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Charge-density-wave motion in NbSe3. II. Dynamical properties
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We have studied the quasiperiodic noise generated in NbSe3 above the critical electric
field where the charge-density waves (COW's) are depinned. The Fourier spectrum of the
noise can be totally described with three fundamental frequencies and their harmonics.
At high electric fields the fundamental frequencies are still observable at 100 MHz. We
have performed interferences between these frequencies in the noise and an external rf
field as measured in the low-frequency dV/dI characteristic. With the model where the
phase of the COW is described as an overdamped oscillator we explain why we observe
an increase in the differential resistance of the periodic frequencies. We explain also that,
in spite of the great number of domains in the sample, a coherent signal is observed be-
cause of the self-synchronization of all the domains at a given frequency. We show that
the periodic frequency has a linear variation with the current carried by the COW. The
inverse of this slope gives the number of electrons in the band affected by the COW gap.
We find that this number is the same for each COW in NbSe3 and in excellent agreement
with the number of electrons which can be obtained by simple band calculations.

I. INTRODUCTION

One of the aims in the study of dimensionality-
restricted systems, in particular one-dimensional
systems, concerns the possibility of observing su-

perconductivity by another mechanism than the
one described by the theory of Bardeen, Cooper,
and SchriefI'er' (BCS). In fact, one year before the
BCS theory, Frolich had proposed a model where
a charge-density wave (CDW) could move without
damping in the lattice if its phase were invariant

by translation. Lee, Rice, and Anderson showed
that in real systems the phase of the CDW was

pinned by commensurab:ility with the underlying
lattice, or by Coulomb interactions between adja-
cent chains or by impurity pinning. Oscillations of
the CD% around the pinning centers can explain
the large values of the dielectric constant in

K2 [Pt(CN)„] Bro 3.3H~O [KCP (Ref. 4)] and in

tetrathiafulvalene-tetracyanoquinodimethane
(TTF-TCNQ). Conductivity nonlinear with the
applied electric field has been observed at very low
temperature in the insulating Peierls phase of one-
dimensional (1D) conductors and explained by non-
linear excitations or solitons in the CD% lattice.
A drop in longitudinal conductivity of TTF-TCNQ
has been observed in the pressure range where the

CD% and the lattice are commensurable and
therefore when the CDW is more strongly pinned.
This result suggests a contribution of mobile CDW
Auctuations to the conductivity above the Peierls
transition when the CD% and the lattice are in-
commensurable, However, NbSe3 is unique be-
cause it shows an extraconductivity induced by the
electric field in the full range of temperature
where two incommensurable CDW transitions ap-
pear at T& ——II45 K and T2 ——59 K, which was as-
sociated with the motion of the CD%'s. Unfor-
tunately, superconductivity was not observed, and
the maximum of conductivity measured is no
larger than that which can be deduced if the
CDW's mere not present. However, NbSe3 is not a
strictly 1D material, and normal electrons remain
after the two successive gaps induced by the
CDW's.

As found by Fleming and Grimes, the nonlinear
properties start above a. critical electric field when
the electric force overcomes the pinning force. In
paper I (Ref. 7) we have reported measurements of
the differential resistance variation dV/dI as a
function of the current in the sample, and we have
shown that under some conditions a sharp dip in
d V/dI is observed near the critical field. We have
developed a model where, in a domain, the CDW
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follows two equations: Its phase is described as an
overdarnped oscillator, and the total current is the
sum of the normal electron current and the current
carried by the CD%' in motion. We have solved
these equations by assuming either the electric field

or the current regulated. Discrepancies between

the experimental results and the model with a
unique domain have led us to consider that the

sample is formed with multiple domains in which

the phase of the CD% is constant, each domain

separated from another by normal walls. This
description is supported by the observation of
domains by Fung and Steeds' and by the filamen-

tary superconductivity" measured at low tempera-
ture. %e have assumed that the distribution of
critical electric fields of this assembly of domains

was Gaussian.
Above the critical field noise is generated in the

crystal. Fleming and Grimes have shown that
this noise is the superposition of a broad-band

noise and a periodic noise. %e have interpreted
these frequencies as the modulation of the current
carried by the CD% in the pinning potential. '
%'e previously reported the observation of steps in
the nonlinear characteristic when we superpose a rf
field with variable frequency and a given dc cur-
rent higher than the critical one. These steps or
peaks in d V/dI are the consequence of the syn-
chronization of the noise by the external rf field.

Hereafter we describe in detail experiments on
the quasiperiodic noise. We have performed syn-
chronization experiments for the two CD%'s and
have studied the influence of the rf amplitude on
the observation of harmonics and subharrnonics.
%e have also analyzed directly the noise with a
spectrum analyzer, and we show that except near
the critical field the frequencies measured in the
d V/dI characteristics with the external synchroni-
zation and those measured by direct analysis of the
noise are identical. All the quasiperiodic noise can
be described with three fundamental frequencies
with harmonics and subharmonics. With the same
model as that in paper I, we explain why we ob-
serve an increase in the differential resistance at the
periodic frequencies. We also explain that the
coherent signal measured between the voltage
leads, in spite of the great numbers of domains in
the sample, results from the locking of all the
domains at a given frequency. Finally, we verify
the linear variation of the frequencies with the
current carried by the CDW. The slope measures
the number of electrons in the band affected by the
gap. %e find that the same number of electrons is

involved in each CD%, and this number is in ex-
cellent agreement with that which is deduced at
room temperature by band calculations.

II. EXPERIMENTAL TECHNIQUES

The characteristics of the samples that we have
measured are indicated in Table I of paper 1. The
technique of synchronization of the quasiperiodic
noise by an external rf field is shown in the block
diagram of Fig. 1. The rf generator delivers a
variable frequency which is swept linearly with
time. The amplitude of the rf current is measured
through the resistance 8 with an oscilloscope. The
frequency is measured with the frequencemeter and
is recorded through a digital analogic converter on
an x-y recorder. The differential resistance is ob-
tained with four contacts with an ac bridge work-
ing at 33 Hz where the ac current can be varied
between 0.01 and 10 pA (typically 1 pA). Any
parasitic reflections in the current leads between 20
kHz and 20 MHz were eliminated with adequate
inductances and capacitances.

For the direct analysis of the noise across the
sample, the voltage noise was amplified with a dif-
ferential amplifier with a bandpass of 2 MHz and
analyzed with a 7L5 Tektronix spectrum analyzer.
The eigenfrequencies are directly visualized on the
oscilloscope and can be drawn on an x-y recorder
by sweeping the frequency. When the contacts
were made with silver paint as for sample 1 or for
sample 5, the Fourier-spectrum analysis led to fre-
quencies that were not very well defined but
asymmetrical and broad. When the contacts were
made by pressure between the sample and gold
evaporated leads on a quartz substrate, as for sam-
ple 6, very sharp peaks were observed in the
Fourier analysis, perhaps because of the better de-
finition of the equipotentials at the voltage con-
tacts. Therefore for sample 6, we have extended
the noise analysis with the 7L13 Tektronix spec-
trum analyzer where the central frequency can be
varied between 100 kHz and 1.8 GHz. The noise
voltage is amplified with a broad-band amplifier
which is not differential, but we have verified
separately for each voltage lead that the same spec-
trum was obtained. We have observed fundamen-
tal frequencies up to 100 MHz and harmonics up
to 400 MHz.

We have studied the two CD%'s in NbSe3. The
measurements for the upper CD% were performed
in liquid argon to eliminate any heating problems
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FIG. 1. Block diagram of the synchronization experi-
ment between an external rf frequency and the voltage
noise induced in the nonlinear state of NbSe3.
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III. EXPERIMENTAL RESULTS

A. Synchronization of the periodic noise
by an external rf field
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FIG. 2. Differential resistance dV/dI I,
'at 33 Hz) as a

function of the current swept in the sample with a
8.334-MHz rf field applied. Peaks indicate synchroniza-
tion of the noise frequencies with the external frequency.

In Fig. 2 we emphasize the effect of the super-
position of a rf current and a dc current for the

upper CDW transition. %e applied to the sample
a rf current with a constant amplitude and a fixed
frequency, and we swept the dc current. The dif-
ferential resistance (at 33 Hz) shows the same
features as reported in paper I in Fig. 2: d V/dI is
constant up to a critical electric field F., (or a criti-
cal current because we are in the current-regulated
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regime) above which the pinning is overcome.
Above E„dV/dI decreases. However, the effect
of the rf field is characterized by the presence of
several peaks. As explained in paper I, in the de-
pinned regime the current carried by the CD& has
an ac component which is a function of the electric
field in the sam. pie. %hen the frequency of this
modulated current is equal to the externally ap-
plied rf frequency there is interference, as seen by
an increase in d V/dI. In practice we do not per-
form the experiments in this way, but we keep con-
stant the dc current higher than both the critical
current and the amplitude of the rf current, and we
sweep the frequency of this rf current.

gffect of the amplitude of the rffield

The observation of peaks in the variation of
dV/dI with the external frequency requires the rf

FIG. 3. Differential resistance dV/dI as a function of
the external frequency for an electric field E/E, {I,~——0)
=1.57 at different amplitudes of the rf current. The
fundamental frequency peak in dV/dI appears only
when I~p 70.8 pA. For higher rf amplitudes, harmon-
ics and subharmonics of F0 are observed.
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FIG. 4. Differential resistance d V/dI as a function of the external frequency in the 0.1 —1.1 MHz range for sample

5 at 112.4 K with a constant rf amplitude and for different dc currents higher than the critical one. All the peaks are

labeled as harmonics or subharmonics of the fundamental Fo and two fundamental satellites F1 and F2.

current to be at a certain minimum. In Fig. 3 we
show the variation of dV/dI for the upper CDW
transition of sample 5 at different rf currents for
E/E, (I~=0)=1.57. We observe that below the
rms amplitude of the rf current of 71 pA, there is
no peak. For higher rf values, one peak appears.
For the following we will call as the fundamental

frequency the first frequency I'p which appears
when we increase the amplitude of the rf field.
For all the samples studied and all the tempera-

tures, the ratio between the rf electric field and the
dc electric field in the sample for observing the
fundamental frequency in dV/dI is around 6%.
When the rf current is increased further, the am-
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FIG. 5. Same as Fig. 4 but for T =44.5 K. The left-hand part: the 0.1 —1.1 MHz frequency range. The right-hand

part: between 0.1 and 10 MHz.
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plitude of the fundamental frequency increases,
harmonics and subharmonics appear, and also two
other frequencies F& and E2 are observed. %e
have verified that the amplitude of Fo (or Fi and

Fq) saturates at high rf currents. When the rf field
is not too strong compared to the dc electric field,
the frequencies of the fundamental and its harmon-
ic are independent of the rf current which is not
the case with too high a rf current (321 p,A in Fig.
3) or near the critical field. However, as it was
shown in paper I, Sec. III E the depinning condi-
tions are changed when we superpose a high-
amplitude rf field at a relatively low frequency
(-1 MHz). The dc critical field is reduced, and
therefore for the same applied field, following Eq.
(11) in paper I, synchronization takes place at
higher frequencies.

2. Variation of with the external frequency
dV
dI

In Fig. 4 we show the variation of d V/dI con-
cerning the upper CD% transition of sample S as a
function of the external applied frequency in the
0.1 —1.1 MHz range for different dc currents
higher than the critical current. At 112.4 K,
E, =600 pA as seen in Fig. 2. %e note that all
the frequencies increase with the dc current (or the
dc electric field). All the peaks in d V/dP can be
labeled as harmonics or subharmonics of Fo and
also of another frequency E~. With the rf ampli-
tude applied, E~/E, =0.275, many subharmonics
of Fo (at least seven) are observed.

Figure 5 shows the same d V/dI variation as that
in Fig. 4 but for the lower CD% transition, where
the same features are observed. In the left-hand
part of Fig. 5 in the 0.1 —1 MHz range all the
peaks are labeled as harmonics and subharmonics
of Eo and Fi. In the right-hand part of Fig. 5 for
higher electric fields we see that the subharmonic
content decreases. However, the experiments were
performed with a constant value of I~ and we have
seen in Sec. IIIA1 that the important parameter
for the observation of subharmonics is the ratio
En/E, so at high E the subharmonic amplitude de-
creases, and only the fundamental frequencies
remain. However, if we increase E~ we observe
again many subharmonics.

In Fig. 6 we show the variation of d V/dP at
high electric fields compared with the critical field
for the two CDW's in the 0.1 —20 MHz frequency
range. The amplitude of harmonics when observed
is just slightly decreasing when their range is
higher. %e have reported previously' that the
peaks in dV/dI disappeared for 3 or 4 E„only be-
cause the rf amplitude was kept too sma11. For
sample 6 we have observed frequencies and har-
monics up to 1QE, .

dV3. Temperature variation of

The variation of dV/dI as a function of the rf
frequency is totally similar for the two CD%'s.
%e have observed that the peaks in dV/dI are
very broad in the temperature range between T, or

1

Sample 5

F 0F
I

400 ~A
&Pg 44 P.A

T=112.4 K

165/A

F FP

~"la)~. -l~ylM- WA
dl

r F0
I

F1

boa
2.5A

F0
) 1100

3Fjp

0.SA

250
I ro 2 Fo

950

2 F0

3F 3 ij)

I 1 I

4 8 12 16 20 3 5 7 9'V {vHz) I~~Hz&
PEG. 6. Differential resistance dV/dI as a function of the external frequency in the range 0.1 —20 MHz for sample

5 at T =44.7 and 112.4 K.
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T,, and the temperature where the resistivity is

maximum. If we define a Q of the "resonances" as
measured at the middle of the peaks, near T, , or

T, , Q is typically around 3, but below the resis-

tance maximum temperature Q is arou dnd 50. To
illustrate this point in Fig. 7 we show dV/dI at

different temperatures for each CDW for approxi-
mately the same T/T, , ,

Thus by the application of a rf field, resonances
are observed in d V/dI which are harmonics or
subharmonics of three fundamental frequencies (in

the following the peaks are represented by the
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FIG. 9. Variation with the electric field of the three fundamental frequencies vp, v&,v2 which appear in the noise at
T =35.9 K for sample 6.

letters FOP'& P'z and their frequencies by vo,v&,vz).

B. Direct analysis of the periodic noise

The Fourier components of the voltage noise can
be obtained directly by analyzing the noise with a
spectrum analyzer as made for the first time by
Fleming and Grimes and later by several other
groups 12 1 5

l. Finite frequency at the critical field

When the differential resistance dV/dI shows a
continuous drop at the critical field as for sample
1 (Fig. 1 in Ref. 12), sample 4 (Fig. 1 in paper I),
or for the samples measured by Fleming, ' the
eigenfrequency starts at zero at E, and increases
with the electric field. However, this is not the
case for samples where d V/dI shows a sharp
discontinuity at E„as does sample 6 (Fig. 6 in pa-
per I). In Fig. 8 we show the Fourier spectrum of
the noise of sample 6 at 35.9 K drawn on an x-y
recorder. E, at this temperature is 80.4 mV/crn.
This field corresponds to the sharp drop in d V/dI
where, as seen in paper I, broad-band noise is gen-

crated in the crystal. Just 2 mV/cm above E„the
Fourier spectrum shows a frequency I'o and its
harmonics where the variation cannot be extrapo-
lated to zero for E,. As in Sec. III A we will de-
fine as the fundamental frequency the first fre-
quency which appears in the Fourier analysis.
When E is increased a little more, another frequen-

cy F& is detected with its harmonics. The third
frequency Fz will be visible for E =105 mV/cm.
These eigenfrequencies appear at a finite value, Fo
at E, and I'& and F2 for higher values of E. The
variation of FOP'& Pz with E is shown in Fig. 9.
This behavior is directly related to the shape of
dV/dI. Thus for sample 6 at T =48.6 K where
dV/dI does not show a discontinuity at E„I O ex-
trapolates to zero at E,.

2. Eigenfrequencies at very high electric field

The sharpness of the Fourier peaks in the noise
for sample 6 between 0 and S MHz leads us to fol-
low these frequencies at higher electric fields. The
7I.13 Tektronix spectrum analyzer can measure
frequencies up to 1.8 GHz, but its frequency defini-
tion is much less precise than the 7L5 analyzer,
especially at low frequency. We have increased the
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TABLE I. Noise eigenfrequencies of sample 6 at T=48.6 K, E,=46 mV/cm. All frequencies are measured in

MHz,' E is measured in mV/cm.

Vp V2 2Vp 2vi 2V2 3Vp 3vi 4Vp 4v] 5vp 5v~ 6vp 7vp 8vp

124.5 11.6
430.0 90.1

V3

81

V6

47.8

10.51
88.2

V4

75.2
V7

45.5

10 23.5
86.2 180.5

V5 2V3

74 164

22.7 20.2
176.5 171.8 270.9
2v4 2v5

150 148

33.5 47.5 44.0
265.0 361.8 353

59.5 55.2 72 83.2 95.2

electric field up to 10E, above which the sample
started not to be in thermal equilibrium. However,
the Fog ~+2 triplet is always visible, and its ampli-
tude does not decrease. In Fig. 10, we show the
Fourier spectrum in a finite frequency range for
E/E, —10. In addition to the Fog& P'2 triplet and

its harmonics, lower frequencies (I'3P'4+5), which
appear also as a triplet, are visible. These lower
frequencies are not subharmonics of the three fun-
damental frequencies. In Table I, we indicate the
values of the frequencies for two different values

Ql

O

Cr

c)
C

Samp(e 6

T=49 K

Edc -430 mV/crn

F
spectrum analyzer 0

!Ecr -46 mV/crn

F2

I I ~ I I I I I t i i a

74 78 82 86 90 94
W (VHz)

FIG. 10. Fourier spectrum of the noise induced in
sample 6 for E/E, -10. The triplet frequencies are visi-
ble at 90 MHz. A lower frequency triplet E3g4P5 ap-
pears at lower frequencies.

of E. We see that for E/E, -3 or 4, we are able
to observe the 8th harmonic.

C. Variation of the eigenfrequencies
with electric field

In Fig. 11 we have drawn the variation of the
fundamental frequency v0 for the two CD%'s of
sample 5 as obtained in the synchronization experi-
ment. At high electric field v0 is almost linear
with E but the curvature near E, is more and more
pronounced when T is decreased below the CDW
critical temperature. In the synchronization exper-
iment the frequencies extrapolate to zero at E, be-
cause the rf amplitude suppresses the sharp dip in
dV/dI (as seen in Fig. 7 of paper I).

Figure 12 shows the variation of the fundamen-
tal eigenfrequency of sample 6 obtained from the
synchronization experiment and the noise analysis
for the lower CDW. At 48.6 K in the noise
analysis v0 extrapolates to zero at E, because at
this temperature the dV/dI variation does not
show a discontinuity, whereas vo has a finite value
at E, for T =34.9 K. v0 is also independent of the
rf amplitude. v0 obtained by the two techniques is
exactly the same except for E, &E (2E„where
the frequency obtained by synchronization is
higher than that in the noise analysis. Figure 13
shows the triplet eigenfrequencies obtained in the
two experiments at T =48.6 K. The small fre-
quencies measured in the noise analysis near E,
correspond to frequencies in the electric range
where d V/dI shows some rounding before the
sharp dip (see Fig. 7 of paper I). In this range the
frequencies are very small. For higher electric
fields v0 varies rapidly and linearly with E. This
slope extrapolates to zero at the same electric field

E„where d V/dI drops. To illustrate the effect of
the rf field near E, we show in Fig. 14 the meas-
ured conductivity as a function of E with and
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FIG. 11. Variation with the electric field of the fundamental frequency v0 of sample 5 measured in the synchro»»-
tion experiment for different temperatures involving the two CD%'s.

without a rf field. The low frequencies in the
noise near E, correspond to the electric-field range
where 0. increases smoothly near F.„and the fast
variation of v with E corresponds to the electric-
field range where o. increases more rapidly. The rf
field suppresses this sharp variation of 0. and gives
a lower critical field E,'. For a given electric field
lower than E,„,when we apply the rf field, the
COW is depinned and frequencies in the noise are
observable.

For sample 6, Fig. 15 shows the v(E) variation
in a very large electric-field range. The linear vari-
ation seen in Fig. 12 up to 20 MHz does not hold
for higher fields and an upward curvature is ob-
served. Between 3E, and 10E, we can write
v-A(E E, )~ with a-1.3, w—hereas Weger et al. '

have reported a value of a=2.

Q. Ratio between the three fundamental frequencies

As seen in Secs. IIIA and IIIC, the whole fre-

quency spectrum can be described with a strong
amplitude fundamental frequency vp and two satel-

lite fundamental frequencies v~ and v2. For sample
6 by direct noise analysis we have shown in Fig. 9
that the frequency which appears is vp then v~ and

v2. We have drawn in Fig. 16 the ratios vp/v& and

vz/v~ for different temperatures as a function of
E/E ~ vp/vi and V2/v~ show a strong variation
between 1 &E/E, (2 where the frequencies are
more and more spread when E is nearer to E, .
For E/E, & 2, vp/vi and vz/vp vary smoothly to-
wards 1. However, as seen in Fig. 10 for large
values of E/E, the three frequencies are yet distin-

guishable. For T=48.6 K (right-hand part of Fig.
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FIG. 12. Variation with the electric field of the fun-

damental frequency vo of sample 6 obtained in the syn-
chronization experiment and by direct analysis of the
noise at T =48.6 K. The difference in the variation
near E, is due to the effect of the rf field on E, and the
shape of the dV/dI variation.

FIG. 13. Same as Fig. 12. We plot the triplet fre-
quencies obtained in the synchronization experiment and

by noise analysis near E,. E, is the extrapolation of the
1

discontinuous variation of dV/dI (see Fig. 7 in paper I)
and E,' the apparent critical field with the superposition
of the rf field.

16) vp/vi shows a peak when the electric field is in
the range where d V/dI has a discontinuity (Fig. 7
of paper I). At the same temperature, from syn-
chronization experiments we have observed the
same frequencies seen in Fig. 13; v&/vp decreases
smoothly and does not show a peak because the in-
fluence of the rf field on the discontinuity in
d v/GI.

For sample 5, by synchronization experiments
the satellites v~ and v2 appear from each side of the
fundamental frequency vp (Figs. 4 and 5). In Fig.
17 we have drawn the variation of vp/v] and vp/v2
as a function of E/E, . For the upper CDW,
vp/vi = 1.50+0.03 and vp/v2=0. 67+0.02 up to
E/E, -2.8; then vp/vi decreases slowly down to 1.
For the lower CDW for E/E, & 2 we find that
vp/vi ——1.50+0.03 and vp/v2 ——0.65+0.03, and at

high electric field the three frequencies converge
together. Therefore it seems that for relatively
small E/E, vp, vi, v2 are in a constant ratio —, and

—,, and that above a certain value of E/E, (which

is not the same for the two CDW's) the three fre-

quencies become increasingly closer to one another.
This constant ratio between vp and v~, v2 seems also
to be induced by the rf field in the synchronization
because by direct noise analysis the three frequen-
cies are much more separated from one another
near E,.

IV. PHENOMENOLOGICAL MODEL

We want to discuss the properties of the motion
of CDW's in our model when a domain or an array
of domains defined by a probability distribution of
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FIG. 14. Variation of the conductivity as a fLnction of the electric field for sample B6 at T =48.6 K with and
without rf field superposed.

critical fields is subjected to a continuous field E
higher than the depinning field plus a weak time-
dependent field Ep(t). Special attention will be
paid to the case where the perturbing weak field is
periodic. We shall see that many experimental
features can be interpreted, at least qualitatively, by
this calculation.

=e+sinP+ep(t) .a
dt

(25)

If we call Pp the unperturbed solution

Let us call e and ep(t) the dimensionless variables

Ed, /E, and Ep(t)/E„ep « l.
We must solve

A. Perturbation of the motion of a single domain

1. Perturbation of the motion of the wave

by a weak time dependent field-

ay,
=e+sinPp,

at

we can try for the solution

0=4p+e

(26)

(27)

We recall here the equations obtained in Sec.
IV B of paper I. [We keep the same numbers for
the equations as in paper I, and we continue the
numeration here in paper II. The new equations in

paper II start at (25).] We have

Since eo is small, we can expect that e is also, and
develop to first order

sin(iI'ip+ e) =sinPp+ ecositip .

Substituting in (25) and using (26), one has

+sing,ilg E
at E,

(9a)
aE' —e cosfp =

ep ( t )
at

(28)

j=o E+PE,r a
aj

(9b)

This linearized equation can be solved by standard
methods, Pp being a known function of t The re-.
sult is
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FIG. 15. Variation of the fundamental frequency vo as a function of the electric field for large values of E. We have
shown also the variation of v as a function of the current carried by the JcD~.
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FIG. 16. Variation with E/E, of the ratio between
the satellite fundamental frequencies obtained in noise
analyzer compared to the fundamental vo, the left-hand
part: T =35e9 and 53.9 K. The right-hand part:
T=48.6 K. The peak in vo/vi at this temperature near
E, is a consequence of the discontinuous variation of
d V/dI at this electric field.

FIG. 17. Variation with E/E, of the ratio between
the satellite fundamental frequencies vl and v2 compared
with the fundamental vo obtained by the synchronization
experiment in sample 5. Upper part: upper CDW.
Lower part: lower CDW. For E, &E &2E„vi and v2

2 3
are practically —v0 and —vo.
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ep(t)dt
P=Pp+ —(e~sinPp) I (e +sinPp)

(29)

The calculation can be considered as correct, unless

the perturbing term P —Pp becomes of the order of
unity. Using formulas (14) and (15) of paper I, we
see that

~

e+ sinPp
~

& e+ 1 and that

g eo t dt e +sin cot +
1 e —1

2

Since ep(t) has no continuous component, and if
e &p 1, the only problem that can arise is associat-
ed with the integral of the product ep(t)
Xsin(cot+/) when ep(t) has a Fourier component
at the natural frequency of the CDW.

0
O

2. The important case of a periodic pertgrhatjon

ep(t) =epcoscopt,

even if cop+(e —1)' /r=co, where co is the funda-
mental frequency of the modulated current [Eq.
(11) in paper I], the integral contains a term in
1/(co —cop) which magnifies the amplitude ep. In
this case we shall look for a forced oscillator
behavior. Let us call a the reduced continuous
field, which, if applied alone, would give exactly
cop for the natural motion frequency. Since co+cop,
a+e. Call $1 the solution of

FIG. 18. Variation of the relative phase a between
the rf exciting field eocoscoot and the current at the same
frequency with cosa defined in Eq. (32b).

tegrated contains a(e —a) and the mean value of

ay,
=a+sin/1

Bt

and try

0 =01+e

(30)
eo

( epcoscopt sin(copt +g) )„=—sing .

This continuous part must vanish, and therefore
we have the phase relations

clg —e cosg 1
——e —a +epcosco ptat (31a)

If e is small, the same calculation as in Sec. IV A 1

gives

cosa =—2a (e —a)
eo

2a (e —a)
sing =

eo
(32a)

(32b)

and

P =$1+ —(a +sing 1 )
1

7

1 epcoscopt+(e —a)
X dt,

a +sin/1
(31b)

and from Eq. (14) in paper I,

1 1
[a+sin(copt +P)] .

a +sin, a2 1

Thus the continuous part of the function to be in-

where we have made use of Eq. (16) of paper I,
which gives the phase of the fundamental frequen-
cy of the current cd'/dt equal to a=p+1r/2, a
being the relative phase between the current at coo
carried by the solution $1, and the exciting field at
the same frequency. Solutions can only be found
between em and e~, the phase factor varying from
+1 to —1, and a=@./2 if e =a (Fig. 18). This
variation is to be expected from energy considera-
tions: If, for example, e &a, the natural frequency
will be lower than the applied coo, but the motion
with the forced oscillator is at mo. The mean velo-
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FIG. 19. (a) Variation of co with the electric field. If

A is the electric field corresponding to the applied rf fre-

quency coo, synchronization takes place in the range be-

tween e and E~. (b) In the frequency range between

co and co~ the eigenfrequency in the domain is locked

on the rf external coo frequency.

p. ~

)
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FIG. 20. Variation of the differential resistance
d V/dI as a function of the external rf field for a con-
stant electric field at different current of the 33-Hz ac
bridge. Peaks disappear for I33 H 10 pA, which corre-

sponds to the suppression of the synchronization fre-

quency range shown in Fig. 19(b).

monic of the fundamental frequency of Pi.

3. Explanation of the peaks in dV/dI when

a de field E and a rffield (E =Epeostopf)
are superposed —ease of a single domain

city is higher and the rf field has to push the wave
to overcome damping. This corresponds to an
electrical power

f j / /
ep

/
cosa & 0 .

Of course, if one increases eo, linearization is no
longer justified; but e has a strong periodic com-
ponent at coo, and

»n(4i+&o)&sin(4i+
I

eo
l
»ntoot)

=QJk
~
eo

~
sin(P, +kcppt) .

k

Synchronization can occur if Pi has a component
at ntop (n being an integer), so that for the funda-
mental frequency mixing, coo appears as a subhar-

On the curve to(E) of Fig. 19(a), we plot the field

A corresponding to the applied rf frequency mo.

For a given rf amplitude, synchronization occurs in

the range between E and EM. But since co is pro-
portional to the velocity, it is also proportional to
the dc current carried by the CDW. If we apply
small variations of E between E and EM, since

co=coo, the 5jcDw does not change. 5I associated
with 5V is only due to the Ohmic conduction, giv-

ing a peak in the dV/dI curve equal to the Ohmic
value. The center of the peak is independent of the
rf amplitude, and the width increases with the rf
amplitude. If one increases the rf amplitude,
subharmonic and harmonic peaks can appear. By
increasing the amplitude, the first peak to appear
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corresponds necessarily to the fundamental fre-

quency. This is important in order to label
correctly the fundamental frequency in complicated
spectras.

In order to increase the sensitivity, most of the
experiments have been performed at constant dc
field and by slowly sweeping the frequency. For a
given amplitude that is not too large we shall have
a frequency range between co and AM in which
the eigenvalue in the domain is locked on the rf
external frequency [Fig. 19(b)]. If we change
slightly the electric field E delivered at 33 Hz by
the ac bridge for the d V/dI measurement, frequen-

cy remains monitored by the rf field, and there is
no CDW current given for this small excess dV.
Thus in the lock-in detection we have no 33-Hz
component for the CDW current, and we may re-
cover the Ohmic value.

In Fig. 20 we show the variation of dV/dI as a
function of the external frequency for a constant
dc field and with different currents delivered at 33
Hz by the ac bridge. It is to be noted that for suf-
ficiently high 33-Hz current, say a rms value of 7
pA or an amplitude of 10 pA, the peaks have to-
tally disappeared.

This is easy to understand with the help of Fig.
19(b): If the variation of E due to the d V/dI
measurement exceeds the locking value correspond-
ing to m~ or co~, we shall recover motion of the
CDW no longer modulated by the rf field, but by
the applied field on a noticeable fraction of the cy-
cle. The result will be a dynamical impedance be-

tween the Ohmic value and its value in the absence
of rf field. Since the dynamical resistance is 40 0,
the ac field at 33 Hz has an amplitude of 0.40 mV.
Formula (32b) gives for the extreme e value

ep Ep
e —a = ~E—Ez ——E,

2a ' 2'

B. Many-domain self-synchronization

and periodic components of the noise

at regulated dc field

To interpret, at least qualitatively, the shape of
the dc d V/dI curve, in paper I we have had to in-

troduce a Gaussian distribution of critical fields in-

side a given sample. If we neglect every correla-
tion from domain to domain, the result will be a
sum of currents, each one reflecting its own fre-

quency in the given dc field, with arbitrary phases
which are equivalent to a noise with a spectrum
centered at the frequency associated with the mean
value EM of the probability distribution, and a
width reflecting its standard deviation s.

To explain discrete frequencies, especially low
discrete frequencies, we have to introduce interac-
tion between domains and look for a self-syn-
chronization of many domains on their own rf
field, even in the absence of applied external ac
current.

In the presence of a dc field E and of depinned
domains, the magnetic equivalent model developed
in Sec. IV C of paper I still holds, and a mean-field

approximation will lead to the use of mean values
of the Ohmic current density, electric field, and
CDW current density. This was achieved in Sec.
IV C of paper I for the dc components. But since

jcDw has not only continuous but also a funda-

mental and harmonic frequency term, we can in-

troduce an ac component for the "magnetization"
with corresponding ac components for the electric
field: Epcoscopt, the Ohmic current, and so on. If
we assume that the domains are elongated enough,

I Qj(6)

The limit is obtained for E —Ez E33 Hz 0 40
mV. Ep is the amplitude of the rf field. 2.35 mV,
and in this case E,=4.32 mV, Ez /E, =2.74, so
that

=2.35 =0.43 mV
1

2(2.74)

to be compared to 0.40 mV, amplitude of the 33-
Hz bridge. It should be noted that this exception-
ally good agreement is quite model independent:
Every nonlinear equation will give a frequency
locking, and the factor 2 in the equation is associ-
ated with (sin cot) = —,.

FIG. 21. Schematic diagram of a depinned domain: a
nonlinear generator connected to the Ohmic resistance of
the sample and the dc generator with a very high inter-
nal impedance.
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FIG. 22. Schematic solutions of Eq. (34). In case (1)
there is no self-synchronization. In case (2), the self-
synchronization takes place in S, and well-defined fre-
quencies will be observable in the crystal.

i„(G)+i„(R,Z)=0 (33)

iz can be neglected, and since R is purely resistive,
with the remarks we have made above, one can
transform this equation as

"demagnetizing coefBcients" disappear, and for dc
and ac components,

(i) the field on each domain is equal to the mean
field, and

(ii) the mean CDW current is the integral of the
normalized probability, multiplied by the current
delivered by each depinned domain.

We have seen that for weak Ep, synchronization
can only occur when the fundamental frequency is
near cop. Therefore, harmonic terms in the CDW
current give rise only to harmonic terms in the
electrical field, without further perturbation on the
motion. They can be neglected in the following
discussion.

At a given cop, if there is synchronization, the
depinned domains are equivalent, as shown in Fig.
21, to a nonlinear generator G, connected to the
Ohmic resistance R of the sample and to the dc
generator through a very high impedance Z. By
current conservation one has

CE1 E

FIG. 23. Gaussian distribution of the critical electric
fields of the assembly of domains. E is the applied elec-
tric field, E& the critical field which gives the frequency
mo in the applied field E. Self-synchronization will take
place between 8 and C.

synchronization; in case (2) self-synchronization
takes place in S]:

Eo I=0 in c—a—se (1);
Three intersection points in case (2).

Since the driving term is —I and the resistive term
oEp, discussion of the stability of the equilibrium
shows that only point S is stable: In this case we

get self-synchronization.

I Domain of. synchronization for a giuen Eo

Since we need the integral I for a given Ep, we
have to see what is the domain of synchronization
in a given E. The problem is slightly different
from that of Sec. IVA2, where for a given domain
one varies the dc field E. Here E is given, and the
critical field of the domains varies following the
probability law: We look at the range of critical
fields which are self-synchronized by EpcosNpt.

If we remember that in paper I, we have shown
that for a given domain j

f JcDw cosap(E, )dE, +oEO 0, ——
ac

(34) ne

where u is the phase angle between Ep and jcDw
at coo, and where

~ jcDw ~

and cosa are functions
of Ep. Calling the integral I, the plot of o-Ep and

of —I as schematized in Fig. 22 gives the follow-

ing solutions [in case (l) there is no self-

Since iI and n'e are the same for all domains, fj
being different from domain to domain, one can
define vM as the time constant associated with the
mean value of the critical fields EM, and write
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EM
&j +M E

J

The equation of motion of the phase becomes

rMEM E,s——ing+E+Epcoscopt .
B =
Bt

(35)

(36)

We can define the critical field Eq, such that it
gives in the applied field E exactly the frequency
Sp'.

B
&MEM Ea sin4i+E

Bt

and look for the solution

casa

0=4'i+& .

The calculation is quite analogous to that of Sec.
IV A2. The result is that the phase between

BP&/Bt and Ep must be equal to

Eg —E
cosa=2 (37)

2. Contribution of nonsynehronized domains
to the ac synchronized current

For critical fields higher than C or lower than B,
the domains are not synchronized and work on

. their own frequency. However, the perturbation
due to the mean ac field exists. Formula (29) ap-
plies in this case:

Be 1= —epcoscopt
Bt 'Tp

t epcoscopdt+——(e+sinPp) I~ dt e+sinPp

The first term is a resistive one. However, since

Therefore we have the following features (Fig. 23):
(1) Every domain in the range of critical fields,

Ep
E~ — ~E, &Eg+

2

is self-synchronized.
(2) The synchronization frequency corresponds

to the natural frequency of the dc field E, for a
critical field at the middle of this range.

(3) The modulus of the ac comPonent of jcDw is
essentially that of the solution without ac field for
the critical field Ez.

(4) There is also a weak contribution of Be/Bt,
the perturbation of the solution Pi, which is pro-
portional to Ep the exciting ac field.

FIG. 24. Schematic contribution to the ac synchron-
ized current j„ for the domains where the critical elec-0
tric fields is higher than C or lower than B. Between B
and C every domain is self-synchronized.

Epcospt

4E 2 2e —e&
(3g)

where co is the frequency of the domain,
l j l

the
modulus of the unperturbed solution for the
domain, e =E/E„ei =E/Eq, and E was defined
in Eq. (17) in paper I.

At Cone has

EB EA +
2

so that, for weak Ep..

j„(C)l E„
JQlp I c 4 E

Since Ez /E & 1, the perturbation is small, com-
pared to the unperturbed current: Perturbation
calculation still holds. The schematic variation of
Eq. (38) is drawn in Fig. 24.

(e+ sin(bp)-+'

have components at the true frequency of the given
domain, by mixing, the integral will contain

l
cop+co l, and the product, a component at

Cgp =COp+ CO+CO.

A straightforward calculation gives

E COJ„=PoEpcoscopt
2(e —1) co —cop
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3. Frequency locking for high applied fields E

If a frequency locking appears, Eq. (34) has to be
verified. The integral —I will contain three contri-
butions:

(a) A contribution of the phase-locked domains
between 8 and C: Bp)/Bt.

(b) A contribution of the perturbing Be/Bt in the
same range.

(c) A contribution due to the Be/Bt value for the
domains in the wings, outside the range BC.

(a) and (b) give, for small Eo, contributions to I—
proportional to Ep and are unable to explain lock-

ing. For (a),

EA +E0/2 EA E
I(.)

=I E „p«.)dE.2
A 0

FIG. 25. Schematic variation of co(E) with the self-
synchronization of the domains in the sample. Our
model might give an inflection point near E~, but exper-
imentally we observe an upward curvature.

but

p(E, ) =p(Eg ) +(E, Eg )p'(Eg—) .

we have

Jp Epcoscopt EA

4 E E
By parity p(E& ) gives 0, and

'2
2 ~

Ep.
I(.)-—3 I j~ «~) I

p'«~)

For contribution (b), as noticed, e between g and C
is proportional to Eo, and since the width of in-

tegration is Ep, the integral, whatever the phase of
e, is at most like Ep.

However, for contribution (c), we have a net
current at 8 or C, independent of Ep due to the
amplification term co /(o) —coo). If E is a few
times the critical field,

I j„I
becomes jo, indepen-

dent of E, as seen in Sec. IV B 3 of paper I and
shown in Fig. 9 of paper I. Hence the contribution
is

Jp Epcoscopt A QiI fdE,
4 E„

+f,fdE, , (39)

with

ENNEA

E2(E2 E2)f=p(E, )

By changing the variable

E —E E

dE', (Eg —E')'
X

Eo E' P EA+E
2E E'

(Eq +E')
A+

However, the probability p (Eq +E') is important
only in the range of s which is «Eq. Therefore
(E„+E')/(2E„+E')=Ez /2 in the domain where p
has some weight. In the limit Ep~0 the integral
has a nonzero and convergent value and

r

Jo
I( ) = — Epcoscopt

~ dE'
EA+E —~ EA —E

(40)

We have now a linear term in Ep which can
overshoot the resistive term 0.Ep of Fig. 22. If this
is the case, we are dealing with case (2), and one
can expect a self-synchronization, the origin
(Eo I =0) becomin—g unstable.

Since the important part of the integral in (40) is
for small values of E„its maximum is obtained for
Eq very near the rising inflection point Et of the
repartition curve. This point then corresponds to
the higher ac level, and is probably the most stable.
The integral is of the order of I/s, and moreover,
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FIG. 26. Variation of the fundamental frequency vo in the noise for sample 5 as a function of JcD~, the current
density carried by the CDW for the two CD%'s. Upper part: JCD~&100 A/cm . Lower part: Jco~ up to 400 A/cm .
The v(E) curves for the same temperatures were drawn in Fig. 11. The inverse of the slope of v(JcD) is proportional
to the number of electrons condensed by the CDW gap.

Self-synchronization will appear only if
'2

—,P &1.
S

Even if Ez /s 20, P-2-, E & 3E~ -3E„three
times the critical field. However, self-synchroniza-
tion has been observed for higher fields, say 10E,.

By decreasing the applied dc field E,
~ j„~ be-

comes a function of E„and the integral is much

more complicated, so that Ez becomes a compli-
cated function of Ed, . However, one cannot expect
variations of Ez higher than a few standard devia-
tions s of the statistical law, below the inflection
point, so that the best fit one can hope for with the
experimental co(E) is a pronounced inflection point
near EM (as drawn in Fig. 25). However, experi-
mentally co(E) shows an upward curvature.

Since harmonics have been seen in very high
fields, one possible explanation could be that the
law of motion in true domains is different from
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TABLE II. Electronic concentration condensed by the CDW formation. These
numbers are obtained from the slope of v(Jco~) in two different JcD~ ranges for several
temperatures and different samples. The results for sample 1 were previously shown in
Ref. 12 (sample labeled B2).

Sample
n (10'cm )
J (100 A/cm2

n (10 ' cin )
J& 100 A/cm2

35.4
39.2
44.5
52.5
99

112.4
130.0
135.3
35.9
48.6
53.9
47.0
47.0

46.0
45.5

1.23
1.11
0.91
1.10
1.08
0.94

0.86
0.77
0.78
0.64
0.83
1.30 (vp)
0.86 (v, )

1.33 (vp)
0.86 (vp)

1.33
1.25
1.46

1.23
1.13

1.28

that we have chosen with higher contributions both
for the fundamental frequency and for the har-
monics, compared to the continuous contribution.

V. DISCUSSION

The two basic equations of our model were de-
rived in paper I. We have calculated the current

JcDw carried by the CDW as a function of the
electric field, and we have shown that this current
is the superposition of a continuous current and a
modulation where the fundamental frequency as a
function of E is given by Eq. (11). However, JcDw
can be directly related to the frequency v by the
model-independent relation

20 40 60 80 100

CDW(A/cm )

FIG. 27. Variation of the fundamental frequency vp in the noise as a function of JcD~ for sample 6 for the lower CDW.
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I
Jcow —pl ev

where n'e is the number of electrons affected in
the band by the CDW gap and U =2m v/Q, where

Q is the CDW wavelength. Thus

1v= JCDW
2m n'e (41)

JCDw can be obtained directly by measuring the
nonlinear characteristics V(I). We assume that

RJcDw=J 1—
R„

where J is the applied current density, R the resis-
tance for this J value, and R„ the Ohmic resistance
for J-0. In the direct noise analysis we have
measured for each temperature the resistance R as
a function of E.

To account for the effect of the rf field in the
synchronization experiment, as seen in Fig. 14, we
have measured R with a rf field of 100 kHz with
the same amplitude as that used in the dV/dI ex-
periments. The cross section of the samples taken
for the calculation of JCDw is deduced from the
room-temperature resistance assuming the same
resistivity of 250 pQ cm for all the samples. In
Fig. 26 we have drawn v as a function of JCDw for
sample 5 at seven temperatures involving the two
CDW's, the upper part of Fig. 26 for low JCDw
current densities, and the lower part for large ex-
tensions of JcDw. The v(E) curves for the same
temperatures were shown in Fig. 11. We note that
all the v(E) curves for the two CDW's, when plot-
ted as a function of Jcow, gather in a compact pat-
tern. v is linear with JcDw up to around 100
A/cm and shows a slight curvature for higher
JcDw. We want also to point out that for each
CDW the slope of v(JcDw) is higher when T
reaches T, or T, . The inverse of this slope iscl c2

proportional to n', the number of electrons in the
band affected by the CDW gap. The values of n'
deduced from our measurements are in Table I in
the low JCDw limit and in the high Jcow limit
(J&100 A/cm ). Near T, and T, the CDW gap
is not totally established and n' has a smaller value
than at lower temperature.

In Fig. 27 we show the same v(JCDw) for sample
6. The break in v(E) at T=48.6 K as seen in Fig.
13 due to the rounding in d V/dI before its fast de-
crease is suppressed when v is plotted as a function
of JcDw, and we obtain again a linear variation.
The slopes for sample 6 are a little higher than
those for sample 5. Finally, in Fig. 28 we have
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FIG. 28. Variation of the fundamental frequencies vo
and v& v2 in the noise as a function of JcD~ for the
lower CDW at the temperature where the resistivity is
maximum for five different samples.

plotted vo, vi, and vz as a function of JCDw for
five samples at the temperature where the resistivi-
ty is maximum for the lower CDW. There is some
dispersion which can be considered as reasonable if
we take into account the error in the measurements
of the dimensions of the samples. It can be noted
also that the sample doped with tantalum impuri-
ties follows the same variation as the pure one.

Following the discussion in paper I, we consider
that at room temperature only four chains partici-
pate in the conduction with 0.5 electron at room
temperature per niobium. We have deduced that
the total numbers of electrons is therefore n =3.9
)(10 ' cm . As two chains are involved in each
CDW, before the distortion at room temperature
n =1.95&(10 ' cm . We find that for each CDW
the number of electrons affected by the gap is
around 1.0)&10 ' cm . If we had taken p=150
pQ cm as measured by Ong and Gould' for each
CD%, n' would be —1.7)&10 ' cm

The low-temperature specific heat of NbSe3 has
been recently measured. ' Between 0.15 and 1 K
the electronic contribution to the specific heat is
y=24. 5 erg/g K . If we assume a free-electron
mass for the carriers at low temperature, we can
deduce that the number of electrons below the two
CDW's is around 0.98&10 ' cm . Therefore we
get a consistent picture for NbSe3. The room-
temperature electron concentration is assumed to
be 3.9X10 ' cm (from band calculations). An
equal number of electrons around
(1—1.2) X 10 ' cm is condensed below each
CDW gap (from our measurements described
above) and 25% of conduction electrons remains
approximately at low temperature (from specific-
heat measurements).
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VI. CONCLUSIONS

In these two papers, we have measured for many
samples the differential resistance dV/dI as a
function of the electric field, studied the noise gen-
erated above E„and performed synchronization of
this noise by an external rf field. We have noted
that the two CDW's which take place in NbSe3
behave similarly. It appears well established that
the non-Ohmicity of NbSei is due to the motion of
the CDW's. We have explained that the pinning
force which modulates the current has a periodici-
ty 2' in (('i(r;) where r; is the position of the impur-
ity. A sufficient electric field is necessary to over-
come the pinning energy. Above this critical field
the current is formed by the superposition of a
continuous current and a modulation with a funda-
mental frequency and harmonics. We have shown
that the frequency is a linear function of the
current carried by the CDW and deduced the num-
ber of electrons affected by the CDW gap in excel-
lent agreement with band calculations.

We have developed a model where the phase of
the CDW is described by an overdamped oscillator.
This model explains qualitatively the shape of the
d V/dI curves as shown in paper I and the syn-

chronization of the noise by an external rf field and
the observation of peaks induced in the dc d V/dI
characteristics by the rf field (Sec. III A in paper
II). We have'also described the principle of the
self-synchronization of all the domains to give
well-defined frequencies in the noise spectrum.

However, with this model we encounter some
problems when we want to obtain a quantitative
agreement with the experimental results. We have
seen in paper I that the shape of d V/dI varies very

rapidly with T for the lower CDW. To explain
this behavior we have to make the hypothesis of a
change of the size of the domains at low tempera-
ture, in a temperature range where the coherence
length of the CDW does not vary anymore. Our
model gives a downward curvature in the variation
of v with the electric field. We show in Sec.
IV 8 3 of paper II that, in the synchronization of
the domains, we can obtain a strong inflection
point for the electric field when the electric field

distribution is maximum. However, our experi-
mental results show an upward concavity in the
whole range (Figs. 11 and 12). Finally, the calcu-
lations indicate that the harmonics in the noise
must decrease rapidly (paper I, Fig. 9), but experi-
mentally, harmonics are detectable at 10E,.

These difficulties lead us to criticize the model

we have used. As noted by Sokoloff, ' the kind of
overdamped nonlinear equation that we have de-

rived will always give an infinite dv/dE near the
critical field for a single domain. The existence of
domains with we11-defined walls is not proven.
Others' models are much more difficult to study,
like a continuous P(r, t) in the bulk or a P(r, t) with

dislocations or solitons, and therefore it is impossi-
ble to compare them with experiment. In fact, we

have treated the CDW lattice as a polycrystal, but
another method would be to treat the CDW lattice
as a crystal with dislocations. Our model gives a
unique fundamental frequency, but experimentally
all the Fourier spectrum is described with three
fundamental frequencies. Nonlinear solutions of a
damped oscillator submitted to an external rf field
has been studied recently' by varying the frequen-

cy co and the amplitude I . The I (co) diagram is
rather complicated but shows zones of periodic
solutions and bifurcation to chaotic regime. Such
a behavior might be applicable to NbSe3. Finally
the treatment of the domains in a mean-field ap-
proximation especially for the transport properties
like d V/dI is not very satisfying. Percolation
would be more suitable and could perhaps explain
the rapid drops of dV/dI when enough domains

begin to move, especially for high P values, i.e., at
low temperatures.
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