
PHYSICAL REVIEW B VOLUME 25, NUMBER 2 15 JANUARY 1982
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A Landau theory of the spin-density-wave (SDW) state in chromium alloys is con-
structed. In this theory the cubic symmetry of the bcc lattice and the symmetry with

respect to rotations in spin space of the exchange interaction are manifest in the free-

energy expansion. The Landau coefficients are first obtained for a general two-band

model as sums over the Matsubara frequencies, then evaluated near the triple point for a

simple class of Fermi surfaces. The competition of the various polarization and wave-

vector states is studied, and the stable phase of each of the models determined. It is

found that for a Fermi surface consisting of two spheres of unequal radii the triple-Q
state is the stable one, whereas the single-Q state is stable for an octahedral Fermi sur-

face. The direction of the wave vector of the SDW is determined, for the octahedral
model, to be in one of the (100) directions, in agreement with the experimental result for

pure chromium.

I. INTRODUCTION

A. The nature of the system

Chromium is a body-centered-cubic metal which
undergoes a transition at 312 K to a state in which
the electrons form a static spin-density wave
(SDW) with a period which is incommensurate
with the lattice. The magnetized state consists of
domains, each containing a single wave with wave
vector Q along one of the cube axes. In the range
of temperature from the Neel temperature 312 K
(Tz) to the spin-flip temperature 123 K (Tz), the
wave is transversely polarized, with the magnetiza-
tion pointing along one of the other cube axes.
Below 123 K the wave is longitudinally polarized.

The discovery that chromium is antiferromag-
netic was made by Shull and Wilkinson' in 1953 as
a result of a neutron-diffraction experiment. Fur-
ther neutron-diffraction studies have yielded the
above picture. The results of Werner, Arrott, and
Kendrick show a small jump in the magnetization
at Tz, which is often interpreted as being due to a
first-order transition.

Besides the fundamental SDW, there have been

observed in chromium other structures associated
with the wave. In particular, there is a charge-
density wave (CDW) of wave vector 2Q, as shown

by the x-ray scattering results of Tsunoda et al,

and also a SDW of wave vector 3Q, as shown by
the neutron-scattering results of Pynn et al. Also,
there is some evidence, as found in a comparison of
the x-ray-and neutron-scattering intensities made

by Eagen and Werner, ' for the existence of a lat-
tice strain wave (SW) of wave vector 2Q.

B. Theories of the SDW state

The theory of the SDW state is founded on the
work of Overhauser, "who showed that the
paramagnetic state of an electron gas with a uni-
form background of positive charge, when treated
in the Hartree-Fock approximation, was unstable
with respect to the formation of a static spin-
density wave. Overhauser pointed to the magne-
tism of chromium as an example of the SDW state,
and explained several experimental observations in
terms of a single band model. A more accurate
description of the SDW state in chromium has
since been the object of numerous studies.

The actual mechanism operating in chromium to
produce the SDW has turned out to be the coin-
cidence of large portions of the Fermi surface from
two different bands under translation of one band

by the wave vector Q of the SDW, as suggested by
Lomer.

Fedders and Martin' studied a model with a
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Fermi surface consisting of an electron sphere and
a hole sphere of equal radius. A model Fermi sur-
face consisting of spheres of unequal radii was
studied by Rice' and by Malaspinas and Rice. '

This model took account of the imperfect nesting
of the actual Fermi surface of Cr, and allowed the
study of the effects of alloying, where the radii of
the spheres were assumed to change with varying
alloy concentration. Shibatani et al. ' introduced a
model with perfect octahedra as the Fermi surface,
more closely resembling that of chromium.
Nakanishi and Maki' considered the transition
from the paramagnetic to the incommensurate
SDW state using the unequal sphere model band
structure, making an expansion in powers of the
departure of the wave vector away from the com-
mensurate one, valid near the triple point. They
neglected, however, the effect of the finite electron
reservoir in actual chromium. This neglect
changes their conclusions since Malaspinas and
Rice' obtain a second-order transition in contrast
to the first-order transition found by Nakanishi
and Maki. Fenton' ' also has considered this

transition. He has used the octahedron band struc-
ture and allowed the magnetization density to con-
tain three Fourier waves, with wave vectors mutu-

ally perpendicular. The free energy was lowest
when just a single wave had a nonzero amplitude,
thus proving the stability of a single-Q state within
the model.

This paper unifies and completes previous
mean-field theories of the SDW state. In particu-
lar, there is a full treatment of the relation of the
shape of the Fermi surface to the nature of the
condensed phase. The theory is an improvement
over previous theories firstly in that all in a general
class of Fermi surfaces (those consisting of an elec-
tron part and a hole part of the same shape) are
considered simultaneously. Secondly, the conden-
sate is allowed complete freedom to contain several
Fourier components of magnetization, each of arbi-
trary polarization. In Sec. II, a series of steps leads
from a two-band Hamiltonian for the electron as-
sembly to expressions for the general second- and
fourth-order Landau coefficients in an expansion of
the free energy in powers of the magnetization den-
sity. In Sec. III, the competition of magnetized
states, depending on the relative magnitudes of the
Landau coefficients, isQiscussed. In Sec. IV,
specific band structures are considered, giving pre-
dictions on the stability of various states for the
models. The paper ends in Sec. V with a discus-
sion of the results.

II. MICROSCOPIC DERIVATION
OF THE FREE-ENERGY COEFFICIENTS

A. Introduction

The variational principle of statistical mechanics,
as discussed, e.g., by Huber, provides a means for
obtaining a Landau expansion for a system
described by a Hamiltonian. The form of the
theorem most useful is that the grand potential
Q(T,p), where p is the chemical potential, is al-

ways less than a certain class of trial potentials
containing variational parameters. The coefficients
of the expansion are known in terms of the micro-
scopic Hamiltonian, and the variational parameters
are identified with expectation values of quantum-
mechanical operators.

The aim of this section is to obtain expressions
for the coefficients in a Landau expansion describ-

ing the transition from the paramagnetic to the in-

commensurate SDW state. The variational method
is applied to the system of two bands of electron
states (a,b) in exchange interaction, and a third
band (c) acting as a finite reservoir.

B. Variation of the grand potential

The minimum principle for the grand potential
Q(T,p) of a system described by a Hamiltonian H
is that Q(T,p) is less than or equal to any trial po-
tential Q, (T,p) =(H pX), TS„—where ( ),—
denotes the average calculated with respect to a tri-
al density operator p, .

Following Rice, ' the model Hamiltonian
describing the system is taken to be

Eake akaCaka + i~ ~ ~k+qabk' qa'bk'a'~ka-
ko kk'q

a=abc crcr'

ao+H
Bands a and b are the nesting bands composed of
Bloch states for electrons in the lattice potential,
interacting to form the SDW. Band c represents
the other electrons, acting merely as a finite elec-
tron reservoir. v is the average of the effective ex-
change interaction over energies of importance for
the interaction of the bands. For the present the
form of the bands e k is left unspecified.

The trial Hamiltonian is assumed to have the
form

Hr =Ho+ X [A«(q)ak+q bk +H.a.],
kq„
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+C.C. , (2)

where

(q)=g (bk q~ak~) .

Restriction to the SDW state requires setting

(q)=(Mq cr )

with M q Mq.
Equation (2) gives an expression for the grand

potential in terms of microscopic quantities. It is
used in the appendix to obtain microscopic expres-
sions for the phenomenological free-energy coeFi-
cients of Sec. II D. Before proceeding to the
phenomenological discussion, however, a brief aside
is made on the accuracy of the expansion.

C. Truncation of the expansion of 50,

When calculating 6Q, with the trial Hamiltonian
given by Eq. (1), besides the expectation values

g«(q) there are others arising from higher-order
perturbation terms, so that 50, should be written

5Q, = —g [b, (q)+vt( (q)]5/' (q)
q, OO'

+c.c.+g v$, 5$,*,

where the 1(, are extra nonzero expectation values,
e.g., 1(,=ig (2q)=gk (ak+2q~k ). To take
these contributions properly into account requires
that further terms be added to the trial Hamiltoni-
an, giving extra terms 6,5$,' in 50, . For an ex-
pansion consistent to fourth order in 6 (q), the

where the variational parameters b, (q) are arbi-
trary complex numbers, and where g& denotes a

r
summation over q restricted to a set of wave vec-
tors q, . In order that the trial Hamiltonian retain
the cubic symmetry of the high-temperature phase
of chromium, the q„will later be taken to be + q;
(i = 1,2, 3), where the q; are three mutually
orthogonal vectors.

Variation of the 5 (q) leads to a variation in

0, of

5&&= —g [~ (q)+vt( (q)]5/' (q)
qr OO

only such terms which are necessary are the 2q
CDW harmonics. However, an accurate theory
taking charge-density harmonics into account re-

quires that the effects of phonons be included, and
as such are not included, the terms involving CDW
components are also omitted.

D. Phenomenological grand potential
expansion

So far the number of components of the order
parameter has been left unspecified as IMz ).qr

Group theory may be used to determine the
minimum number of components required in order
that the theory be compatible with the symmetry
of the system. ' Assume for definiteness that the
magnetization of Cr consists of a single Fourier
component of magnetization Mq, with q &

directedq&t

along (1,0,0), for example. In order to conform to
the bcc symmetry of paramagnetic chromium,
components of magnetization with wave vectors
obtained by symmetry operations of the lattice act-
ing on q i (forming the star of q, ) must be included
in the description on an equal footing with those of
q ~. The symmetry group of the paramagnetic lat-
tice is Im3m. The star of q &

consists of the wave
vectors + q i, + q2, and + q3, along (1,0,0), (0,1,0),
and (0,0, 1), respectively. Therefore the order
parameter consists of 18 real numbers formed from

M;,M;. , with i =1,2,3. (Here i denotes q;= —q;. )

The grand potential is expanded as the sum of
terms formed from the M;, each term invariant
under the symmetry operations of the system. As
there is no spin-orbit coupling in the model, the
system is invariant with respect to separate infini-
tesimal rotations in spin space and rotations of the
cubic group in k space. Spin-space rotations force
the second-order invariants to consist of sums of
terms of the form Mp Mq Invariance of the Ham-
iltonian for the electron system under translation of
a lattice vector, together with the assumption that
the periodicity of the magnetism is incommensu-

rate with that of the lattice, requires that p =q.
The fourth-order invariants must similarly consist
of sums of terms of the forin (M~ M~)(M„M, )

with kp+ kq+ kr+ kz:0. Invariance under time
reversal eliminates terms containing an odd
number of Mq. A set of generators for the cubic

group Oi, is C4(001), C3(111),and i (inversion).
Under these operations, the order parameter
transforms as
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C4(001): M)„—+M2y,

M)y~ —M2„,

M1z~M2z~

M2x~M

M2y —+ —MT„,

M2, —+MT, ,

M3„~M3y,

M3y —+ —M3„,

M3z~M3z~

C3(111): M)„~MAY,

M]y~M2z,

M)z~M2~,

M2„~M3y,

M2y~M3„

M2, ~M3,
M3~ —+M]y,

M3y —+M)„

i: M)„—+M)„,

M)y —+MT,

Mlz~M

M2~ —+M2„,

M2y~M2,

M2, ~M2, ,

M3„—+M3„,

M3y —+M3„,

M3z~M3z

The only second-order expression, invariant with respect to rotations in spin space, translations in real
space, and rotations of the cubic group in real space is

M 'MT+ M2™2+M3 M-

There are four fourth-order invariants. They are

(a) (M~ M-, ) +(M2 Mz) +(M3 M3)

(b) (M) M))(MI.M-, )+(M2 M2)(M~. M~)+(M3 M3)(M3.M3),

(c) (M).MT)(M2. M~)+(M) M-, )(M3.M3)+(Mg. M2)(M3. M3),

(d) (M, M2)(M-, .M~)+(M) M3)(M-, .M3)+(M2 M3)(M2.M3)+(M, M2)(M-, .M2)

+(M).M3)(MT M3)+(M2. M3)(M2.M3) .

Time-reversal invariance eliminates terms with an odd number of Mq.
The form which the expansion of the grand potential must take can now be written down:

Q, =Qo+A g (Mg. M-,. )+u, g (M;.M;. ) +u2 g (M; M;)(M;. M;. )+u3 g (M; M;. )(MJ M-. )

l l 1)J
+u, $ [(M,'M,.)(M,'M,—.)+(M, M,—.)+(M, M,—.)(M,—..M,.)] . (3)

In the above expression the indices i,j are summed
over 1,2,3. The coefficients A, u&, u2, u3, and u4
are functions of the chemical potential and the
temperature.

The stage has now been reached where both a
microscopic expansion of the grand potential [Eq.
(2)], and one based on symmetry arguments [Eq.
(3)] have been obtained. Comparison of the two
expansions gives microscopic expressions for the
phenomenological coefficients. Explicit evaluation
of the coefficients A, u &, u2, u3, and u4 in terms of
a general band structure is carried out in the Ap-

pendix. Before proceeding to a discussion of the
stability of various states (Sec. III) the grand poten-
tial expansion is transformed to a free-energy ex-
pansion.

E. Transformation to the free energy;
Fermi-level shift

(cf. Malaspinas and Rice, Ref. 16)

In order to describe the transition at a fixed
number of particles, the free energy F(T,N) is
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derived from Q.,(T,IJ, ). As the temperature is
lowered through the transition temperature the
structure of the energy bands is changed, so that
with a finite reservoir there is an accompanying
shift in the Fermi level.

Denoting by h' the separation in energy of the
crossing of the bands and the chemical potential p
(so that p = —h'+const), the trial number of parti-
cles is found from N,„,i ——BQ, (h ') /Bh '. By dif-

ferentiating

Q, (h')=00(h')+A(h') g(M;.M;)+. . . ,

one obtains
I

NAF(h') —Np„, (h')=, g (M; M;. )
l

correct to second order in M, where N&z and
N'pzzz denote the numbers of particles in the anti-
ferromagnetic and paramagnetic phases, respective-

ly. Setting N~z(h')=N~, (h) and denoting the to-
tal density of states for spins in one direction by
Nz. , then to order M ,

2Nr(h —h') = g (M;.M;. ) .

The above equation gives h(h'). Use can now be
made of the theorem that the change in the free en-

ergy at fixed T,N equals the change in the grand
potential at fixed T,p, where the change is in some
other independent quantity describing the state of
the system (here M ). Since the number of parti-
cles is a function only of h, and the chemical po-
tential a function only of h', it sufficies to express

50, in terms of h in order to obtain 5F,. Express-
ing A (h') as A (h)+(h' —h)BA/Bh+", and (since
one is interested in an expansion to order M )

neglecting higher-order terms, the free energy re-
ceives a correction

1

21Vp

2,
BA

Bh

'2

g (Mg M;)
1

21Vp

BA

Bh

2 .

g(M; M;)+2+ (M; M;. )(MJ MJ)

1
Q&~u

&
=Q& +

2Nz-

so that for F(T,N) the same coefficients result as for Q(T,p), except that

aA
'

Bh

and

2
Q3~Q 3 =Q3+

21Vz-

aA

Bh

The coefficients can now all be evaluated at h'=h.

III. THE COMPETITION OF MAGNETIZED STATES

A. Introduction

(7)

The model developed in the last section to describe the SDW state in chromium has led to a Landau free

energy of the form (i,j = 1,2,3)

F=F+A g(M;.M;. )+ui g(Mi M;. ) +u2 g(M; M;)(M;. .M;. )+u3 g (M; M;)(M-. .M-. )

l l l l (J
+u4 g [(M;.Mq)(M; M-. )+(M;.M-. )(M;. MJ )] .

Among the various wave-vector and polarization
states, the state realized by the system is the one
which minimizes this free energy. Which state
minimizes the free energy depends on the relative
magnitudes of u ~, u2, u3, and u4. In this chapter

I

the physical nature of the realized state is deter-
mined for various relative u ~, u2, u3, and Q4.

Given the existence of the main component of
the SDW, Eq. (7) is the simplest form for the free
energy allowed by symmetry. As discussed in Sec.
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M(r}=
~ + +

M8 ql

+q,. (i =1,2, 3)

For example, the single-Q state, linearly polarized
in the x direction, i.e.,

M(r)=2iMpcos(q r+P~„),

(I), the ordered state in chromium contains higher
harmonics of the fundamental SDW, as well as
other fields, and these must be included in a more
accurate Landau theory (see, e.g., Walker ). Here,
however, the physical picture of a possible state is
simply that of a magnetization density M(r ) ex-

panded in several Fourier waves, i.e.,

is obtained by choosing
I M~„ I

=Mp,
(Mz)z ——(Mz), =0. For a circularly polarized
wave, choose

I M~„ I
=

I M~ I
=Mp, P „=ttt,

P~ =Pq —m/2, so that

M(r)=2Mp[icos(q r+Pz)

+jsin(q. r+P~)] .

Also, the possible simultaneous existence of two, or
three waves is allowed for.

As there is no spin-orbit coupling in the model,
the direction of polarization is undetermined.
However, an anisotropic band structure does deter-
mine the direction of q relative to the lattice.

&. Minimization of the free energy

Denoting (Mii ) by
I M;~ I

e ', and noting that reality of M(r) requires M .=M, then the second-
and fourth-order terms in the free energy may be written

vp=A X( IM
I

+ IM
I

+ IM;, I

Vi ——uig(IM
f +fM; I +fM;, f

)

V~=u2+ I IM~I e +fM;„I e "+fM;,
I

e

+ IM'y
I

+ IW'
I }(IMJxl + I~~yl + IMJ'I

l (J

+IIMM le " '"+IMM le " "+IMM le

Since u2, u4 determine the polarization, it is con-
venient to consider four categories:

(1) u2, u~ &0,

(2) u2, u4 &0,

(3) u2&0, u4&0,

(4) u2&0, u4&0.

Cases (2} and (3) are the cases of interest for the
models considered in the following; these are the
only ones which will be discussed further.

(2) uz, u4 &0 V2 is m.ade most negative by
choosing the waves to be linearly polarized; each
wave has the same polarization in order that V4
contribute the largest negative term possible.

(3) u2&0, u4&0. The non-negative term V4 is
made to vanish by allowing no two waves to have

I

polarization components in the same direction, V2
is made most negative with linearly polarized
waves.

Now attention is directed to finding the number
of waves in the states. Considering again cases (2)
and (3):

(2) Setting A;= IM;„ I, I
M~, I

= IM;„ I

=0,
then the terms in I' are

Vp ——A gA;,

Vi ——ui gAg

V2
——u2 gA;

Vi ——u3 gA;AJ,
l (J

V4 ——2u4 gA;AJ .
&(J
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The free energy is

F=Fp+A gA;+(u i +uz) gA;

+(u3 +2u4) QA(AJ .

ky

%P kx

ky

For the present it will be assumed that if two or
more of the 3; are nonzero, then they have the
same magnitude. In order that F be bounded from
below for all values of the A;, one must have
u ~ )0 and u

& +u 2+ u 3 +2u 4 & 0. Depending on
the relative magnitudes of u I +uz and u 3 +u4, ei-
ther the triple-Q or the single-Q state has lower
free energy. One has for linearly polarized waves

band a band b

(b)

FIG. 1. Relabeling of band b states: (a) before rela-
beling, (b) after relabeling.

(a) u3 +.2u~ &2(u i +uz} (triple-Q),

(b) u3 +2u4&2(u i +uz) (single-Q) .

(» «tAi+ IMi.
I

Az IMzy I
A3 1~3 I

Then

F=Fp+A QA;+(u i +uz) gA; +u3 gA;AJ.
l l l (J

The regions of triple-Q and single-Q stability are,
for linearly polarized waves

(a) u3 &2(ui +uz} (triple-Q),

(b) u 3 & 2(u i +uz) (single-Q) .

IV. EVALUATION OF THE FREE-ENERGY
COEFFICIENTS FOR SPECIFIC MODELS

The two most widely used three-dimensional
model band structures to represent that of chromi-
um are the unequal sphere model (Rice' ), and the
octahedron model (Shibatani et al. '

), shown in

Fig. 2 below.
In the following the exact band structure is left

unspecified. However, the concept of an energy h,
measuring the deviation from perfect nesting of
band a and band b, is retained. The energy of
band a (a =a, b ) may be written in the form

ek =h+vk [k —kF(k)],

where kz(k) takes points k onto the nearest part
of the Fermi surface directly above or below k.
Possible ambiguity in kF(k) for points k far away
from the Fermi surface is disregarded, as only
states near the Fermi surface are important.

The purpose of this section is to evaluate the
coeAicients C; of the Appendix in terms of several
band structures, then to obtain the free-energy coef-
ficients 3, u i, u2, u 3, and u4 which are given in
terms of the C; by Eqs. (A6}, and finally, using
the results of Sec. III, to draw conclusions regard-
ing the relative stability of the various SD% states
for each of the band structures.

B. Expansion about the triple point

Referring to the free-energy expansion

F=A g(M; M;. )+ui (M;.M;. )z+ ... ,

„Energy

A. Models for the band structure lying(') re (c)

The model Fermi surface considered to present
that of chromium in what follows consists of two
portions of similar shape (shown spherical below)

separated in reciprocal space by half of a
reciprocal-lattice vector. It is convenient to relabel
the states of band b:

I
bk)~

I
bk —6/2), as

shown in Fig. 1 below.

(b)

FIG. 2. Band structure for (a) the unequal sphere
model and (b) the octahedron model.
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the transition, assumed to be second order, occurs
when A(h, q, T)=0. The wave vector q at the
transition is the value which minimizes A (h, q, T}.
For h less than a critical value ho, this minimum
occurs at q =0. At larger values of h, qm;„ in-

creases continuously from zero. Nakanishi and

Maki' noted that the free-energy coefficients cauld
be evaluated analytically in the neighborhood of
the point (hp To}, the triple point. Here also, the
evaluation of the coefficients, as a power series in

q, is restricted to the neighborhaod of the triple
point.

C. General expansion

The calculation of the coefficients is accomplished most easily by directly expanding the propagator in a

power series in q. Thus, expanding ek+q
——ok+ vk. q, where vk is the velocity of an electron of band

a=a, b, and defining zI z„———ek, z2 —z„—ek, one obtains the required coefficient Co [recall that

z„=(2v+ 1)ni/p], .

CII = g Gk+q6k+ (a~b)
kv

2p k„ziz2

~Q ~ (~Q -+)2 (~c ~)2 (~Q ~)4

Z] Zf Z] 2]

Terms odd in (vk. q) vanish since v k= —v k and ok=a k, so that to order (vk. q)4,

1 1
Co ——

2p k„ziz2
1+ 2 + 4 +(a~b)

Z] Z]

similarly, to order (vk q },

C, = g 2 2 1+, +(a~b)
ZIZ2 ZJ

C2+C3= —g 2 2 1+ 2 +(a~b)
kv IZ2 Z$

C4+Cs= —g 2 2 1+ 2[4(vk q;) +.2(vk q;)(vk qj)+(vk qj) ].p k„z,'z,' z,'

+ [(vk. q;)(Vk q;)+(vk. q;)(vk. q, )]+(a~b)
Z]Z2

and

C, = g 2 21+—2[2(Vk. q;)'+2(V'k. q, )'+3(V'k q;)(V'k. q, )]
kv I 2 I

[(vk. q;}(vk q, }+(vk q, }(vk q, }+(vk q;}(vk.q;}+(vk q, }(vk q }l+(~~b}
Z]Z2

D. Specialization to simple
Fermi surfaces

Both the unequal sphere model and the oc-
tahedron madel have the property that a term such
as gk„(1/zizz )(vk. q) can be written as the

product of gk„(1/zizz ) and ((vk. q) ), where

( ) denotes an average over the Fermi surface.
The restriction to such Fermi surfaces is now
made. It is also assumed that vk has a constant
magnitude U over the Fermi surface. Since the
Fermi surface has cubic symmetry, ((vk q } )
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3 U q . Thus, introducing the notation

I rs}=—y . . .1 1

kv Zlz2

CO=I 11 }+&
u q I 13 }+&(vk q) )( 15 },

Ci ——I 22 }+u q [ 24 j,
C2~C2 ——2I 22 }+—,u q I 24 },
C4+C6 ——2I 22 }+—,u q I 24 j ——,u q I 33 },
C5 ——I 22 }+—,u q I 24}——,u q I 33 j .

E. Evaluation of gk

In evaluating, e.g.,

I22}=—g1 1 1

P k z„—(h+ek} z„—(h —ck)

the replacement gk ~N (0) I de is made,

where N (0) is the density of states of one of the
bands. A consequence of this approximation is
that the temperature dependence can be factored
out, i.e.,

I22}= N(0)—1 P

[ 15 }, I 24 },and j 33 j can be expressed in terms
of just two quantities a,p~:

2 1T + co —3coh

P „)0(so+h )

2 ir ~ co —10' h +5&ohP,o (oi'+ h')'

(9)

. (10)

A(h, q, T)=1/(N~u)+ I 1 1 }+aq
+5p*q &(uk q)'&i,

u 1
——3a+10p~q +fE2,

u 2
——6a+20p*q +2fE2,

u4 ——6a+ —,p~q

Before expressing the free-energy coefficients in
terms of a,p~, it is convenient to introduce dimen-
sionless variables. Defining F=[FIN~(0)](P/ir),
M =(P/m)M, q =uqP/2n. , h =hPlir,
A =A/N~(0), and u; =[u;/N~(0)](mlP), all the
new quantities (denoted by a tilde) become inten-
sive and dimensionless. Referring now to the Ap-
pendix, giving the free-energy coefficents A, U;
(i =1, . . . , 4) in terms of the Ci, one obtains

dE' 1

(2v+ 1)i—(h +e')

1

(2v+ 1)i —(h —e')

where h =(Plm. )h, so that the coefficients
u;=u;(hITq/T) (i =1, . . . , 4). The second-
order coefficient A, however, is still a function of
h, q, T and not just of the scaled variables
h IT,q/T. The reason for this is that I 1 1 } formal-

ly diverges, showing that the approximation is
inappropriate here.

An explicit formula for I rs } has been worked
out. It is

Irs} =2 ' "+' N (0)(irlp)'+"
(s —1)!(r—1)!

gR s r 1

(
—+ h )s~r —1

where co,=(2v+1)ir/p. The r and s dependence of
I rs } enters the h-dependent part of j rs } only in the
form r +s, so that the functions I 13}, [ 22 j,

where fE is the Fermi-level shift term, with
f=N /2N& and E =(BA/Bh) .

Assuming a second-order transition, the transi-
tion occurs, on lowering the temperature, when
A (h, q, T) changes from being positive for all q to
being negative for one of the q (h is held constant).
By setting BA /Bq =0 one finds that the value of
q at which the transition occurs is

q =— a
10P&(uk q) )

(12)

(Here the on uk and q denote unit vectors. ) Now,
by definition, the triple point is that point (in the
h T plane} where both A =0 and q =0, so that one
condition determining this point is a(h, T)=0. By
computation a=0 for h 0.61(ir/p), and as is
clear from its definition [Eq. (9)], a is negative at
larger values of h. By computation p~ is positive
at h =0.61(n./P). Because of the Fermi-surface
average & (uk. q) ), the value of A may be varied by
changing the direction of q. Since below the tran-
sition the free energy is lower the more negative is
A, then q must be chosen so as to minimize
&(.", q)').



D. W. BUKER 25

F. Predictions of the models

Since the Fermi surface is invariant under
transformations of the cubic group, the quantity
((vq q} ) must be expressible in terms of the in-
variants of this group which can be formed from
the components of q. Thus one sets

cube sphere
2 7/50

3-0 linearly
polarized ' one
pola r i za t ion
direction

octahedron

1-0 linearly
pol ariied I

- ~& p"
I

&(Uk.q)') =a4(q.q}'+a4 (q +q, +q. ) .

On evaluating a4, a4 one obtains

(a) a4 ———,, a4 ——0 for the spherical Fermi surface,1, 2
(b) a4 ———,, a4 ————, for the octahedral Fermi

surface,

(c) a4 ——0, a4 ———, for the cubic Fermi surface .

Of course for the spherical Fermi surface one direc-
tion for q gives as low a value to ((Uk.q) ) as

any other direction, namely —,. For the octahedral

Fermi surface it is favorable to have q point along
one of the axes (as is the case experimentally), in
which case ((Uk.q) ) = —,. For the cubic Fermi
surface it would be preferable for q to point in one
of the I111I directions, and this not being the case
experimentally is understood since the actual Fermi
surface does not much resemble a cube.

Substituting the value of ((Uk.q) ) for each
Fermi-surface model into (12), the magnitudes of
q for the cubic, spherical, and octahedral model

are, respectively, ——,0 (a/P~), ——,(a/P~), and
9—» (a/P~). The values of the free-energy coeffi-

cients may now be tabulated (see Table I).
With this information conclusions on the stabili-

ty of the various states can be drawn.

(1) The finite positive value of the Fermi-level
shift term fE in u i and u3 causes the general

stability conditions to be satisfied. Therefore, near
the triple point, any model with a noninfinite reser-
voir predicts a second-order transition.

(2) Uq being negative causes the states to be
linearly polarized. [Cases (2) and (3) of Sec. III 8
are relevant. ]

FIG. 3. Relative magnitudes of q for the various
Fermi-surface models.

(3) For the unequal sphere model, uz, u4 &0 and

u 3 +2u4 & 2(u i +u2 ) so that the stable state is a
triple-Q linearly polarized one, with all waves po-
larized in the same direction.

(4) For the octahedron model, u2 &0, u4 ——0, and

f/ 3 +2u4 & 2(u i +u 2 ) so that the single-Q linearly

polarized state is stable.
(5) Assuming linearly polarized waves, with all

waves polarized in the same direction (u2 &0,
u4 & 0) then the condition u i +2u 4 & 2u 1 +29 p

for a single-Q state requires [from Eqs. (11)]
q & —» a/P*. This in turn implies that a value

of ((u~.q) ) less than» yields a single-Q state; if
((Uk q } ) is greater than —„,then the triple-Q state

is stable.

To summarize, the relative magnitudes of q are il-

lustrated above (see Fig. 3).

V. DISCUSSION

One of the results here is that the octahedron
model predicts the single-Q linearly polarized state
to be stable, whereas the sphere model predicts the
triple-Q linearly polarized state to be stable. A
qualitative explanation for this comes from the
nesting properties of the two models: In the un-

equal sphere model, translation of the hole sphere
in, say the [100] direction, onto the electron sphere,
and translation, say in the [010] direction, cause in
the two cases different electron states to be paired,
so that one might expect a triple-Q state to result.
On the other hand, for the octahedron model the

TABLE I. Values of the free-energy coefficients for various Fermi-surface models.

Model of Fermi surface Q4

Sphere

Cube
Octahedron

2a+fE'—
fE2

6a+fE—
7 a
3

0
3a

4a+2fE'—
2fE

—12a+2fE

8—a
3

4a
0
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above two translations cause some of the same
electron states to be paired, so that there is some
interference between the two waves (cf.
Overhauser" ).

With regard to previous results, Fenton' has
also shown that the octahedron model predicts the
single-Q state to be stable over the triple-Q state.
He gives as criterion for the stability of the single-

Q state that the Fermi velocity average perpendicu-
lar to the [111]direction in that octant must be
much smaller than the parallel component. The
present results support the general trend indicated

by Fenton, but they also give a precise criterion for
the stability of single-Q over multi-Q states.
Nakanishi and Maki' find for the unequal sphere
model that near the triple point the single-Q state
is stable; they also state that near the impurity con-
centration where the transition temperature be-

comes 0 K, the triple-Q state appears most stable.
The discrepany between the present results and
those of Nakanishi and Maki is probably due to
the latter authors' neglect of the finiteness of the
electron reservoir.

Finally, a few remarks are in order on the oc-
currence of a first-order paramagnetic-
incommensurate transition in chromium. The
models considered in this paper give, within
mean-field theory, second-order transitions near the
triple point. The possibility that fluctuation effects
may give rise to the appearance of a first-order
transition is discussed by Bak, Krinsky, and Mu-
kamel and by Fenton and Leavens. However,
apart from such effects, the question remains as to
what is the origin of the actual jump in the mag-
netization density. A mean-field mechanism for a
first-order transition, with the harmonics playing
an essential role, has been presented by Young and
Sokoloff. This mechanism has the weakness, as
noted by Fenton, that the three-band model is not
in accord with any realistic band structure for
chromium. Nonetheless, the possibility of a
mean-field theory providing the explanation for the
largest part of the first-order jump does not seem

as remote to the present author as it does to some.
In order to obtain such a jump near the triple
point within the present theory, it would be neces-

sary to introduce a nontrivial correlation between
the separation in energy of the two bands (at points
separated by the wave vector Q) and the velocity of
the electrons at these points. In this paper the fi-

nal results have been simplified to the extent that
the velocity of the electrons is constant over the
Fermi surface.

H =pe;c; c;+g b,;,.C; c, ,

the thermal Green's function technique allows an
expansion of

(c, c;)=Z 'tr(e-~"c, c, ),
where Z=tr(e ~ ), in the form

l +" zo+
(cjc )=—g e"

where z„=(2v+ 1)rri /P
This expansion is now applied to the calculation

of thermal averages with respect to the trial Hamil-
tonian K, =Ko+K„where

H, =g [ai, +q(Mq r7)bk+bk+q(Mq cr)ak] .
k, q

Here the operators ak, bk are two-component spinor
operators. This is to be understood when such
operators are unaccompanied by a spin index o.,o.'.
Iteration of the identity

(z„Hp H, );J— ——1

=(z —Hp);~
'

+((z„Hp ) 'H, (z,—Hp H, ) '—),i. —

provides the basis for a diagrammatic expansion of
(,bkak+q ), which by definition represents the 2&&2

matrix ((bk~k+«) ). for example, the term first
order in Mq associated with (,bkak+q ) will be
represented by the diagram shown in Fig. 4. As il-
lustrated in the diagram, an external line Mz 0.

imparts a momentum q to an electron, changes its
band (from a to b or from b to a), and multiplies
the spinor by (Mq cr ) This ex. pansion is now used
to obtain an expansion of 50, in powers of M&.

ak+q bk (arbitrary polarization

state}

FIG. 4. First-order diagram for (bkak+q ).

APPENDIX: MICROSCOPIC DERIVATION
OF THE GRAND POTENTIAL COEFFICIENTS

1. Diagram expansion of (bk~k+q )

Given a Hamiltonian



D. %. BUKER

2. Diagrammatic expansion of 50,

Using the expansion of the thermal Green's
function discussed in Sec. I the variation in the tri-
al grand potential is expanded in a power series in

I Mqj.

a. Second-order part

Referring to Eq. (2) (Sec. II),

5Q,"'=—$ [(Mq. o ) +up"'(q)]5)"' (q)
q„ocr

5Q,' '= g [1(' '(q)5(M .o)* +c.c.]

=gtr[t(' '(q)(5M q).o]+c.c.
q

On substitution of

z„O+
X e G k+q, bk
kv

z„O+
and dropping the factor e "

5Q,' '= —ggtr[G, 'k'+qbk(z, )5M q
o']

~k. q,

+c.c. (A 1) +c.c. (A3)

The first-order diagram for the propagator is as
shown in Fig. 4, so that

g"~(q)=CO(Mq o )

Co ———g Gk+q(z, )Gk(z, ) .

Substituting into Eq. (A 1)

5Q,' '= —g Co(1+uWp)
q

)(tr[(Mq o. )o.(M q. o. )]+c.c.

or

5Q,' ' = —4 g Co(1+DCO )(Mq.5M
q ) .

qr

Replacing gq by a sum over unordered pairs
I'

Iq, —q j, one obtains

Q,' '= —4 g Co(1+uCO)(Mq. M )) .
pairs (q, —qI

The propagator G,'k+q bk(z„) consists of the sum of
terms such as that shown in Fig. 5.

3. Evaluation of the general
fourth-order coefficients

For counting purposes it is convenient to write
the fourth-order part of the grand potential as

Q' '= g 8(p, q;r, s)(M&.Mq)(M„.M, ) .
p~q~ ~~

(A4)

It can be assumed that the coefficient 8(p, q;r, s)
has the symmetry properties
8 (p, q;r, s) =8 (p, q;s, r) =8 (r,s;p, q), that the q; are
ordered, and that p &q, r,s and r &s. The terms
can be classed according to the further ordering of
p~q~r»:

(a) Distinct wave vectors: 8(1234), 8(1324),
8 (1423).

(b) One pair of wave vectors equal: 8 (1123),
8 (1233),8 (1322), 8 (1213).

(c) Two pairs of wave vectors equal: 8(1122),
8 (1212).

b. Fourth-order part

Referring again to Eq. (2),

5Q,' '= —cou g g' '(q)5(M q
)'o+c .c.

q„ocr'

Mq ~ cr
4

a k+q2+q3+q4

INq Cr
3 Mq Cr

2

The second-order coefficient 1+uco vanishes at the
transition temperature so that cou = —1+0(M ).
Therefore

FIG. 5. A typical term in Gpk+q, bI, (~ )

q2+ q3+ q4 ——q.
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The contribution of a given quadruple, say

[p,ti, r, s I, to M, is found by choosing one of the
momenta, say p, and adding together a11 distinct
diagrams arising from interchanges of the remain-

ing three momenta.
By comparing terms in Eqs. (A3) and (A4), one

obtains the fa11owing coefficients:

B(1,2;3,4)= —g [6262346236p —6362346236p+6362346346p+(3= .".}],
]"-l k.

B(1,2;1,3)= g(G]G]]3G]]Gt+6]G]]3G]36p—G3G]]36]36p)
kv

B(l~lq2~3)= g(6]6]]36]]Gp—G]G]]3G]36t+G3G]]3G]36p)

and

B( 1~ 1;2~2)= g &
(G]G ]22G ]2Gp —

G2G ]2pG ]26]] +G2G ]22G22Gp )
kv

B ( 1 q2q 1 2)= g G2G ]22G ]26p ~

~ k.

The natation above has, far example, G~22
——Gk+q, +q +q .

4. The Landau coefficients (specialized to Cr)

The coefficients A, u &, u2, u3, and u4 of Sec. II D can now be written in terms of the band structure.

o. Second order coeff-icient

One obtains

A = —4Cp(1+UWp ),
where

Cp'= g Gk+q(z„}6k(z„) .
~ k.

b. Fourth order coefficients-

Setting 1 =i and 2=i in the equation for B(1,2;1,2), one obtains

u]= g(Gk+q, . ) (Gk) =2C]
~ k.

Also, from B(1,1;2,2),

u2 g [Gk~q Gk q (Gk) (Gk+q ) (Gk) +(Gk+q ) Gk+2q Gk]
kv

or

u2 ——C2 —C)+C3 .

Next, evaluating the three cases of four distinct momenta, [ i,i,jj j:



D. W. BUKER 25

B(l,l;Jj~, )=—g [Gk q ) Gk q. +q.Gk —Gk q Gk. q Gk. q +q. Gk. +Gk~q Gk q—(Gk) +( k —q;) k —q; —q k

kv

or

Gk q G—k —.q,.Gk —q,. —q.Gk+Gk —q.Gk —q,. ( k) 1

I

From u3 B(——i,i;j,j ) and u4 ——B(i,j;i,j ) one ob-

tains
B(i,ij;j )=2(C4 C—s+C 6+C4 —Cs+C6) .

Similarly,

B('j 'i j)=2(C4 —C4+Cs+Cs+C6 —C

and

and

u 3
——2( Cg+ C4 —Cs —Cs +C6+ C6 )

u4=2(Cs+Cs) .
B(ij;i,j )=2( —C4+Cq+Cs+Cs C6+C—6),

where

Under band interchange (a~b),

Ci =—g (Gk+q,. )'(Gk)'
~ k.

Cp ———g(Gk+q )(Gk q.,
)(Gk)'

C2= —g(Gk~q )«k q)(G-k)'
~ k.

3 — g (Gk+q ) (Gk+2q )Gk
a 2 b b

~ k.
1 a 2 b b

C4 =—g (Gk+q, )Gk+q, +q G. k. .
~ k.

a 2 b b
C& =—g (Gk+q )Gk+q, . qGk. — (A4)

a a b b
Cs = g Gk+q. Gk+q;Gk+q;+q.

& k.1, a b b
Cs ———QGk+q Gk q Gk+q, .q Gk. .-.

—g (Gk)(Gk+q, )(Gk . q, )-.~ k.

=—g(Gk+q )'(Gk+2, )(Gk) =Cs .
kv

Similarly under band interchange, C4—+C6,
C4~C6, and C5~C5. Also, under reQection in an
appropriate plane, C4—+C4, C5~C5, and C6~C6,
since the energy bands are invariant under this re-
flection, one has C4 ——C4, C5 ——C5, and C6 ——C6.
Thus

A =—4CO(1+R:0),

u J
—2C]

C6 ——QGk+q Gk q (Gk)
~ k.

y Gk+q;Gk+q (Gk)a a b 2

~ k.

1

u2 ——C2 ——,C) +a~b,
u 3

——4C4 —2C5+a~b,
u4 ——4C5+a~b .

(A6)

'This work is based on a Ph.D. thesis submitted to the
University of Toronto, Toronto, Canada.

C. G. Shull and M. K. Wilkinson, Rev. Mod. Phys.
25, 100 (1953).

L. M. Corliss, J. M. Hastings, and R. J. Weiss, Phys.
Rev. Lett. 3, 211 (1959).

G. E. Bacon, Acta. Crystallogr. 14, 823 (1961).
G. Shirane and W. J. Takei, J. Phys. Soc. Jpn. 17B-III,

35 (1962).
5V. N. Bykov, V. S. Golovkin, N. V. Ageev, V. A. Ler-

dik, and S. I. Vinogradov, Dok. Akad. Nauk SSSR
128, 1334 (1959).

M. K. Wilkinson, E. O. Wollan, W. C. Koehler, and J.
W. Cable, Phys. Rev. 127, 2080 (1962).

~S. A. Werner, A. Arrott, and H. Kendrick, Phys. Rev.
155, 528 (1967).

8Y. Tsunoda, M. Mori, M Kunitomi, Y. Teraoka, and J.
Kanamori, Solid State Commun. 14, 287 (1974).

9R. Pynn, W. Press, S. M. Shapiro, and S. A. Werner,
Phys. Rev. B 13, 295 (1976).



SPIN-DENSITY-WAVE STATE OF CHROMIUM 1005

C. F. Eagen and S. A. Werner, Solid State Commun.
16, 1113 (1975).

A. W. Overhauser, Phys. Rev. 128, 1437 (1962).
' E. %. Fenton and C. R. Leavens, J. Phys. 7, 1705

(1977).
P. A. Fedders and P. C. Martin, Phys. Rev. 143, 245
(1966).

~4L. M. Falicov and D. R. Penn, Phys. Rev. 158, 476
(1967).
T. M. Rice, Phys. Rev. B 2, 3619 (1970).

~6A. Malaspinas and T. M. Rice, Phys. Kondens. Mater.
13, 193 (1971).

A. Shibatani, K. Motizuki, and T. Nagamiya, Phys.
Rev. 177, 984 {1969).
K. Nakanishi and K. Maki, Prog. Theor. Phys. 48,
1059 (1972).

9E. %'. Fenton, J. Phys. 6, 2403 (1976).
E. W. Fenton, Solid State Commun. 32, 195 (1979).

P. Bak, S. Krinsky, and D. Mukamel, Phys. Rev. Lett.
36, 52 {1976).
C. Y. Young and J. B. Sokoloff, J. Phys. F 4, 1304
(1974).

2 %. M. Lomer, Proc. Phys. Soc. London 80, 489
(1962); 84, 327 {1964).

24A. Huber, in Proceedings of the 8th Scottish Uniuersi
ties' Summer School in Physics, St. Andrews, Scotland,
1967 (Mathematical Methods in Solid State and Su-
perfluid Theory), edited by R. C. Clark and G. H.
Derrick (Plenum, New York, 1968), p. 364.

D. Mukamel and S. Krinsky, Phys. Rev. B 13, 5065
(1976).
L. Landau and E. M. Lifschitz, Statistical Physics
(Pergamon, New York, 1960).

M. B. Walker, Phys. Rev. Lett. 44, 1261 (1980).
2~M. B. %'alker (private communication).


