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Dynamical theory of x-ray diffraction at Bragg angles near n./2
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The dynamical theory of x-ray diffraction normally makes use of some approximations

that, however, cease to be valid when 8~ m. /2. In this paper we analyze why this hap-

pens and establish the theory applicable to this case, obtaining new appropriate expres-

sions the analysis of which allowed us to distinguish three different regimes of diffraction

in the neighborhood of m/2 (one related to the usual Bragg diffraction, one a transition

regime, and a third related to the normal soft-x-ray propagation). The reflectivity of a

semi-infinite crystal is then calculated, and extremely large linewidths are found for the

rocking curve as compared to the common cases for perfect crystals; the absorption effect

on the profiles and the relatively small effect of the orientation of the crystal surface, also

studied here, turn out to be quite interesting and may have important practical conse-

quences. As we expected, an extreme sensibility to minute variations of the lattice param-

eters is found. The peculiar peak shapes and the large linewidths could be of use in

high-precision measurements of lattice parameters. Our treatment also provides the

theoretical basis for the design of resonant cavities for x rays and other such inter-

ferometric devices.

I. INTRODUCTION

The propagation of electromagnetic radiation in

perfect crystals has been object of the attention of
many workers in the field of crystal optics both in
the case of short (x ray) wavelengths where there
are diffracted beams and in the case of longer
wavelengths where there is no diffraction. In this
work we study the diffraction of x rays in the small

spectral region in which there occurs the transition
between those two situations and which is charac-
terized by Bragg angles 8& near m /2.

This case has so far received relatively little at-
tention. Exceptions are some general considera-
tions on the dispersion surface in electron diffrac-
tion by Stern et al. ' in 1969 and an initial treat-
ment by Kohra and Matsushita in 1972. After
the completion of the essential part of this work a
paper was published by Briimmer et al. dealing
with partial aspects in the nonabsorbing case and a
proposal for the construction of a Fabry-Perot-
type interferometer for x rays was made by Steyerl
and Steinhauser. However, a theoretical study
analyzing the phenomena occurring in this peculiar

and yet important limiting situation was still lack-
ing. This paper is an attempt to give a contribu-
tion to such a study whose relevance is not restrict-
ed merely to its academic interest but may lead to
important applications. One example of its possi-
ble use is in the development of resonant cavities
for x rays in which the radiation is confined in a
small region of space by means of successive Bragg
reflections by crystal planes oriented perpendicular,
or nearly so, to the direction of incidence. Another
possible application would be in the development
of a new experimental technique for diffraction in
the region of extremely high angles where, as is
widely known, very high accuracies may be
achieved in the measurement of lattice parameters.

Since several of the approximations employed in
the usual dynamical theory are not valid when

0~ m. /2, we will show which expressions cease to
be valid and how they should be modified (Sec. II).
Overlooking this type of analysis leads to impor-
tant errors which are probably the main reason for
not having a complete theory of these phenomena
until now. New expressions, valid in this small an-
gular range, relating the various quantities of phys-

25 971 1982 The American Physical Society



972 ARIEL CATICHA AND S. CATICHA-ELLIS 25

ical interest to the angle of incidence are found
(Sec. IV). Then we proceed to their interpretation
and perform the calculation of the diffraction pro-
files and their main parameters for the nonabsorb-

ing (Sec. V) and the absorbing crystal (Sec. VI).
Finally, we apply the theory to the diffraction of
Co Ka~ by the 620 plane of germanium (Sec. VII)
and show how the different cases analyzed below
can be obtained, thus changing the shape and the
width of the profile, by simply adjusting the tem-
perature of the crystal. This process can be
thought of as a means to tune resonant cavities
made on this principle. Since some changes in the
usual dynamical theory have to be introduced, a
very brief preliminary revision of a few important
points is in order (Sec. II), so that the origin of
these changes may become clear.

II. THE USUAL FORMULATION
OF THE DYNAMICAL THEORY

The formulation of dynamical diffraction theory
of von Laue [see e.g. , Zachariasen (1945), James
(1963), Batterman and Cole (1964), or Kato
(1974}]consists of solving Maxwell's equations in a
continuous periodic medium. In the two-beam ap-
proximation an incident plane wave,

epEexP[ —j(Kp r —vt)],

where
I
Kp

I
=K =v/c and j=2m.i, excites a Bloch

wave within the crystal,

4= , [-y—+(y'+b/
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Xp(1 b—)+ab
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n (Kp+H)

(4)

a =K (2Kp H+H ),
and n is the unit normal to the crystal surface
oriented inwards (see Fig. 1).

We are interested in the Bragg case diffraction

by a semi-infinite crystal. The directly measurable

quantity is the reflectivity R& or power ratio:

Rp =
I
R~

I

'/
I
b

I

= IXs/X & I I

—y+(y' —1)' 'I'.
The important point to be made in repeating

such well-known expressions is that nowhere in

their deduction does one use the fact that 0& differs

appreciably from n/2; that is, the expressions

above are valid irrespective of 0& being near to
n/2 or not. The approximations so far made are

justified by the facts that the susceptibility is a
very small quantity (10 or 10 ) and that in or-

der to treat interference phenomena it is necessary

to keep good precision only in the calculation of
phases (i.e., wave vectors} and not in the calcula-

tion of amplitudes. Thus in expressions (1) one

where kI, ——ko+H, H being a vector of the recipro-
cal lattice. In order that the Bloch wave above be
a solution of Maxwell's equations satisfying the ap-

propriate boundary conditions, the following must
be further imposed.

(a) The wave vectors must lie on the dispersion
surface, /pe's ——Xs X s/4, where gp and g» are the
so-called resonance defects defined by

kp ——k+Kgp, ks =k+Kgs,
with k =K(1+Xp/2), and where Xs is the Fourier
component of the dielectric susceptibility corre-
sponding to H.

(b) The amplitude ratio must be

Crystal surface

Grystal planes

XQ
Rg =Ds/Dp 2'/X——

24
(c) The resonance defect gp must be given by

(2)

FIG. 1. Various geometrical quantities of interest.
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keeps terms of order X [denoted 0 (X) in what fol-

lows] neglecting 0(X ), while in expressions (2) and
(7) dealing with amplitude one keeps only 0 (1).

The quantities of physical interest (kp, k&,R„,R~,
etc.) are written as functions of the resonance de-

fects which in turn are expressed in terms of the
auxiliary variable y generally defined by (4). It is
this last variable that is related to the angle of in-

cidence Hp (the angle between Kp and the crystal
planes), for example, Rq ——Rq(gp(y(Hp))). Only in

the last step, i.e., in the expression y =y(Hp), is the
condition used that Hs (the kinematical Bragg an-

gle) be near to ir/2 or not. Thus, in the usual case
where Hs differs appreciably from ir/2 (say 1' or
more), the small angular deviation from 8&,
60p ——0~ —0p, over which there is appreciable dif-
fraction, is of the order 7 and therefore 50p may be
safely neglected. Expressions (5) and (6) then take
their usual forms:

gle corrected by the average index of refraction:

H =2k, sin0~, (9)

with k„=E(1+Xp/2). Let us define the quantity e
in the region H~=ir/2,

H =2K(l+e'), (10)

where e is a small quantity of order X.
It is convenient to measure the angles of in-

cidence and diffraction from the normal to the
crystal planes and to take the counterclockwise
sense as positive (Fig. 1): 58p ——m. /2 —Hp and

501, ——n./2 —0~. Finally, let g be the angle between

the crystal surface and the diffracting planes and
define

~= tang

IV. SOME EXPRESSIONS VALID WHEN 8~ m/2

and

n Kp ypb=
n.SC„yI,

a =2aopsin20~ .

(5')

(6')

A. Relation between the angles
of incidence and diffraction

The condition of tangential continuity of the
wave vectors, KI„—Kp, ——H„may be written in the

form (see Fig. 1)

y=~b~ ' (XX )

X [ z Xp( 1 —b ) +b b Hpsin28s ] . (8)

By substituting a from (6') into (4) one obtains a
linear relationship between the auxiliary variable y
and the angular variable 60p..

I( [sin(rl 58& )+si—n(rl —58p)] =H sing

or, using (10) and (11) and keeping terms up to
0 (X),

, r(58p+ 58—s)+58p+58s+2er=0, (12)

Equation (8) is valid whenever 8&+n/2 (The. .
symbol ~ as used here indicates that the magni-

tudes related by it are not close enough to warrant
the validity of the new approximations set up in
this paper. ) One can observe in passing that y does

not change if H is interchanged with —H even

when anomalous dispersion is present. As we shall

soon show, the relation between y and 50p when

Hs-ir/2 is no longer linear but cubic in 68p, a
fact which has far-reaching consequences in the

theory developed below. It will be shown that in

this case the width of the diffraction peak is of the
order X'~ . (This conclusion was first obtained by
Kohra and Matsushita in the case of nonabsorbing
crystals by means of a geometrical study of the
dispersion surface. ) Here, this means that
b,Hp-O(X ) should not be neglected.

and solving for 50p or 50I, and using the approxi-
mation (1+x)'~ 1+—, x ——,x, one obtains

50p ———50I, —~50I, —2m~,2 (13)

H.Kp ———HE cos50p,

one obtains

and a similar expression for 50~ with indices 0 and
h interchanged. The second root of (12) is not con-
sistent with the approximations made and therefore
lacks physical meaning.

B. The asymmetry parameter b

and the variables a and y

Froin (5), (6), and (10), using

n Kp= Ecos('g —58p)—
and

III. DEFINITIONS AND NOTATION

Let X~ and XI',
'

be, respectively, the real and the
imaginary parts of X~ and let 0 be the Bragg an-

and

b = —1 —2r58p+ 0(X)

a =2(58p+ 2e) +0(X ) .

(14)

(15)
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+O(X) .

C. Incidence and diffraction angles
as functions of y

To obtain 58p ——58p(y) one solves the cubic equa-
tion (16) for 58o. The result, correct to O(X}, is

58p(y)=+[Xp —2e —y(XsX q)' ']' '
——,'r[Xp —y(XsX I, )'"] . (17}

The substitution of (17) into the equivalent of (13)
with 0 and h interchanged leads to

Substituting these into (4) and using the expansion
(1+x) '~ =1——,x+, we get

y = —(XsX s)

)& [r58p+ 58p+ 2Er58'p —(Xp —2E) ]

O(1) and does not correspond to the case
8~=m/2.

T. he symmetry between (17) and (18) to-
gether with the fact that the reflectivity given by
(7) is only a function of y implies the applicability
of Helmholtz's reciprocity theorem to x-ray
dynamical diffraction with or without absorption
when 0&-m/2.

V. THE DIFFRACTION PROFILE
WITHOUT ABSORPTION

The diffraction profile is obtained by substituting
(16) into (7): R~ =R~[y(58p)]. (Here we disagree
with Kohra and Matsushita. They claim that in-
tensities are obtained by the replacement of y by
y, which does not seem to be the case. ) Let
(XsX s )' =

I
Xs

I
and Xp ——Xp, then y is real.

A. Three Cases

58'(y}=+[Xo—2~—y(XsX s)'"1'"
——,r[Xp —y(XsX p,

)' '] . (18)

We shall pay attention solely to the region of to-
tal reflectivity (RTR) in which Iy I

&1 leads to
R& ——1. The limits of the RTR are easily obtained
by substituting y = + 1 into (17):

The presence of the double signs is easily under-
stood: There are two directions in the same plane
of incidence which satisfy the diffraction condi-
tion, one corresponding to 0 and the other to

8~ T.—he th.ird root of (16) lacks physical
meaning since it is of the order of 1/~ or about

Rp

58o (+1}=+(Xo—2~+ IX& I
)

——,
'
r(Xo+

I
Xs I

)

The number of real values of 58p+—'(+1) allows one
to distinguish three cases (Fig. 2).

1.0--err irr- /rrr rr/r rf
r/ »r r'rrrrr
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(a) Case T.

(b) Case 3I

(c) Case 3K
FIG. 2. Diffraction profiles without absorption for 8~ m/2.



25 DYNAMICAL THEORY OF X-RAY DIFFRACTION AT BRAGG. . . 975

Case I: Xo —2e &
~
Xs

~

. There are four real
values Mo—'(+1},i.e., two RTR's.

Case II: —
~
Xs

~
&Xo 2—e &

~
Xs

~

. There are
only two real values 58o-'( —1), i.e., only one RTR.

Case III: Xo —2e & —
i Xs i

. There is no RTR
though there may still be some diffracted intensity.

different cases, are results first obtained by Kohra
and Matsushita by means of a geometrical study
of the dispersion surface for nonabsorbing crystals
that appear quite naturally in the present general
formulation.

B. Line widths

We define the width of the diffraction profile as
the width of the RTR since this is a useful concept
even in the presence of some absorption. From
(19); for case I,

C. Influence of the orientation
of the crystal surface

From (19), the effect of a nonzero r is to shift
the limits of the RTR corresponding to y = + 1,
respectively, by angles g+ and g (Fig. 3), given by

W,'+'=(X, —2e+
~
X,

~

)'" 0+ = (
I
xo

I

+
I
xi

I
}«2 (23)

—(Xo —2e —
I xs

I

)' +r
I
xa I

8'q-+' correspond to 58O &0, respectively, and the

linewidth is of O(X). For case II,

Wii =2(Xo —2e+
I
xs

I
} ' (21)

Note that in this case the linewidths are of
O(X'~ ), i.e., from 2 to 3 orders of magnitude

larger than those in case I or in the common case

0~m/2, so that the approximations used in the
previous calculations were made accordingly. In
the particular case 0 ——m. /2, one has Xo —2e=0,
obtaining:

Wii(8+ ——m. /2) =2
i Xs i

' (22}

Formula (22), as well as the distinction of the three

In case I one sees a deformation (for g+ ~ g ~ 0
when r y 0) and a displacement of the peak similar
to the well-known analogous effect found in the
usual dynamical theory. In case II, however, the
situation is quite different, since according to Eq.
(21) W» does not depend on r; the profile is merely
shifted as a whole. One should note that while the
shifts g+-O(X) are very important when 8~ is not
near to ~/2, for then the linewidths are also of
O(x). When 8~=~/2, one has g+ && W, which
means that the diffraction profile is quite insensi-
tive to the surface orientation. In some applica-
tions, however (e.g., an x-ray resonator), this 4mall
relative effect might still be of importance. In such
cases one may wish to determine the direction of
incidence for which the beam will be reflected upon
itself. The condition for this to happen is 58o(y)

P

{a

t
fWI

l

Ij

{b)

t

l

'i

ee,

(a) Case

(b) Case K
0

FIG. 3. Effect on the profile of a tilted crystal surface. Not drawn to scale. ———~=0, g) 0.
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=58«(y), which from (17) and (18) implies

y=(&«& «) '"(&o—2e)

which corresponds to

58o(y ) = re—,

(24)

(25)

a result valid regardless of there being absorption
or not.

there arising the possibility of &Op taking ima-
ginary values. The fact of t9~ being complex is in-

terpreted geometrically as the case where the
spheres of radius k, centered at the reciprocal-
lattice points 0 and H do not intercept each other

[Figs. 4(c) and 4(d)]. Even if 8~ is complex the
diffracted intensity may still be rather high [Fig.
4(c)].

D. On the possibility of diffraction
occurring at a "complex Bragg angle"

From (10) and the definition (9) of 8,

58,=~a 8.=+(X-. 2.)'"— (26)

The three cases of Sec. V A may be distinguished

according to the value of 58' relative to
~
1« ~,

VI. THE DIFFRACTION PROFILE
WITH ABSORPTION

A very elegant method to study the reflectivity

Rz ——Rz (y(80)) in the usual Bragg diffraction case
has been proposed by Fingerland. Here, we
develop this method further so that with some
modifications it may be applied to the case
8~ n./2. To do so we write (7) in Miller's form, '

(a ) Case I

ee, real

68~ & X~

(b) Case II: 0 & 6e& &

68B real

(c) Case IZ: — Xh & 68B & 02

6 e, imaginary

( d ) Case III: 68B & — Xh

6 8 8 imaginary

FIG. 4. Dispersion surface when 8~-m/2. In (a) and (b) 58& is real while in (c) and (d) it is imaginary.
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Rn =
I X» /X-»

I
[L —(L' —1}'"], (7') is a real function while

which has the advantage of eliminating the double
sign appearing in (7). Here

L= Iy I'+ Iy' —l
I

. (27)

The study is then performed in three steps as fol-
lows.

(a) We construct, following Fingerland, the sur-

face

a =a +ia = —(X»X» )

P=P'+i P"= —aXp'
(31)

are complex constants.
Using the same procedure, i.e., separating y into

real and imaginary parts and eliminating f(58p),
we get the same linear relationship between y, and

y; with

Z(y) =L (L —I )
'i— (28)

I

M=a"/a', N= —Xp Ia
I

~/a' (32)

y =af(58p}+P,

where

(29)

f(58p) =r58p+58p+2re58p —(Xp —2E'} (30)

FIG. 5. Sketch of Fingerland's surface Z(y)
=L —(L —1)' and its interception with the plane:

y; =My„+N.

in the three-dimensional real space (y;,y„,Z) where

y =y„+iy;. Figure 5 gives a representation of such
a surface, which we propose to call Fingerland's
surface since it is "general and independent of the

actual physical situation"; it is, in fact, the same
for any Bragg case diffraction by a semi-infinite

crystal. Fingerland's study is entirely applicable
and need not be repeated here.

(b) Starting from the linear relationship between

y and 58p (which he denoted i) and g, respectively),
Fingerland showed in the common case 8~m/2
that there exists a linear relationship between y„
and y; [his equation (9}],so that the profile in the
y„scale, times

I X»/X» I, is given by the projec-
tion on the plane (y„,Z) of the intersection of the
plane y; =My„+N with Fingerland's surface (Fig.
6). In our case, however, the relationship between

y and 58p is not linear but cubic [Eq. (16)];we
write it in the form

It is to be noted that all dependence on z has
disappeared: The profile on the y, scale is indepen-
dent of the crystal surface orientation.

(c) Transforming from y, to 8p we obtain the
desired profile. In the usual approximation this is
a trivial step since because of the linear relation be-
tween y and Oo this involves just a change of both
scale and origin. However, when L9~=m/2 the si-
tuation is more complicated. From (29), (30), and
(31):

y„=a'[r58p+ 58p

+2re58p —(Xp 2E')]+Xp a" (33}

The most interesting feature of curve ~~~~

y„=y„(58p) is that y„attains a local maximum for
58p= —1 E [this corresponds to y =y given by (24)
which is in the region where appreciable diffraction
occurs]. The three cases I, II, and III may again
be distinguished according to whether y, ) 1,

I y„ I
& 1, or y„& —1, respectively (Fig. 7). Owing

to absorption the transition from one to another
case occurs gradually.

If we study Figs. 6 and 7 simultaneously, the
qualitative features of the profile may be obtained.
The process of generating these profiles is graphi-
cally illustrated in Fig. 8. To the left there appears
the section of Fingerland's surface; when 500
varies, this section is followed up to the maximum

y, of y, and then back again following the descent
of the curve y„=y„(58p). The profile thus generat-
ed appears on the right of the same figure. It is
obvious that in the normal case 8~=m. /2, since the
relationship y =y(58p} is linear, the section of
Fingerland's surface is passed over just once in a
given direction. In our case this "walk" back and
forth on Fingerland s surface is indicated schemati-
cally by a curved arrow below the figure. For in-
stance, in case I [Figs. 7(a), 8(a), and 9(a)], as 58p
increases y„enters the region of high reflectivity
(RHR) producing a peak similar to that of Fig. 6,
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Rp

I.O

-2.0 -I 5 - I.Q 0.5 0.0 0.5
I

I.Q

FIG. 6. Diffraction profile in the y, scale.

y, then becomes greater than unity, and R~ drops
to nearly zero. A further increase in 500 makes y„
retrace its steps back into the RHR producing
another peak, almost a mirror reflection of the first
(such profiles calculated in a particular case in Sec.
VII are shown in Fig. 9). In case II [Figs. 7(b),
7(c), and 8(b)] the situation is quite similar except
that y, enters the RHR and starts its return before
a large drop of R& occurs. The asymmetry of
R&(y„}will appear in Rz(580) as a small dip in the
center of the profile. In some applications it may
be convenient to eliminate it by choosing the ex-
perimental conditions so that the return value y,
occurs at the point where Rz(y, ) becomes max-
imum [Fig. 8(c)]. In case III y„never enters the
RHR but there may still be a small diffraction
peak [Figs. 7(d), 8(d), and 9(f)].

In all three cases the effect of the orientation of
the crystal surface (which is always small) is taken
into account through the asymmetry of the curve
(33). For a symmetrical (v=0) geometry (33) be-
comes a parabola and the profiles are even func-
tions of 50O.

VII. APPLICATION TO THE DIFFRACTION
OF Co Kai BY Ge (620)

We apply the two-beam theory developed above
to the specific example of the diffraction of
CoEai radiation by the 620 planes of germanium.
This choice was motivated by the actual feasibility
of the experiment (cobalt x-ray tubes and perfect

germanium crystals are easily available} but it
suffers from a problem. When 8 and 580 differ
from m. /2 and 0, respectively, by less than O(X),
due to the high symmetry of the cubic lattice one
deals, not with a two-beam case but with a 24-
beam case. Luckily, this should not be a serious
practical drawback because the dynamical multiple
beam resonance region is very small (some seconds
of arc) compared to the two-beam resonance region
(about ten minutes of arc). Anyway, all considera-
tions made below are of general applicability and
are not restricted to this special situation of
CoEai and Ge 620.

The structure factors were calculated by using
data from Ref. 11:F(000)=249.12+i9 36 and.
F(620)= 111.12+i9.36. Temperature corrections
were taken into account through a coefficient of
thermal expansion of 6)&10 'C ' and through a
Debye-Wailer factor e =0.84 calculated for
T=11'C using a Debye temperature of 290 K.
The factor e™may be considered practically con-
stant in the range 5—15 C. Very accurate values
for both the wavelength and the lattice parameter
are needed: A, =1.788 965 A (Ref. 11) and
a =5.657 820 at 25'C [Hom, Kiszenick, and Post
(Ref. 12)]. Some numerical results and the profiles
are shown in Table I and Fig. 9, respectively. One
should note the following:

(a) The large linewidths and integrated intensi-
ties.

(b) The decrease of linewidths as the temperature
increases and the situation approaches that of the
usual theory.
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=6e,
(a) Gase I: yr & (

-2/3& II

!
I I

I

{ b) Gase D: 0& yr& I

-2/3~, (
/I

!

I

!
!

t

{ c) Gase IX: -l& Y„&0

-2/5~
I I

!

I I

!
l

! w

y„))

= 6ep
{ d) Gase sir: y

FIG. 7. Transformation y, =y„(00) when 0~-m/2. Not drawn to scale.

(c) The asymmetry of the peaks in case I is a
feature which should not be diAicult to observe
when 0~=m/2.

(d) The central dip in case II, which obviously
has the same well-known physical origin as the
asymmetry of (c).

(e) The peculiar "square" shape obtained when

the central dip is eliminated [Fig. 9(e)] is explained

by the action of the stationary point in (33) which

abnormally "stretches" the region around which

Rz is maximum.
(f) The rapid decrease in R~ in case III.
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Rp )

deo
(a) Ref lectivity in case I

Rp)i

d o-
( b ) Ref lectivity in case 2

= deo

Rp ii

I

I

I

I

I

I
V~

d9o

(c) Refiectivity when y = y

Rp)

=de,
d Bo=

(d ) Ref lee tivity in case GX

FIG. 8. Illustrating the mathematical process of generating the profile R~ =R~(y(Oo)) described in the text.

(g) The high sensibility of the profiles to the
value of the lattice parameter. This implies that
the actual profile may depend upon the particular
sample used.

(h) Multiple beam effects modify the profile 9(d),
but they do so in a region about 500——0 which is
so narrow that it does not appear in the scale of
the figures.
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FIG. 9. Calculated diffraction profiles of Ge (620) using CoEa& radiation at various temperatures, 8~~/2, r=0.
Information about these profiles is given in Table I.
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TABLE I. Information concerning the profiles of Fig. 9.

Profile (a) (b) (c) (d) (e)

T (C)
50 (min)

Line width
(min)
Case

13.0
20.1

9

12.0
16.2
12

11.0
11.0
34

10.15
~0
26

9.2
lmag.

11

8.7
imag.

VIII. CONCLUSIONS

The key point in solving the dynamical diffrac-

tion problem when 0~=m./2 lies in writing the re-
flectivity as Ry ——Rz(y) with y =y(0o) and noticing
that due to the convenient choice of y the form of
R (y) is independent of 0&, so that one has only to
modify y(0o). Even though applied here only to a
semi-infinite crystal the method may be used for
finite crystals: One would use the curve
R~' =R~' (y) appropriate for finite crystals given by
the usual theory combined with y„=yr(0&) given

by (33).
After explaining the approximations appropriate

for 0~=~/2 we obtained expressions for the vari-
ous quantities of physical interest the analysis of
which led to the distinction of three cases. Case I
is a limiting situation of the usual dynamical

theory, while the normal soft x-ray propagation is
the asymptotic situation of our case III. The tran-
sition region or case II exhibits peculiarities of its
own. We obtained expressions for the large line-

widths (several minutes of arc), studied the very
small effect (shifts of seconds of arc) of the orienta-
tion of the crystal surface, called attention to the
possibility of there being rather intense diffracted
intensity under conditions of a complex Bragg an-

gle, and studied the effect of absorption on the pro-
files, noticing that in case II the peak exhibits a cu-

rious central depletion.
We would like to point out that the extreme sen-

sibility of the diffraction profiles to the lattice
parameter and the large linewidths suggest the pos-
sibility of the development of a new diffraction
technique with 0~-rr/2 for various precision
measurements and studies of crystal imperfections.
Actually, one may think of the transformation (33)
with a stationary point in the region of intense dif-

fraction acting as a lens magnifying all the details
of the curve Rz ——Ry(y). Finally, we note that the
approximations developed in this paper constitute
the theoretical basis necessary for the design of
resonant cavities for x rays and various other such
interferometric devices. Experimental work aimed
at the verification of some of the theoretical con-
clusions arrived at in this paper is now being per-
formed in this laboratory and will be reported in a
near future.
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