations, '

and as a consequence their real and imaginary
parts are not independent. A total conductivity
o r, J=o r, E, and the admittance Y of the sample
are easily derived from Eq. (1):

ar(co) = Y(co)/L =cr(cp)+j @pe(co)co .

At zero frequency, the total conductivity 0.~
reduces to the dc conductivity O.o. Substracting
this contribution, a generalized dielectric function
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FIG. 4. Plot of the real and imaginary parts of the dielectric response eT(co) at a given temperature (T =485 K), as
a function of frequency in a logarithmic system of coordinates. Below and above the transition frequency co&, Imez
follows a power-law dependence with different exponents, respectively, equal to (n &

—1) and (n2 —1). Below coT both
curves are parallel straight lines distant from log&o[tan(n &vr/2)] as expected from Kramers-Kronig relations.

ez (co) is now defined as

eT(~) =(~T ~o)/(j coco)

Typical variations of the real and imaginary parts
of eT(co) versus frequency are depicted in Fig. 4.
Focusing on the imaginary part suggests that the
frequency range investigated may be subdivided
into two domains, below and above a "transition
frequency" coT, where a power-law dependence is
observed,

where C is a constant. In the complex admittance
plane (ReY-Im Y), Eqs. (3) and (5) define a straight
line of slope tan(n ter/2). The geometrical inverse

in the complex impedance representation is nothing
but a circle going through the origin and depressed
below the real axis by an angle a, an experimental
fact already mentioned in the previous paragraph,

ImeT(co) 0:co" (4)

but with different exponents, respectively, n, =0.85
and n2 ——0.64, which are found to be temperature
independent within experimental uncertainty. As
it is done in Appendix A, the frequency depen-

dence of ReeT may be deduced from that of ImeT
using the Kramers-Kronig relations.

Above coT, the modification brought about by a
different frequency behavior at low frequencies de-

creases as co and is rapidly negligible. As a
matter of fact ReeT is not very different from e„,
the high-frequency dielectric constant.

Below ~T, the correction arising from the high-
frequency behavior is now frequency independent
and cancels almost exactly the dielectric constant
e . The Kramers-Kronig relations require that
ReeT should be proportional to ImeT by a factor
of tan(nin /2). ' Indeed, in a logarithmic system
of coordinates as in Fig. 4, the two curves are
parallel straight lines separated by
logic[tan(n, vr/2)] and ez may be simply written

eT(co)=C(jco) '
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FIG. 5. Plot of the transition frequency co& as a
function of temperature for two different samples (same
symbols as in Fig. 1). Lower right-hand side of the fig-
ure indicates (I) the average uncertainty associated with
the determination of coz. In the temperature range in-

vestigated (400—600 K), the mean activation energy
(E,=1.29 eV) is equal to that of the electrical conduc-
tivity.
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a=(1—n i )m /2 . (6)

It must be emphasized that observed depressed cir-
cles in the impedance plane are indeed characteris-
tic of the low-frequency region. Above cor, be-

cause Reer differs very little from e„, the experi-
mental curve shows some parabolic curvature to-
wards the real axis and becomes tangent to the im-

aginary axis at the highest frequencies.

V. TRANSITION FREQUENCY

The transition frequency co& varies with tem-
perature and is thermally activated (Fig. 5}.
Within the limited temperature interval corre-
sponding to the frequency range investigated
(1—10 Hz), the activation energy appears to be
constant and equal to that of the electrical conduc-
tivity itself. This strongly suggests that co& could
be simply related to the jump frequency of the
charge carriers in the material. Stabilized zirconia
quenched from high temperature possesses a cubic
structure of the fluorite type. Heterovalent yttri-
um ions substitute zirconiums, and charge balance
is maintained through the formation of oxygen va-

cancies, the concentration of which is related to
the amount of dopant. Using the Kroger-Vink no-

tation, ' this process is described by the pseudo-
chemical reaction

Y203~2Yzf+ Vo +30o .

FIG. 6. Part of the fluorite structure around an oxy-

gen vacancy: , oxygen vacancy; 0, normal oxygen
ions; , cations.

s (g, p, =1). Combination of Eqs. (8) and (9)
yields

Nq'

where vr (d'or ) is the transition frequency ex-

pressed in Hz (rads ). In stabilized zirconia,
jumps of the oxygen vacancies take place on the
cubic oxygen sublattice, depicted in Fig. 6, the
parameter of which is a/2. Only jumps to nearest-
and next-nearest-neighboring sites need to be con-
sidered, respectively, along [100] and [110]direc-
tions:

The vacancies are known to be very mobile and re-
sponsible for the fast ionic transport of oxygen in
such compounds. ' The electrical conductivity cro

may be expressed in terms of the self-diffusion
coefficient Dp through the Nernst-Einstein rela-
tionship

&o=DoNq /AT ~

where X and q denote the concentration and the
charge of the carriers, respectively, and kz is the
Boltzmann constant. If jumps are assumed to be
random and independent of each other, Do is sim-

ply related to the mean square displacement (r ),„
and the mean residence time t:

a
(I+a'»o) 0&v»o &1.

4
(12)

Using Eqs. (11) and (12), the product vrr can be
evaluated numerically with an uncertainty of about
10% and varies according to p&&0 between 0.6
(p~~p ——0) and 1.1 (p~&p ——1). Indeed, vr does not
appear to be very different from 1/t. However, it
must be noticed that in Eq. (9), Dp is proportional
to 1/r, where t is the mean residence time, and not
to the mean jump frequency. If a statistical distri-
bution of jump frequencies is considered, as will be
done in the next sections, both quantities are not a
priori identical and it is therefore expected that the
transition occurs at a frequency different from 1/t

D, = (r'),„/6r,

(r'),„=gs'p, ,

(9)

(10)
VI. THEORETICAL APPROACH

where p, denotes the probability of a jump distance
As implied by Eq. (2), the measured total con-

ductivity is the sum of two contributions, a con-
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ductive o. and a dielectric one e, both of which can
be frequency dependent. In an ionically conductive
material, the latter arises when localized opposite
charges such as ( Vo, I'z„), equivalent to electric
dipoles, are present. The imaginary part of e(co)
usually fits a broad peak and its variation with fre-
quency is interpreted as due to a distribution of re-
laxation times. ' In this study no maximum of
ImeT is observed (see Fig. 4) and therefore this
model is not applicable to our experimental results.
According to Jonscher, ' a power-law behavior
with a change of the exponent at some definite fre-
quency, as reported in Sec. IV, reflects many-body
interactions between dipoles. On going from low
to high frequencies, an increase of the exponent n

is predicted' contrarily to the present observations.
Turning now to the conductive contribution, a

frequency-dependent conductivity is the conse-
quence of correlated particle jumps. ' In cubic sta-
bilized zirconia, yttrium ions are randomly distri-
buted and much less mobile than the oxygen vacan-
cies. ' The electrical interactions between the rigid
yttrium network and mobile oxygen vacancies
make hops between oxygen sites energetically ine-

quivalent and could be responsible for the correla-
tions.

A general theory of charge transport in disor-
dered systems has been developed by Scher and
Lax. Based upon a generalized theory of mobility,
it is applicable to any hopping conductive process
either ionic or electronic in nature. The motion of
carriers is modeled as a continuous-time random
walk (CTRW) on a lattice. ' lt is valid over a
large frequency range; in particular, Eq. (9) is
recovered in the zero-frequency limit. It is also
simple since all the disorder is assumed to be in-
cluded in a single-site waiting-time distribution
function Q (t), which is the probability that an ox-

ygen vacancy remains on its site from time t =0
until time t In the origi.nal paper of Scher and
Lax, o(co) is expressed as a function of 1((co), the
inverse Fourier transform of which is simply relat-
ed to Q(t):

1(t(co)= 1 —jt0Q(co),

Q(~)/t=(o/~0+j ~t)

(17)

When the conductivity o(to) is frequency indepen-
dent, the function Q(co)/t reduces to a single relax-
ation time, i.e., the imaginary part is a Lorentzian
curve centered on to=1/t. A frequency-dependent
conductivity broadens and displaces this distribu-
tion. From the quantitative treatment presented in
Sec. VII, it can be assumed that the imaginary part
is indeed centered on vT, the transition frequency.

A microscopic model is now needed in order to
account for the probability function Q(t) thereby
obtained. I.et us consider a vacancy on an oxygen
site labeled i 0 and Q;o(t) as the probability that the
carrier remains on its site at a time t. This proba-
bility decreases in time, via all the n parallel decay
channels by which it can transfer to a neighboring
site, for instance, along the six [100] directions,

dQ;0(t)

dt
= —Q;o(t) Q W(rJ ), (19)

where W(r/) is the transition rate between neigh-

boring sites in the jth direction. Taking into ac-
count the fact that Q;0(0)=1, Eq. (19) can be in-

tegrated:

Q;0(t) =g exp[ —W(rJ )t] . (20)

The probability Q (t) is obtained as the configura-
tion average of Q;0(t). In a cubic lattice, the n

jump directions are equivalent and statistically in-

dependent. Therefore,

with

Q(t) =q "(t) (21)

t= J tP(t)dt .

If t is known, the measurement of 0(co) as a func-
tion of frequency allows the calculation of P(to) or
equivalently of Q(co), the Fourier transform of
Q(t):

'(g) =p(t) =
dt

(13) q(t)= I dWf(W)exp( —Wt), t&0 (22)

o(co) =(Nq'/ks T)D(co),

D(~)= —,(r )„j~g(~)/[I—g(~)]

(14)

(15)

P(t)dt represents the probability the time between
jumps occurs in the time interval (t, t +dt) On.
taking the dc limit (co~0) in Eq. (15), Eq. (9) is
obtained with I" ( W) =f ( W) *" (23)

where f ( W) is the transition-rate distribution func-
tion associated with one jurnp direction. Mathe-
matically, q(t) is the Laplace transform of f(W)
and because of the convolution theorem, '

Q (t) is
the Laplace transform of F(W), the n-fold self-
convolution of f(W):
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Q(r0) =f d W (25)

or equivalently. , using v= 1/W as the integration
variable

Q(t)= f dWF(W)exp( —Wt) . (24)

The Fourier transform Q(r0) is related to F(W)
through a Stieltjes transform:

W = Wp exp[ (E—/k~ T)] (28)

and a distribution of energy barriers g (E) can be
deduced from f(W) according to

(29)

from experimental data. The transition rate W, be-

ing temperature activated, is a very sensitive func-
tion of the energy barrier

with

Q(r0)/t =f . d (lnr)
&=o 1+jar (26)

VII. DETERMINATION OF 6 (lnv)

F(W)=rG( —1nW) . (27)

Several methods exist to obtain information con-
cerning the distribution function G(inc), a survey
of which can be found in Ref. 12.

To summarize, the motion'of the oxygen vacan-
cies has been modeled as a continuous-time ran-
dom walk on a simple cubic lattice. The transition
rate is treated as a random variable the distribution
function of which is f(W). All the dynamics of
the motion is incorporated into Q (t} which is relat-
ed to f(W) through several mathematical steps,
e.g., Eqs. (21}—(24}, and which can be determined

o z (o))=o (ro)+j ape„ro, (30)

where e„,experimentally known, is the high-
frequency dielectric constant associated with atom-
ic and electronic polarizations. In order to com-

Before proceeding any further, let us emphasize
that only the total conductivity ar(ro) is measured.
As a conclusion of the above discussion in Sec. VI,
it will be hypothesized that the frequency-depen-
dent dielectric contribution is negligible compared
to that of the electrical conductivity o(c0). Then
Eq. (2} writes

0.8-

0$-

0.4-

0.2-

0
2 3 4 5 6

log&0~ (rad s )

FIG. 7. Plot of the real and imaginary part of Q(r0}/t at a given temperature (T =495 K} as a function of frequen-
cy. Numerical values have been derived from ac electrical conductivity measurements using Eqs. (18) and (30). Param-
eter t has been chosen in such a way that the maximum of the imaginary part of Q (co)/t occurs at co=vr.
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FIG. 8. Plot of the imaginary part of Q(co)/r as a function of frequency at different temperatures (V, 449 K; 0, 473

K; +, 495 K; o, 519 K). Frequency scale has been normalized to vT the transition frequency, and, as a consequence,
a unique curve is defined which corresponds to a Wagner-Yager distribution of the jump frequencies (full curve).

pute Q(ro)/t using Eqs. (30) and (18), the mean
residence time t or, equivalently, the mean-square
displacement (r ),„ is needed. As mentioned in

Sec. V, the latter can be varied between one and
twice a /4, respectively, the shortest and next
shortest jump distance. In any case, the calculated
imaginary part of Q(r0)/t is a bell-shaped curve
while the real part of Q(co)/t goes from zero to
one with decreasing frequency as presented in Fig.
7. In the case of a frequency-independent conduc-

tivity tr(ro), I gm( )r/oisra Lorentzian curve cen-
tered on c0(rad s ')= I/t (s). The consequence of a
dispersive o(co) is that the abscissa of the max-
imum no longer coincides with I/t Indeed it is.
found that for (r ),„=1.4a /4, the maximum oc-
curs at vT, the transition frequency. According to
Eq. (12), this would imply that 40% of the jumps
occur along [110]and 60% along [100]. In fact,
taking the large uncertainty associated with the
determination of vr into account, it would be safer
to say that the probability of the [100]jump direc-
tion is in the (50—70%) range. The diffusive
motion of the fluorine ions in CaF2, a compound
very similar to yttria-stabilized zirconia, has been
simulated with the method of molecular dynam-
ics. ' Jumps are found to occur mainly along
[100] with a probability of 80% in agreement with

our assumption. Because vT is activated with the
same activation energy as the electrical conductivi-

ty, the calculated data of Img (r0)/t at different
temperatures give a unique curve, reported on Fig.
8, when plotted as a function of mvT '.

The study of the distribution of relaxation times

G(lnr) associated with Q(ro)/t, Eq. (26), is made
easier using the so-called Cole-Cole plot, ' obtained

by graphing the imaginary part versus the real part
of Q(ro)/t in the complex plane and depicted in

Fig. 9. Then distinct features appear immediately.
First, the Cole-Cole plot is symmetrical with
respect to the maximum and so will be the distri-
bution G(lnr). Second, it intersects the real axis at
the high- and low-frequency sides under right an-

gles. These two properties are verified by the
Wagner-Yager distribution introduced into the
theory of dielectric relaxation in 1913 by Wagner o:

G(in') = exp[ —(incor) /2B ], (31)8 2m

where Qo coincides with the maximum of the bell-

shaped curve, i.e., Qo ——vT, and 8 is a constant.
The integral, Eq. (26), can only be evaluated in

closed form for special cases, i.e., for Img(co)/t
when 21n(co/Qo)/8 is an odd integer and for
Reg(ro)/t when it is an even integer. Otherwise, it
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FIG. 9. Cole-Cole plot (Reg(ro)/t-Img(co}/t ) is used for the determination of the distribution function associated
with g(~i/t. It must be noticed that the graph is symmetrical with respect to co=vr and intersects the real axis at
right angles. For comparison two curves are given, the first one is associated with a single-frequency distribution func-
tion (dotted line), the second one with a Wagner-Yager distribution (full curve).

has to be evaluated numerically using a computer
program. Very good agreement with the experi-
mental data is obtained after putting 8 =0.5 in
Eq. (31), as shown in Fig. 8. The function Q(t}
fulfills two conditions and so does the distribution
G (Inr):

(32)

(33)

Using Eqs. (26) and (31), the first condition, Eq.
(32), appears to be always verified. The second
condition, Eq. (33), imposes some relation between
t and vT.

vT t exp(8 /2) = 1 . (34)

The left-hand side of Eq. (34), in which all param-
eters are independently known, is indeed found to
be equal to 0.9+0.2.

VIII. MICROSCOPIC INTERPRETATION

In the proposed microscopic model, oxygen va-
cancies jurnp over energy barriers which are
nonuniform in the material. More precisely varia-
tions in the heights of the barriers are produced
through interactions between the charge carriers
and the immobile yttrium ions which are randomly
distributed in the sample. From Eqs. (23) and (29),
the statistical distribution of the jump frequencies

f (W) and ultimately of the activation energies

g (E) can be, in principle, determined. Unfor-
tunately, two different distributions f ( W) have to
be associated with the two jump directions which

expb =1+n(exp8 —1),
Qolroo nexp[ ————, (8 —b }],

(35)

(36)

where b and too (respectively, 8 and Qo) character-
ize f ( W} [respectively, F ( W)]. With 8 =0.5 (cf.
Sec. VII), b and Qo/coo calculated through Eqs.
(35) and (36) are, respectively, equal to 1.59 and
30.7.

Then a distribution of the barrier heights can be

have been considered, while only one total jump-
frequency distribution F( W) is experimentally
known. This led us to consider only one jump
direction, namely [100],which appears to be the
most probable one, an approximation which will be
discussed later on.

According to Eq. (23), f ( W) is related to F( W)
through an n-fold self-convolution where n is the
coordination number of the oxygen vacancy, i.e.,
n =6 within the above approximation. Deconvolu-
tion is a difficult mathematical problem and no ex-
act analytical solution exists in the specific case of
a Wagner- Yager distribution. Nevertheless, as
shown in Appendix B, the convolution of a
Wagner-Yager distribution by itself, computed nu-

merically, is well approximated by Wagner-Yager
distribution. Therefore the two parameters too and
b can be deduced from two general properties of
the convolution product; the average value and the
mean-square deviation of an n-fold self-convolu-
tion of f ( W) are n times the average value and the
mean-square deviation of f ( W). ' Taking the fact
that f ( W) is normalized to unity into account,
these relations become
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deduced using Eqs. (28) and (29). After some
lengthy manipulations g(E) is found to be

g (E)= —exp —
2

. (37)
1 (E E—)

bks T~2a 2(bk~ T)2

This a Gaussian distribution, centered on E the
mean-square deviation of which is bks T. The cen-

troid E is equal to

E=E,—kg Tb (38)

where E, is the activation energy of coo (or
equivalently of Qo=vT) and of the electrical con-

ductivity, i.e., E, =1.29 eV. The correction term
b k&T is quantitatively very small, of the order of
5%%uo. The width to half-peak of the distribution is
equal to 2.36k&T, i.e., 0.13 eV in the temperature
range investigated, a reasonable value when com-

pared to the largest interaction energy between an

oxygen vacancy and a yttrium ion, i.e., 0.43 eV.
Returning to Eq. (35) it may be seen that for

large values of n, b depends logarithmically on n,
the coordination number. Therefore, if the [110]
jump direction is now considered instead of [100],
with n =12, the width of the Gaussian distribution
changes only from 0.13 to 0.15 eV. This insures
that the approximation which has been used

throughout this paragraph is not too drastic.

IX. SUMMARY

Both electric and dielectric properties of yttria-
stabilized zirconia, known to be a good anionic
conductor at high temperature have been studied as
a function of frequency (1—10 Hz) and tempera-
ture (400—1100 K). The precise measurement of
the dc electrical conductivity, especially at the
lowest temperature, was made possible using the
complex impedance representation. It is found to
be temperature activated, the activation energy
changing gradually from 1.33 to 1.17 eV when go-
ing from low to high temperature. As a function
of frequency, the electrical conductivity exhibits a
power-law dependence with a different exponent n

at low (n =0.85) and at high frequencies
(n =0.64). On a logarithmic scale, the transition
occurs at a definite frequency coT, activated with
the same activation energy as the electrical conduc-
tivity. According to linear response theory devel-

oped by Kubo, a frequency-dependent conductivi-
ty results from correlations between charge car-
riers. These are oxygen vacancies, with a positive
+2 formal charge with respect to the ideal defect-

APPENDIX A

In the frequency range investigated, the ima-

ginary part of e(co) follows a power-law depen-
dence with different exponents above and below
the transition frequency d'or.

.
T

n) —1N, CO KQ)y
Ime(co) ~ ' N, NPNZ- .

(A1)

(A2)

less lattice, which compensate charge deficiency of
heterovalent yttrium ions. It is thought that elec-
trical interactions between the mobile charges and
the immobile and randomly distributed yttrium
ions make jumps of the charge carriers energetical-

ly nonequivalent and are responsible for the corre-
lations. Using the theory of stochastic transport in
disordered systems elaborated by Scher and Lax, a
statistical distribution of the jump frequencies is
determin|xi, found to be a Wagner-Yager distribu-

tion, the maximum of which coincides with vT, the
transition frequency. This implies a Gaussian dis-

tribution of the energy barrier heights which the
charge carriers have to jump over, centered on the
activation energy E, of the electrical conductivity
and with a width to half-peak of 0.13 eV. This in-

terpretation has been experimentally established

only in the (400—600 K) temperature range when

jump frequencies fall into the accessible frequency
range (1—10 Hz). Ultimately it must be noticed
that, using the same description, computer simula-

tion has been able to reproduce the remarkable
qualitative features of the conductivity measure-

ments on the anion deficient fiuorite oxides, that is

the decrease in electrical conductivity with increas-

ing dopant concentration.
A power-law frequency dependence o(co) oc co"

has often been found in electronically conducting
materials such as impurity-doped semiconductors,
scandium oxide thin films, or glasses. Current
work in our laboratory on glasses shows that
similar results are obtained for different ionically
conducting materials, at least when dielectric losses
associated with localized charge motions are negli-

gible. Indeed the transport theory developed by
Scher and Lax seems general and applies in various
cases where independent carriers move from one
localized center to another by hopping. As a
consequence, the Gaussian distribution of activa-
tion energies already proposed to explain ionic con-
duction in lithium containing glasses could be of
a very general character.
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x Im(E) —Eq)
+ dx

X —N
(A4)

where the indices 1 and 2 denote the different
analytical forms of the imaginary part of E(co),

respectively, below and above coT. Therefore, at
high frequencies,

ReE(co)= ReE2(co)

for——co-' dx x Im(E, —E, ) .

Assuming. that this experimental result is valid
over the entire frequency range the real part of
E(co) may be calculated with the help of the
Kramers-Kronig relations'

ReE(co) =E„+—f dx z

2 " x ImE(x)

X —N

The integral in Eq. (A3) may be evaluated dif-
ferently for frequencies below and above coT as fol-
lows.

(a} co))cor.

oo x Im62
ReE(co }= E„+—f dx

7T 0 X N

The correction to ReE|(co) is now frequency in-

dependent. Negative, it tends to reduce E„ from

(n& —n2)
b,E„=— ImE(coT) . (A9)

Using the same figures as above, this correction is
important, he„=25 in agreement with experimen-

tal data.

APPENDIX 8

i) in F„(x)

As mentioned in Sec. VIII, no exact analytical
solution of the self-convolution of a Wagner-Yager
distribution exists to our knowledge in the litera-
ture. Nevertheless, it may be concluded from nu-

merical computation, presented below, that it close-

ly approximates a Wagner-Yager distribution

(A5)

Taking Eqs. (Al) and (A2} into account,

ReE(co)= ReE,(co)

(n, —nz)
+ —(coz /co)'

(n) +1)(n2+1)

X ImE(coz') .

x Im(Eq —E|)
+ 6(i

X —N

At low frequencies

(A7)

e& Im(Eg E&)—
ReE(co)=ReEi(co)+ —f dx

m. X

(A8)

The correction to ReEq(co) brought about by a dif-

ferent exponent at low frequencies, calculated nu-

merically with n i
——0.85, n2 ——0.64, and

ImE(co& )=10 is equal to 0.44(coz /co) . Compared
to e„=28 this correction is rapidly negligible with

increasing frequencies.
(b) co «cor:

x Immi
ReE(co)= E~+ f dx

X —N

0$ 0

[In ( x/x z„)]
0.5

FIG. 10. Using a fast Fourier-transform program,
the n fold -self-convolution I'„(x}of f (x},Eq. (Bl},has
been calculated for different values of n. Numerical re-

sults are presented in a log)oF„(x}-[log)o(x/xo„}] plot
where xo„ is the abscissa of the maximum, see Table I.
Points to the right {respectively, left) of the origin corre-
spond to abscissas {given in parentheses in Ax unit)

greater (respectively, smaller) than xo„. Graphs appear
to be straight lines of slopes 1/2B„, symmetrical with

respect to'the origin.
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TABLE I. Comparison between numerically calculated and a priori predicted values of
the parameters 2„,xo„, and 8„ in Eq. (B2), for different n fo-ld self-convolution of f (x)
{n =1,2,4,6). (1) Derived from Fig. 10; (2) predicted using Eqs. (36), (37), and (B3); (3) ex-

pressed in hx unit (0.05).

xo.{3)
(2) {2) (2)

21
57

136
218

20
55.6

135.2
217.8

0.47
0.27
0.147
0.103

0.50
0.28
0.150
0.103

0.439
0.241
0.146
0.112

0.439
0.236
0.141
0.110

within numerical uncertainty. It is well known
that convolution of two functions means multipli-
cation of their Fourier transforms. ' This funda-
mental property has been used to calculate the n-

fold self-convolution F„(x) of the following test
function normalized to unity:

—1/4f(x)= exp[ —(lnx) ] (B1)

using a fast Fourier-transform program (Harwell
Library, X =1024 points, Lbc step=0. 05, double
precision numbers). Computed numerical results
are presented in Fig. 10 with lnF„(x) on the y axis
and [ln(x/xo„)] on the x axis, where xo„ is the
abscissa of the maximum. In agreement with what
is expected for a Wagner- Yager distribution, a
linear relationship is observed. The graph is slight-

ly asymmetrical with respect to xo„, even in the
case of n equal to one; this is due to the inherent
uncertainty, equal to +lb&, associated with the

determination of the maximum. Finally, the com-
puted function F„(x)may be written

F„(x)=A„exp[ [in(x/xc„)] /28„1, (B2)

exp[ —(8„/2) ]
x,„a„vZ~

(B3)

Predicted and calculated values of xo„, 8„,and A„
are summarized in Table I. A very good agree-
ment is indeed observed.

where the three parameters, xo„abscissa of the
maximum, A„maximum of F„(x),and 1/28„
slope of the straight line (see Fig. 10), are deter-
mined numerically. As explained in Sec. VIII,
general properties of the convolution product can
be used to predict a priori the values of xo„and
8„. Likewise, the self-convolution of a normalized
function is also normalized and A„ is given by
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