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The optical relaxation times for electron-phonon and for impurity scattering are shown
to have the form ~ '(co)=so '+bco, and values of b for impurity and electron-phonon ef-

fects (including umklapp processes) are calculated. The values of b for electron-phonon
scattering are compared with estimates for electron-electron scattering and with experi-
ment for the alkali and noble metals. It appears that the observed frequency dependence
in these materials at room temperature derives from correction terms of higher order in

%co/EF to the electron-phonon interaction. For impurity scattering b is predicted to be
negative.

I. INTRODUCTION

Present knowledge of the effect of temperature
on optical properties is still very limited. This is
particularly unfortunate, since a better understand-

ing of the optical properties of metals at high tem-
peratures could play a significant role in the
development of new technologies such as
solar —thermal-energy conversion. ' The intraband
absorption in the alkali and noble metals for
co~&& 1 is described empirically by the Drude for-
mula with a frequency dependent relaxation time
given by '

'(s) =rp '+&co (1

We seek to identify the origin of the cu frequency
dependence. An understanding of the mechanism
could help to clarify the behavior of the intraband
absorption at high tempera. tures.

A survey of some mechanisms that could contri-
bute to the frequency dependence of r(co) has been
given by Hopfield. In the alkali and noble metals,
electron-phonon scattering and electron-electron
scattering are the major possibilities. In transition
metals a two-carrier mechanism is also conceivable.
A two-carrier model involving crystalline defects
has been proposed by Nagel and Schatterly. As
discussed below, impurity scattering also yields a
frequency-dependent r '(co) of the form (1).

The electron-phonon mechanism is known to be
responsible for the frequency-independent term ~0

'

of Eq. (1). However, there has been no quantita-
tive estimate of its contribution to the frequency
dependence of r '(co). In this paper, we derive an
expression of the form (1) for the r '(co) due to
electron-phonon scattering, and calculate the values

of b using a free-electron band model and the De-
bye approximation for phonons. In this model
normal phonon scattering gives no contribution to
the co term of r '(co); b is entirely due to umklapp
scattering. The calculated values of b for umklapp
scattering are in good general agreement with ex-

periment at room temperature.
We also derive an expression for b due to impur-

ity scattering. . The origin of the frequency depen-

dence is similar to the electron-phonon case, but is
simpler to analyze. The frequency dependence is

basically a phase-space effect, but its sign and mag-
nitude are strongly influenced by the scattering
mechanism. Surprisingly, the result of the phase-

space effect by itself is a decrease in r '(co) with

frequency, that is, a negative b. If the scattering
increases sufficiently rapidly with momentum
transfer, however, b can be positive. This is the
case for electron-phonon scattering, provided um-

klapp processes are taken into account. For im-

purity scattering, b is negative.
Umklapp processes also play a crucial role in the

electron-electron scattering mechanism. It is well

known that there is no absorption of light by a uni-

form electron gas. Taking umklapp processes into
account, Gurzhi calculated an absorption rate hav-
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II. OPTICAL RELAXATION TIME

The classical Drude formula for the optical con-
ductivity is

cr(co) =(i /4')co& /(co+i r '), (2)

where co& is the plasma frequency and ~ is a
phenomenological relaxation time. A rigorous de-
Gnition of v is obtained from a comparison of Eq.

ing the form (1). The frequency-independent term
is very small and can be neglected in comparison
with the frequency-independent term due to
electron-phonon scattering, but the e term is com-
parable to the experimental values for the alkali
and noble metals. A better estimate is obtained by
combining the Gurzhi formula with recent detailed
calculations of the frequency-independent scattering
rate. The resulting values for b are an order of
magnitude smaller in most cases.

These estimates imply that electron-phonon
scatteririg is responsible for both terms of r '(co)
in the alkali and noble metals at room temperature.
This conclusion could be tested by an examination
of the temperature dependence of b. According to
our model, the electron-phonon scattering b is con-
stant at low temperature and increases linearly
with T at high temperature. In the Gurzhi model
the electron-electron scattering b is independent of
temperature. Unfortunately, there is no informa-
tion on the temperature dependence of b in the al-
kali metals, where both models apply. The data
available for the noble metals do not fit the predic-
tion of either model. However, we suggest that the
noble metal data can be explained by electron-
phonon scattering if the anisotropy of the Fermi
surface is taken into account.

(2) with the linear response formula for the conduc-
tivity, which can be written in the form

o(co) =(i/4n)co. ~/[co=M(co)], (3)

where M(co}=M'(co)+iM"(co) is the damping or
memory function. [Equations (2)—(5) summarize
some relevant results of the memory function for-
malism developed in Ref. 8.] The inverse of the
optical relaxation time r(co) is simply equal to the
imaginary part of M,

'(co) =M"(co), (4)

because for optical frequencies the real part gives a
frequency shift which is negligible compared to co.
M"(co) and therefore r '(co) are even functions of
co. Equation (4) must be contrasted with the result
for the dc relaxation time,

rd, '=M"(0) 1+ M'(co)
Bco N=p

which includes a renormalization factor arising
from the real part of M. One obtains the represen-
tation r '=ro +b(fico) by evaluating M"(co} in
the optical frequency region and then expanding
the resulting expression in powers of fico/E~. Be-
cause coo.&~ 1, it is clear that ~p

' is not the same
as rd, [nor, in general, is it necessarily equal to the
physical zero-frequency values of M"(co)]. This
point can be confusing, because in some cases 'Tp

'

and ~d, do have the same value: Examples are
—1

impurity scattering and phonon scattering at high
temperatures. For phonon scattering at low tem-
peratures, however, ~p approaches a constant

—1

value while ~d,
' vanishes as T .

As discussed below, the inverse relaxation time
v;

' for impurity scattering and ~~
' for phonon

scattering can be written in the form

r,.y(co)=(fico) 'gF;p(kk')f(k)[1 —f(k')]5(g'k —8'k fico), —
kk'

where F; ~(k, k ) is a factor characterizing the transition rate for the given scattering mechanism. For im-
purity scattering,

Fi(k, k'}=(2n.m'n;/3nh')
( vg —v k, (

while for normal phonon scattering,

Fy(k, k')=(27rm /3MN„)
~
vk —vg,

~ ~

k —k'
~ ~

Vkk-, [ [2N(q)+1]/20(q) .

In these equations, m, v k, and 8'-„are the mass, velocity, and energy of an electron in a Bloch state of
wave vector k, f(k) is the Fermi distribution, n and n; are the electron and impurity densities, 4 „.-„-,
= k(

~
k —k

~
) is the impurity potential, Vz i, , is the screened electron-ion potential between single plane

(8)



FREQUENCY DEPENDENCE OF THE OPTICAL RELAXATION. . . 925

waves k and k' and is assumed to be frequency independent, and X(q) and Q(q) are the density and frequen-

cy of phonons of wave vector q = k' —k. An isotropic Debye spectrum is assumed, and q is restricted to
the Debye sphere q (qD. (Umklapp scattering is treated explicitly in Sec. III.}

We obtain Eqs. (6)—(8} by evaluating M"(co) from Ref. 8 in the limits fico » kT and co » Q(qo~. They
can also be obtained by a golden rule calculation for the second-order process in which an electron absorbs a
photon and scatters from an impurity or a phonon. ' No backscattering (photon-emission) term appears in

Eq. (6) because fico » kT and co » QD. The latter condition also allows the phonon scattering to be treated
as elastic.

Converting the wave-vector sums in Eq. (6) to integrals and using the zero-temperature approximation for
the Fermi distribution, we obtain

1 dk dk'F (k k, )
(2iriii) AU i, RV k

(9)

'(co) =(irico) ' f d S'I I . (10)

where the initial states k lie on the surface of ener-

gy 5", which ranges from EF—Ace to EF, while the
final states k' lie on the surface of energy 8'+%co

[Fig. 1(a)]. Holstein approximated Eq. (9) by tak-

ing k and k' to lie on the Fermi surface. This
gives a frequency-independent relaxation time. In
this paper, we retain the energy dependence of the
initial and final state surfaces and investigate the
frequency dependence of r '(co) by expanding Eq.
(9) in powers of fun/Ez.

Before proceeding in the following sections to
the detailed treatment of Eq. (9), we discuss some
features of the frequency dependence in a more

general way. " First, we change to an integration
variable S'= S" EF +%co so—that Eq. (9) takes the

form

I=

The quantity in curly brackets may be regarded as
the partial relaxation rate for electrons in initial
states of energy EI; —%co+ 8' going to final states of
energy EF+8'. Bemuse of the overall factor of
(Ago) ', the total inverse relaxation time r '(co) is

given not by the sum of these partial rates, but by
their average.

The simplest estimate of the frequency depen-
dence of r '(co) is obtained with F(k, k') constant
and with free-electron energy surfaces, so that

dW-„/Uz -+2mS'k=k and

'(co)-(irico) ' f dS'k, kf,

where k; —~Ez Ace+ S' and—kf —QEF + S' are
the magnitudes of the initial and final state wave

vectors of a transition. The integral can be
evaluated exactly, or estimated (correctly to order
co ) using the "average" value of S', S'=%co/2.
This gives

'(co)-1 , (fun/EF) +—— (12)

.! i'
, 4

FIG. 1. (a) Section of the initial- and final-state ener-

gy surfaces in k space for the free-electron model. The
initial states k are located on the surface of energy 8',
which ranges between EF-=%5 and EI;. The final states

are on the surface of energy 8'+%5. (b) Section of the
Fermi surface for a noble metal. The important transi-

tions involving the necks are those that connect diago-

nally opposite areas such as 1~2'. Transitions such as
1-~1' are unimportant because the momenta of the ini-

tial and final states are nearly identical in that case.

dP'k dP'k,
F(k, k')

hvk

f dP„f dW'--„.

Avg f1vk

The inverse relaxation time is then given by

(13)

The negative sign of the co term can be understood
as follows. Since k -v F. for free electrons, the
range of initial-state wave vectors k; in Eq. (11) is

larger than the range of the final-state wave vectors

kf . Therefore, the average of the product k; &( kf is
smaller than the co=0 value kF.

The preceding argument may be generalized.
We define a surface-average matrix element
F(S',co) by
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'(co) =(irico) ' f d S'D(EF f—ice+ S')
next section it is shown that b becomes positive if
F increases rapidly enough with energy.

XD(EF+ S')F(S',co),

(14)

where D(E)=(2iriii) JdP'k/A'Uk is the single

spin density of states. Note that F(S',co) has the
property F(S' %co—, co) =—F(S',co), which guaran-
tees that r '(co) is even in co.

The overall frequency dependence of ~ ' is
determined by both the density of states and the
transition rate factor F. To investigate the phase
space or density of states effect, we set F equal to a
constant and expand Eq. (14) in powers of fico.

This gives

r—&(~) [D(E )]2 +(fico) [2D(E~)D"(EF)

(15)

where D' and D" are the first and second deriva-

tives of D (E). If D (E) follows the power law
D (E)-E", then for n ~ 1 the co term is positive
while for n &1 it is negative. Since D-E' for
free electrons, the co term is negative in this case,
as shown above.

In general, the sign of b is determined by a bal-

ance between the initial and final densities of state,
weighted by the matrix-element factors. In the

III. IMPURITY SCATTERING

In this section the expansion of Eq. (9) in powers
of Ace is carried out for impurity scattering. In the
free-electron model the surface integrals in Eq. (9)
can be reduced to a single integral over the magni-
tude of the momentum transfer K= k' —k. The
result is

/k~ EF max

r, '(co)= ' f dS'f„, ,
dKI (K)

(16)
where A; =16' mn;[3niri (2iriri) ] 'kF and I;(K)
=K

~

+(K) ~, and the limits of integration are

K,„gC;„=(k(S'+fuu)+k(S'), with k(E)
=(2mE)'~ /iii. The significant feature of Eq. (16)
is that the co and 8' dependence of the surface in-

tegrals now appears only in the limits of the E in-

tegral, so the expansion in powers of co can proceed
without prior specification of the form of the ma-

trix element.
When Eq. (16) is rewritten in terms of dimen-

sionless variables cx=fiN/EF, x = 8'/Ep, and

y =K/kF,

r, '(co)= f dx I ~dy I(y), (17)

where I (y) =I;(kFy ). Expansion in powers of a
yields

2

r; '(co)=A; J dyI(y) —cc [2I(2)—I'(2)+3I'(0)]/24 +O(a ) .

The frequency-independent term involves the in-

tegral of I(y), while the term proportional to co~ in-

volves I and its first derivatives evaluated at the

upper and lower limits of the momentum transfer
range. The lower limit usually makes no contribu-
tion because I'(0) vanishes for reasonable models of
the scattering potential.

If I(y) is taken to be constant, Eq. (18) predicts
a negative co term, as expected from the discussion
in the last section. If I increases rapidly enough
near y =2, however, the derivative term will pre-
dominate and b will be positive. Supposing that
I(y)-y", with n & 1, we find that b is negative for
n &4 and positive for n & 4. Thus b will be posi-
tive if

~

k(K)
~

increases faster than K.
A reasonable model for impurity scattering is the

screened Coulomb potential. This gives I(y)

=(4ir) y [(kFy) +k, ] and a negative b. The
resulting tendency of r, '(co) to decrease with in-

creasing frequency has been obtained previously [in
the coherent potential approximation (CPA) calcu-
lations of Velicky and Levin for binary alloys, ' for
example] but a simple explanation for it has not
been suggested before.

IV. PHONON SCATTERING

For normal phonon scattering (treated as an
elastic process) Eq. (9) becomes

E
r~ (co)=A~ I dS'f, ,

dKI~(K),
F min[

(19)
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where Az ——16ir /[3MNn(2irh') ] and Iz(K)
=K'

~

V(K)
~

[2N(K)+1]/2Q(K). We have again
assumed free-electron energy surfaces. The struc-
ture of the integrals is the same as in Eq. (16), ex-

cept that the upper limit of the momentum
transfer integral is cut off at the Debye wave vec-
tor. The upper limit therefore plays no role in the
frequency expansion. The lower limit contributes
an co term involving the derivative of I~(K), but
since V(0) is finite and Q(K) is proportional to K,
this term vanishes also. Thus normal phonon
scattering makes no contribution to the co term of
the total inverse relaxation time: rN'(co)

=ro~+0(co ). In a more general model, the nor-
mal scattering contribution would not be strictly
zero. It would be small, however, because the
momentum transfers are small compared to those
possible with umklapp scattering.

With umklapp processes, the matrix-element fac-
tor Fl,(k, k'), Eq. (8), takes the form

I'p(k, k')= g f

v-„—v-„,
/ J

k —k'/3M' G
k k

l

2N(q)+1
kk'

where 6; is a reciprocal-lattice vector and

q=k'. —k —G-, , with the restriction q &qa. A11

phonons are assumed to have the same spectrum
independent of polarization. Because F in the pres-
ence of umklapp processes is no longer independent
of the orientation of k and k' with respect to the
lattice, the k and k' surface integrals in Eq. (9)
cannot be reduced to a single integral over the
momentum transfer. It is possible, however, to ob-

tain a qualitative estimate of the unklapp scattering
contribution by extending the range of the K in-

tegration in Eq. (19) for normal scattering to the

E,„determined by energy and momentum conser-
vation. This assumes that the main effect of um-

klapp scattering is simply to eliminate the re-

strictions on allowed transitions imposed by the
Debye cutoff. The m terms involving the in-

tegrand and its derivative at K =2k+ now reappear
as in Eq. (18). With umklapp scattering, the factor
[2N(K)+1]/Q(K) in Eq. (19) must be replaced by

[2N(q)+1]/Q(q). For K near K,„,where

q =6—2k+, this factor is approximately constant.
Provided that V(K) is not rapidly varying, the in-

tegrand goes as E near 2k~. The discussion fol-

lowing Eq. (18), therefore, indicates that b for um-

klapp scattering should be positive.
To obtain a more quantitative estimate for the

umklapp scattering contribution, we use an approx-
imation of Ziman, ' which involves averaging Eq.
(9) over directions of K with respect to the lattice.
The result is

i( )
16nml . ~ i 1

d d N(q)+1 -'"'d
g~ ( ) ~p

3 NMA' (2M)' 2G iriai r ~
~

-'"' 2Q(q)

(21)

Here the sum extends over classes of equivalent reciprocal-lattice vectors with Z; vectors of length 6; in a
class. For typical lattices, only the first few smallest-length classes contribute, because of the restriction
0(G; —K,„(co)&qadi. Except for the frequency-dependent limits of integration Eq. (21) has precisely the
same structure as Ziman's result for the dc resistivity.

Equation (21) can now be expanded in powers of a=%co/EF as before. In terms of the dimensionless vari-
ables y =q/k~, z =K/kz, qo qo/'kF, and G; =——G;/k~, the result is

r„'(co)= g f dy J(y) J dy K(z)
i l l

2

+ J(G;—2)K(2)+[K'(2)—2K(2)]J dy J(y) +O(u'),
l

(22)

where J(y)=y[2N(key)+1]/2A'Q(k~y) and K(z)=z
~

V(kFz)
~

. The first term in Eq. (22) is to be added
to the frequency-independent term for normal scattering to give the total ~0

' for phonon scattering. In the
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Debye approximation, the coefficient of the (fuo) term is

8 6 —2 C'(2) 2qD T O 0 6;—2
ln sinh —ln sinh

2T 2T
(23)

whe«&o=2iriiiqliC'(2)/9Mkiifi8, 8 is the Debye
temperature, ks is Boltzmann's constant, and C(y),
the ion potential normalized to 1 at y =0, is
( 2'—/3) 'V(key). C'(2) is the derivative of the
potential at y =2, taken with initial and final k
states at a constant scattering angle of 180'.

For temperatures large compared to 8, b be-
comes proportional to T, while for T &g 8, b ap-
proaches the constant value

Z; 1 C'(2)
b(T «8)= bog —+

I

x [qD-(G, —2)],

(24)

I

calculations of Animalu and Heine'; for the noble
metals, the values were estimated from the pseudo-
potential curves given by Cohen and Heine. '- The
results are given in Table I, together with the
room-temperature experimental data and with two
estimates (discussed below) for the electron-electron
scattering contribution b„. Table II is a summary
of the available experimental information. For the
alkali metals, the results for b listed here were cal-
culated by us from the published data. The data
for Li in the range 0.7—2 eV were fitted very well

by r '(co)=ro+b(fico), but the results given for
Na and K are estimates correct to perhaps a factor
of 2. The agreement between b,~ and the experi-
mental b is comparable to the accuracy of the ex-
perimental values.

For the alkali and noble metals, this limiting value
is approximately 20%o of the value of b at the De-

bye temperature.
Using Eq. (23) we have calculated b,~, the

electron-phonon scattering contribution to b, for
the alkali and noble metals at room temperature.
For both the bcc and fcc lattices, there are two sets
of reciprocal-lattice vectors that enter the sum.
For the fcc lattice, for example, these are the [111]
and [100] vectors with Z;/2Ec=1. 805 and 1.172
and (E;—2)/qD ——0.171 and 0.444, respectively.
For the alkali metals, values of C(y) and its
derivative were obtained from the pseudopotential

V. ELECTRON-ELECTRON SCATTERING

Gurzhi's result for the inverse relaxation time
due to electron-electron scattering with umklapp
processes is

r,, '(co) =v«(T)[1+ (fico/2~k' T) ], (25)

where v,,(T) is a scattering rate for free electrons,
given by

v„(T)=co~(ks T/ficop)

The first estimate for b„ in Table I is obtained
from Eqs. (25) and (26) with values of the plasma

TABLE I. Comparison of the room-temperature experimental b (from Table II) for the alkali and noble metals with
the calculated values for the electron-phonon and electron-electron scattering mechanism. m* is the optical mass and 8
is the Debye temperature. b,'," is based on the free-electron scattering rate, while b,', ' uses a scattering rate derived from
the calculations of Refs. 16 and 17.

Electron-phonon estimate
m 8 b,p

(K) (10' sec ' eV )

Experimental
—1

Tp

(10' sec ')

Electron-electron estimates
b b(&) b(&)

(10' sec 'eV ) (10' sec 'eV ) (10'4 sec 'eV )

Li
Na
K
Cu
Ag
Au

1.33
1.13
1.16
1.43
1.06
1.11

400
150
100
315
215
170

0.13
0.02
0.005
0.06
0.05
0.08

0.97
0.40
0.31
1.43
1.2
1.6

0.29
-0.05
-0.01

0.15
—0.07

0.09

0.06
0.07
0.10
0.04
0.04
0.05

0.003
0.02
0.04
0.008
0.007
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TABLE II. Summary of experiments.

—1
To

(10' sec ')
b

(10' sec 'eV 2) Reference

Li

Na
K
CU

Ag

125
298
295
295

78
293
423

90
293
515
705
795

90
295
725
295

0.57
0.97
0.40
0.31
0.88
1.43
2.01
0.71
1.2
1.5
2.2
1.5
0.16
1.6
2.1

0.93

0.34
0.29

-0.05
-0.01

0.24
0.15
0.04
0.04

—0.07
0.04
0.07
0.26
0.33
0.09

—0.003
0.08

'A. G. Mathewson and H. P. Myers, Philos. Mag. 25, 853 (1972).
N. V. Smith, Phys. Rev. 183, 634 (1969).

'P. B. Johnson and R. W. Christy, Phys. Rev. B 11, 1315 (1975).
P. %insemius, thesis, Rijksuniversiteit te Leiden, 1973 (unpublished).

'M. -L. Theye, Phys. Rev. B 2, 3060 (1970).

frequency taken from the experiments listed in
Table II. It is obvious that this is a crude esti-
mate, since the plasma frequency is the only prop-
erty of the individual metals that enters. For the
second estimate, we combine Eq. (25) with values
of a scattering rate derived from the dc resistivity
due to electron-electron scattering,

v„(T)=ne p„lm, (27)

VI. DISCUSSION

The calculated values of b for the electron-

phonon scattering mechanism (Table I) approxi-

mate the room-temperature experimental results

quite well. The trend for the alkali metals is repro-

duced, and except for silver, the agreement for the

individual metals is probably as good as could be

expected for such a simple model (factor of 2).
The agreement for silver is poor, but the data for

as suggested by Hopfield. The results listed for
the estimate in Table I use values of p„calculated
by Lawrence and Wilkins. ' '

It should be noted that p« is proportional to T .
Thus Eq. (2S), combined with the scattering rate of
Eq. (26) or of Eq. (27), predicts a temperature-
independent b„.

other temperatures (Table II) suggest that the ano-

rnaly is in the room-temperature experimental
value.

By contrast, the estimates for the electron-

electron mechanism do not fit the data well. The
first estimate, based on the Gurzhi formula with

the free-electron scattering rate, does give reason-

able magnitudes for b, especially for the noble met-

als. However, the trend for Li-¹Kis wrong.

The second estimate, based on better calculations

of the electron-electron scattering rate, gives con-

siderably poorer agreement with experiment.

%e conclude, therefore, that the electron-phonon

scattering mechanism probably accounts for the

frequency dependence of the optical relaxation time

in the alkali and noble metals. Contrary to previ-

ous speculations, electron-electron scattering does

not appear to play a role in these materials at room

temperature or higher. In arriving at this con-

clusion, we have compared the predictions of the

two models with the experimental data for the al-

kali and noble metals as a group, as the estimates

and the data are probably not accurate enough to

permit a comparison for the individual metals.

The use of free-electron energy surfaces in the

case of the noble metals requires comment, since

effects which depend on umklapp scattering can be
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sensitive to the presence of necks in the Fermi sur-
face. As indicated below, the anisotropy of the
surface may indeed have an important effect on the
temperature dependence of b,~. However, the
necks themselves probably do not significantly af-
fect the magnitude of our estimate. The important
parameters in the calculation of r(ro) are the
momentum transfer and the phonon wave vectors
involved in a transition. Umklapp transitions are
important in the spherical case because the
momentum transfers are large while the phonon
wave vectors are small. The important neck tran-
sitions are of the type indicated in Fig. 1(b). They
involve a large momentum transfer and a phonon
wave vector equal to the neck diameter. To a first
approximation, their contribution to b,~ should be
adequately represented by the free-electron model,
since the neck diameter in the noble metals is
roughly equal to 6 —2k~.

As mentioned in the Introduction, data on the
temperature variation of b are available only for
the noble metals. In silver, b shows an uneven in-

crease with T, while in copper and gold it de-

creases. This behavior is of course incompatible
with the prediction for the electron-electron
scattering mechanism that b„ is independent of
temperature. The decrease of b with T in copper
and gold also disagrees with the prediction of our
model for the electron-phonon scattering mechan-
ism that b,~ increases with temperature from a

constant value of T =0. However, a decrease of b
with T is not incompatible with the electron-
phonon scattering mechanism per se. The reason
for this is subtle. Note that according to Eqs. (Sa)
and (20), the electron-phonon r '(ro) at fixed co

must increase with T. This property of r '(ro)

+b(fuu) is indeed satisfied by the experi-
mental data for all the noble metals. In the fre-

quency range to which the data apply (up to 1 or 2

eV), the decrease in b is easily outweighed by the
increase in ~0 with T. Thus the derivative

[t)r '(co)/BT]„ is positive at all relevant frequen-

cies. The decrease of b means that the magnitude
of this derivative decreases with increasing frequen-

cy. That our model predicts b as well as r '(ro) to
increase with T appears to depend on the assump-
tion of isotropy for the electron energy and the
phonon spectru~. With anisotropy, transitions at
different frequencies could primarily sample dif-

ferent phonon populations, and so could respond at
different rates to a change in temperature.
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