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We have studied the lattice dynamics of ordered overlayers of adsorbate atoms on the
(100) surface of an fcc crystal, with emphasis on contact with recent electron-energy-loss
data on the p(2X2) and ¢(2X2) overlayers of oxygen on the Ni(100) surface. This is done
within a model that fits the bulk phonon spectrum of Ni with nearest-neighbor central-
force couplings, and extracts adsorbate-substrate force constants from ab initio calcula-
tions of potential-energy curves carried out by Upton and Goddard. We obtain a very
good fit to the data, but only if we assume the ¢(2X2) layer to be much closer to the sur-
face than the p(2X2), as suggested by Upton and Goddard. We have also applied the
model to ordered overlayers of sulfur on the Ni(100) surface, and we provide theoretical
energy-loss spectra for this case. Throughout the discussion an emphasis is placed on
features in the energy-loss spectrum which lie below the maximum phonon frequency of

the substrate.

I. INTRODUCTION

High-resolution electron-energy-loss spectroscopy
has proved to be a powerful tool in the study of the
vibrational modes of atoms and molecules adsorbed
on metal surfaces. For simple geometries, the ap-
plication of the selection rule' introduced some
years ago for near specular losses controlled by the
dipole mechanism, and also those that apply to di-
pole inactive modes,” enables one to identify the
symmetry of the adsorption site from the loss spec-
trum.’ It is gratifying to see excellent agreement
between adatom vibration frequencies measured in
the experiments, and theoretical models which con-
tain no adjustable parameters,* with adatom-
substrate force constants deduced from Upton and
Goddard’s ab initio calculations® of the interaction
energy between an adatom and a rigid substrate.
For hydrogen, oxygen, and sulfur on the Ni(111)
and the Ni(100) surface the results are impressive.

Nearly all of the experiments confine attention to
the study of high-frequency vibrational modes,
with frequencies that lie well above the maximum
phonon frequency of the substrate. Such vibration-
al frequencies are associated with modes that have
vibrational motion highly localized to the near vi-
cinity of the adsorbate. In the recent literature, ex-
perimental data has appeared in which loss spectra
show clear features in the spectral region below the
maximum frequency of the substrate.*~® Here, as
discussed many years ago,” one expects to see lines
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in the energy-loss spectrum produced by surface
phonons which lie in the gaps of the phonon
dispersion curves of the bulk crystal, and in addi-
tion broad energy-loss bands of comparable in-
tegrated intensity produced by scattering from the
continuous spectrum of bulk phonons with wave
vector Q whose projection Q” onto a plane parallel
to the surface is selected by the scattering
geometry.

The purpose of this paper is to present the re-
sults of a detailed theoretical study of a lattice-
dynamical model of the p(2X2) and ¢(2X2) over-
layer of oxygen on the Ni(100) surface. We con-
strain the parameters which enter the model by the
requirement that it provides an adequate fit to the
bulk phonon spectrum and also to the potential-
energy curves calculated by Upton and Goddard,’
for interaction of an oxygen atom with a rigid clus-
ter of twenty Ni atoms arranged to mimic the
semi-infinite Ni crystal with a (100) surface. The
aim of the analysis is to make contact with the
electron-energy-loss studies of these systems; here
for both overlayers we have structure in the loss
spectrum below the maximum phonon frequency of
Ni (295 cm™!). The spectra of Lehwald and Ibach
are of particular interest because they are taken
with extremely high resolution (3.7 meV or 30
cm™!). In this study, as in the work of An-
dersson,® it is the near-specular dipole-active losses
that are explored. From the scattering kinematics,
the experiments thus explore the frequency spec-
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trum of phonon-induced fluctuations in dipole mo-
ment perpendicular to the surface,! with wave vec-
tor 6” parallel to the surface very close to the I"
point of the two-dimensional unit cell appropriate
to the crystal surface with the adsorbate layer
present.

Our aim is twofold. We wish to see to what ex-
tent a highly constrained lattice-dynamical model
such as that described above fits the frequency
spectrum of the surface vibrations. In addition, we
explore a number of theoretically generated loss
spectra which illustrate features of the lattice
dynamics of surfaces not explored in previous stud-
ies, so far as we know. For example, an adsorbate
lightly coupled to the surface will, if the substrate
atoms are pinned rigidly in place, vibrate with
eigenfrequency which lies below the maximum
phonon frequency wy, of the substrate. Then if the
substrate atoms are allowed to move, the adsorbate
mode no longer remains a vibrational mode local-
ized to the surface, but rather becomes a resonance
mode with finite lifetime (in the harmonic approxi-
mation) since the adsorbate may radiate phonons
into the substrate. Low-frequency hindered rota-
tions of adsorbed molecules should be described as
resonance modes with this character, so it is of in-
terest to explore the width of such features even
within a model where the parameters are adjusted
artificially. Thus, we wish to see how well the
constrained model fits the data, and at the same
time by adjusting parameters we can create a
model system that may be used to explore some
general questions in surface lattice dynamics.

A comparison between our calculated spectra
and those obtained from electron-energy-loss exper-
iments has led to some new results which we sum-
marize briefly here. This will provide some justifi-
cation for the various adatom geometries explored
later in the paper. Upton and Goddard find two
equilibrium positions, 0.88 and 0.55 A, for an
oxygen adatom at a hollow site of fourfold sym-
metry above a Ni,, cluster arranged to mimic a
(100) crystal surface. We find excellent agreement
between spectra calculated for a p(2 X 2) overlayer
and the electron-energy-loss data for the adatom at
0.88 A, and poor agreement between spectra calcu-
lated for a ¢(2X2) overlayer and electron-energy-
loss spectra for either position. Upton and God-
dard then consider binding of an oxygen above the
fourfold-hollow site of a Ni,gt cluster, for which
they obtain an equilibrium distance of 0.26 A (for a
binding configuration similar to that which previ-
ously gave 0.55 A). They argue this should mimic

more closely the situation when there is a dense
oxygen adlayer on the surface, such as occurs with
a c(2X2) overlayer. In fact, we find excellent
agreement between our calculated spectra and the
experiment when this last equilibrium position is
used.

We note that the p(2X2) overlayer of oxygen on
Ni(100) has been examined by low-energy electron
diffraction (LEED),!° and comparison with theory
shows the p(2X2) layer is 0.9 A above the Ni(100)
surface,!! in good accord with the picture that
results from the present study. However, the
LEED data has been interpreted to suggest that
the ¢(2X2) structure is also 0.9 A above the sur-
face; this is in disagreement with our conclusions.
Recent photoemission data has also been interpret-
ed by assuming that in the ¢(2 X 2) structure the
oxygen lies very close to the Ni surface.!?

This paper is organized as follows. In Sec. II we
present a summary of a study we have carried out
of the effective dipole moment seen by an electron
in the vacuum above a metal surface when a sub-
strate nucleus vibrates. Our conclusion is that as
for an adatom placed above the surface,' only
dynamic dipole moments normal to the surface
lead to the strong “dipole lobe” seen in near-
specular electron-energy-loss experiments. In our
analysis of the spectrum, we find no evidence for
scattering from parallel motions of the substrate
atoms; this is discussed later in the paper. Section
III describes construction of the basic lattice-
dynamical model, then continues on to derive ana-
lytic expressions for certain lattice-dynamical
Green’s functions used ultimately in the discussion
of electron-energy-loss spectra. Finally, in Secs. IV
and V we discuss the calculations upon which the
conclusions above are based, the effect of certain
surface force-constant changes on these spectra,
and also present theoretical calculations of the loss
spectrum for other adatom-substrate combinations
of the same basic geometry.

II. DIPOLE SCATTERING BY THE
MOTION OF SUBSTRATE ATOMS

When one examines the angular distribution of
low-energy electrons scattered inelastically from
crystal surfaces by atomic vibrations there, one fre-
quently observes a narrow cone of electrons cen-
tered about the specular direction. This near-
specular lobe is a consequence of electric dipole
scattering; as atoms on the surface vibrate, they
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modulate the electric dipole moment of the surface.
This produces fluctuating electric fields in the vac-
uum above the crystal surface, leading to the rela-
tively intense small-angle scattering encountered
frequently when long-ranged Coulomb fields are
present.

The theory of this electric dipole scattering has
been developed with primary attention directed to
the scattering produced either by motion of the
outermost atomic layer of atoms on clean semicon-
ductor surfaces,! or that produced by adsorbates
placed on the surface.!*> Here one encounters a
selection rule, apparently consistent with a substan-
tial body of experimental data,® which states that
the only vibrational modes which are dipole active
in the above sense are those which produce an os-
cillatory dipole moment normal to the crystal sur-
face. To calculate the leading term in the electric
field seen by the incoming electron when it is many
lattice constants from the surface, one may use a
model which places an oscillating dipole just out-
side the surface of a model dielectric; for a metal
the low-frequency dielectric constant may be re-
garded as infinite in magnitude, to excellent ap-
proximation.

The experiments of primary interest to the
present paper study scattering from modes where
the atoms in the substrate participate importantly,
as we shall see. If we picture the (metallic) sub-
strate as a semi-infinite dielectric, with surface
one-half interplanar spacing above the outermost
layer of nuclei, then to consider dipole scattering
produced by motion of the substrate nuclei, we are
led to study the nature of the electric field seen by
an electron above the crystal when a nucleus em-
bedded within the substrate, rather than above it, is
displaced. We consider this issue briefly in the
present section within the framework of a simple
model that is crude, but which we believe correctly
depicts the basic physics.

We wish to consider, once again, the electric
field felt by an electron above the surface, in
response to a dipole placed in the substrate below
the surface of a metal. The elementary dipole may
be regarded as a pair of point charges of equal and
opposite strength placed very close together. The
superposition principle allows one to consider the
field produced by a single point charge, and from
this to synthesize the field generated by a dipole.

If a point charge is introduced deep into a metal,
it will be surrounded by a cloud of screening
charge with radius of the order of a Fermi-Thomas
screening length,'* so the electric field in the metal

vanishes identically, except in the near vicinity of
the external charge. Considerations of electrical
neutrality require that a charge density with total
integrated strength opposite that of the external
charge be induced on the surface of the crystal.
This surface charge density then produces the elec-
tric field seen by any charged particle outside the
surface. Thus an essential feature of the theoretical
analysis is proper inclusion of the surface charge
density within a theory that conserves the total
charge.

In a classic paper, Newns!® has addressed the
microscopic theory of the screening of an external
charge introduced into a metallic film. Here, only
the case of an external charge distribution with in-
tegrated charge of zero is considered explicitly,
though prescriptions are stated for treating the gen-
eral case. There is no explicit discussion of the ef-
fective surface charge density in this work and we
feel that Newn’s formalism will not lead to simple
results with intuitive appeal. We have thus chosen
to proceed by exploring a simpler but more
schematic picture within which explicit analytic
expressions may be obtained.

Let a charge of strength e* be placed at position
T’ in the metal, with @y(t") the potential outside
and ¢;(T') the potential inside. Quite clearly, out-
side the metal @o(T" )must satisfy Laplace’s equation

V2po(T)=0 2.1

while inside we use a Fermi-Thomas model, with
kgt the inverse of the screening length:

(V2—kZ1)i(T)= —4me*8(T—T") . 2.2)

The boundary conditions are that the electrostatic
potential is continuous across the interface (this en-
sures continuity of tangential electric field E), and
that normal components of E are also continuous.

When we addressed the solution of the problem
for a planar geometry, we found it difficult to
achieve a solution which satisfies the requirement
of charge neutrality. The surfaces of a film have
infinite area, so a finite total surface charge is pro-
duced by an infinitesimally small charge density
spread over the surface. The problem can be
solved in closed form for a sphere with finite ra-
dius R, with the charge e* placed a distance d
from the surface. After one verifies that the condi-
tion of charge conservation is satisfied exactly for
the finite sphere, one may take the mathematical
limit R — « with d held finite to obtain the solu-
tion for a point charge placed near the surface of a
semi-infinite metal.
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We omit the details of the solution in the in-
terest of brevity, and discuss only the results. Out-
side the sphere, the potential may be represented
by the usual linear superposition of Legendre polv-
nomial P;(cosf) combined with the radial variation
r~!=1 while inside one combines the Legendre
polynomials with modified Bessel functions of the
third kind.

The results are summarized in Fig. 1, where we
give a prescription for constructing the field seen
by an electron far from the surface from an array
of point charges combined with simple multiplica-
tive factors. For a single point charge e* placed
below the surface [Fig. 1(a)], the potential seen
above is equivalent to that produced by the pair of
charges shown, multiplied by the screening factor
2 exp(—kpd)/(kgpd). Thus, the charge e* is com-
pletely screened to produce no field outside if
kpd >>1.16

The results for a dipole placed below the surface
and parallel to it follow directly from the superpo-
sition principle, as remarked above. The results
are given in Fig. 1(b), where it is evident that the
potential outside is quadrupolar in character.
Thus, an oscillating dipole placed just below the
surface and parallel to it will be “dipole inactive”
in electron-energy-loss spectroscopy, just as is the
case for a dipole placed on top of the substrate
parallel, to the surface.

A dipole oriented normal to the surface gen-
erates an effective potential from an array of
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FIG. 1. The potential outside a metal surface pro-
duced by charges located below the surface. The poten-
tial is calculated within the Fermi-Thomas mode. The
figure gives the rules for calculating the potential from
(a) a single charge, (b) a point dipole oriented parallel to
the surface, and (c) a point dipole oriented normal to the
surface.

charges as shown in Fig 1(c). Note that as the di-
pole is allowed to approach the surface (kgpd

<< 1), the electron outside the substrate sees a di-
pole with effective dipole moment twice as large as
that produced by the same dipole moment placed
in vacuum. This is precisely the same result as
that obtained when the dipole is placed just above
the surface. ‘

Our conclusion is that for electron scattering
produced by a subsurface species, the dipole selec-
tion rule operates in the same fashion as for an en-
tity adsorbed on the surface. The vibrational
motion must be such that an oscillating dipole mo-
ment normal to the surface is produced by the nu-
clear motion. Note that this does not require the
atomic displacements to be normal to the surface.
There are numerous examples of motions parallel
to the surface which induce dynamic dipole mo-
ments normal to it.> We shall encounter an exam-
ple in the present paper. The dynamic effective
charge is in fact a tensor property of the crystal,’
and this fact combined with the low symmetry of
the surface environment allows for this possibility.

III. ORDERED OVERLAYERS AND LATTICE
DYNAMICS OF THE fcc CRYSTAL
WITH A (100) SURFACE

A. General remarks

To interpret the electron-energy-loss spectra that
provide the primary motivation for this analysis,
we require a description of the lattice dynamics of
the crystal surface in a form suitable for contact
with the data. This section is devoted to a discus-
sion of the model we have used which is simple,
but which has the virtue that few free parameters
exist in it. We require it to reproduce the phonon
spectrum of the bulk Ni crystal and be consistent
with the ab initio calculations of Upton and God-
dard.

The first step is to choose a two-dimensional
unit cell for the structure. As one sees from Fig.
2(a), for the c¢(2X2) overlayer one has one adatom
and two substrate atoms per two-dimensional unit
cell. For the p(2X2) layer there is again one ada-
tom and four substrate atoms per unit cell. In Fig.
(2) we show our choice of unit cell for each struc-
ture. We illustrate this in Fig. 2(b). We denote the
position of each atom through use of an index k
which specifies the site within the unit cell upon
which a given atom resides, and a set of three in-
tegers that may be formed into a vector T= TH
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+ 21, which designates the unit cell within which
the atom resides. Here I, denotes the layer the
atoms reside in, with [, =0 the layer of adsorbed
atoms and the crystal in the upper half-space.
Then 1 gives the position of the unit cell within
the plane. The equilibrium position of the atom is
specified by the vector Ro( 1 /;«). For the surface
layer, since there is only one adsorbate atom per
unit cell, the index x may be dropped in the label-
ing of all quantities that enter. Thus, for example,
the position of each adsorbate atom is specified by
the vector Ry T”,O), with the adsorbate layer la-
beled by choosing /,=0. Now for the fcc crystal
with (100) surface, the various layers parallel to the
surface are not identical, but one has a stacking se-
quence ABABAB . . . , where we form the B layers
(even values of /,) by shifting the A layer to the
right [X direction in Fig. 2(a)] by the distance
ay/2. The distance a is.defined in Fig. 2(a). The
labeling scheme in the B layers is thus derived
from that in the A4 layers, shown explicitly in Fig.
2, by applying the above-mentioned shift.
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FIG. 2. The arrangement of atoms in the Ni(100)
surface with (a) the ¢(2X2) and (b) the p(2 X2) adsorbed
layer present. The open circles are Ni atoms, the
crossed circles are adsorbate atoms, and in each figure
the two-dimensional unit cell of the structure is illustrat-

- ed with dashed line.

@ ol2x2): 7 N Ean

(b)

FIG. 3. The two-dimensional Brillouin zone for (a)
the c(2 X 2) adsorbate-substrate combination, and (b) the
p(2X2) adsorbate-substrate combination. In each case,
the two-dimensional Brillouin zone of the clean surface
is shown by dashed lines.

Finally, we require two-dimensional Brillouin
zones for each of the two structures. These are il-
lustrated in Fig. 3, together with the Brillouin zone
of the clean (100) surface.

Throughout this section we shall assume the lat-
tice dynamics of the system to be described by in-
troducing an effective potential energy that depends
only on the distance between the atoms. At a later
point we shall introduce angle-bending interactions,
which are formally three-body interactions. This
may be done by modifying the equations presented
here only slightly, as described later. Upon noting
that all atoms within a given layer /, have identical
mass, the lattice-dynamical Hamiltonian in the
harmonic approximation has the form

PX(T k)
_1 il il
H——2 T%x M(IZK)

—}—-;— - 2 Efbaﬁ(T||lzK;Ti|lz'K')

LTy aB
1 ||sz, 1 ”sz

XU o T“lzK)uﬂ( Ti|lzl k'),

(3.1
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where u4( T”lzx) is the ath Cartesian coordinate of
the displacement of the atom away from equilibri-
um, and B( T”lzK) the associated momentum. If
for the moment we replace the collection of sym-
bols (T| |lzx) by simply i and j, then in the central
force model the potential-energy term in Eq. (2.1)
may also be arranged to read

Vi=5 ' 3 Kaplis))ia—tja)tig—ttjg) ,
i af (3.2)

where the prime instructs us to omit the terms
with i=j, and where

o @yld)
Kagli) == 15y Oe8
iy @)
+ |@ij (d(if)) ()
X g (i/)Agi)) . (3.3)

In Eq. (3.3), d(ij) is the distance between atom i
and atom j at equilibrium, 7(ij) a unit vector
directed from i to j, and @j;(d (i), @jj (d (ij)) are
the first and second derivatives of the two-body in-
teraction evaluated at the equilibrium separation.
A subscript ij appears on these quantities because
the interaction potential between the adsorbate and
substrate atoms differs from that of bulk substrate
atoms, as does that between substrate atoms in and
near the surface. The expressions in Eq. (3.1) and
in (3.2) are linked by the relation

Doglif) =8y DK aplij’) —(1—8;)Kaglif) . (3.4)
<

In this section, we shall also confine our atten-
tion to the case where a given atom couples only to
its nearest neighbors. Then if all nearest neighbors
are equidistant from the atom in question, for the
crystal to be in equilibrium one must have
@'(d (ij))=0. If the stated condition is violated or
if we include interactions between more distant
neighbors, then the equilibration condition is less
simple. In fact, one expects the terms in ¢'(d (ij))
in Eq. (2.3) to be small compared to those in

e (QLkles (Ql k) *

UaplLic, [ K3 Qu2) =3, 22— 0l(Q))

@"'(d (ij)), so in what follows we shall invoke the
commonly used approximation in lattice dynamics
that ignores these contributions. Thus, for K ,g(ij)
we shall use the approximation

Kaﬁ(ij)=ﬁa(ij)ﬁﬁ(ij)¢i}l(d(ij)) . (3.5

Then for each pair of atoms, K,g(ij) has magnitude
controlled by only one parameter ¢;; (d (if)), and
the form of this tensor depends on the orientation
of the pair relative to the coordinate axes through
aij).

For systems with two-dimensional periodicity
such as the examples considered here, the equa-
tions of motion admit eigensolutions of the form

- e$(Qs1.k)
a |2tz

) =———7—

Ugl [l K [M(IZK)]I/Z

X exp[iQRo(T k)],  (3.6)

where 6|| lies within the two-dimensional Brillouin
zone illustrated in Fig. 3. Inclusion of the factor
M (l,k) is standard in lattice dynamics and leads to
more convenient forms later, and the superscript s
labels the particular eigenmode associated with the
wave vector 6|| considered in Eq. (3.6). We may
have surface phonons with displacement field local-
ized near the surface, or solutions within the fre-
quency bands alloted to those bulk phonons with
dimensional wave vector Q whose projection onto
the surface plane is given by Q). The latter solu-
tions describe bulk phonons that propagate up to
and reflect off the surface. In general, these pro-
duce energy-loss bands in electron-energy-loss spec-
tra with integrated intensity comparable to the
peaks produced by scattering from surface pho-
nons.” We shall see explicit examples of such
features in the data taken by Lehwald and Ibach
on the ¢(2 X 2) layer of oxygen on the Ni(100) sur-
face.

Rather than examine the equations of motion for
the individual eigensolutions such as those in Eq.
(3.6), we shall instead gonsider a set of Green’s
functions Ugg(lk,l; ';Q)2) defined by the state-
ment

(3.7

where the sum on s ranges over all eigenmodes associated with the wave vector 6”, ws(au) is the frequency
of the particular mode of interest, and z is a complex frequency. One may relate the spectral density formed
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from such Green’s functions directly to the > energy-loss spectrum,’ as we discuss below. A critical quantity
is the spectral density function p,g(l,«,l; k ,Q“co), defined as follows:

Pap K, 1; K’;(_j“a))=i;[ Ugplli,l; K’;6||,w +ie)—U,

Lk, 1 k3Q),0—i€)]

=3 e (QiLk)ef Q)L k) *8(w—a,(Q))) . (3.8)

We can see how the s _pectra] densities enter electron-energy-loss spectroscopy from the following argu-
ment. Suppose atom ( 1/;«) is displaced from its equilibrium and produces an effective dipole moment nor-
mal to the surface seen by an electron outside. We write this dipole moment P ( T /z%) in the form

Pl( THIZK)Z qu(lzx)uﬁ( T”lzK) ,
B

(3.9)

where g,g(/;k) is a dipole-moment effective charge tensor similar to that introduced earlier,! and we allow
the possibility that motions parallel to the surface generate a perpendicular dipole moment. Considerations
of translational symmetry ensure that g,5(/,x) is independent of T |- The cross section for scattering from
the particular mode ( Q”s) via the dipole mechanism is then proportional to'

qlﬂ(l K)qlﬂ' l K")

IP(ltot)(all’s) | 2__ 2
BBIx,I, K

M Gom g8

Li)ed QL k)* . (3.10)

In an experiment, one generally does not detect scattering from a single eigenmode, but rather from all
eigenmodes associated with the wave vector Q; that lie in the frequency range between » and w+Aw (see
below). The scattering efficiency per unit frequency is then proportional to the quantity

qlp(lzx)qlg(l,'x’)

1 ’ Ol s
io 2 IPQpa = 3
s

BBLx,1, k

where on the left-hand side the sum on s includes
all modes within the selected frequency interval
Aw. Thus, given the spectral densities generated
from Eq. (3.11) and a model of the manner in
which nuclear motion generates an electric dipole
moment, one can calculate the form of the energy-
loss spectrum

We conclude this section with a brief summary
of the scattering kinematics. If an electron of ener-
gy Ej strikes the surface to create a phonon (Q”s)
and an electron with energy E;, then quite clearly
we must have

E,—=E;—#io,(Q))) . (3.12)

Only wave-vector components parallel to the sur-
face are conserved (to within a reciprocal lattice
vector of the two-dimensionally periodic structure),
so if khs) and khn are the projections of the wave
vector of the scattered and incident electron on the
plane parallel to the surface, then we have

k' =k|{'~Q,+Gy , (3.13)

with G” a two-dimensional reciprocal-lattice vector

M (oM (L)) 72 PP

(Lk,l; k3Q0) (3.11)

I
of the structure.

Throughout this paper we shall be concerned
with studies of small-angle scatterings, where the
electron energies lie within approximately one de-
gree of the specular direction. Then kh’)-— kﬁ)) is
very much smaller than the length of the first
nonzero reciprocal-lattice vector. We may set
G“-—O and also Q” is very close to zero on the
scale set by the distance to the first Brillouin-zone
boundary. Hence, to excellent approximation we
need only the spectral densities associated with the
point 6”50 for both Brillouin zones illustrated in
Fig. 2. For our models of the ¢(2X2) and p(2X2)
overlayers on the (100) surface of an fcc crystal,
and at the point QH——-O of the Brillouin zone ap-
propriate to the crystal with ordered overlayer
present, we are able to solve for expressions for the
relevant spectral densities by analytic method. We
shall also use the continued fraction method!” to
extract information on features of the lattice
dynamics away from the origin in the Brillouin
zone. We shall see, for example, that even in the
absence of direct lateral interactions between the
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adsorbate atoms, indirect interactions through the
substrate lead to a very substantial amount of
dispersion in the surface phonon dispersion curves
for oxygen and sulfur on the Ni surface. We first
summarize the calculations based on analytic for-
mulas, then we turn to a discussion of the applica-
tion of the continued fraction method to the quasi-
one-dimensional problems such as the present one.
We find limitations of the method, as we apply it,
not encountered in earlier studies of atomic
motions of isolated adsorbate atoms on the sur-
face,* and of atoms in the clean crystal surface.'®

L Do Tyl Tl )
dap(Qik, 1 k)= =
ap( Qi Lz TZ [M (LM (k)] P

then noting that the Green’s function satisfies
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B. Lattice dynamics at the zone center
for the ¢(2 X 2) overlayer;
the case of nearest-neighbor
central-force interactions

Quite generally, the Green’s functions introduced
in Eq. (3.7) may be found by generating the equa-
tions of motion satisfied by them. One begins by
constructing the Fourier-transformed dynamical
matrix d,g(Q);l;k,l; k) defined by the statement

(iQ) [Ro( T) L) —Bo( Tl k11 ] (3.14)

PUgpllei, k5Q2) = 3 3 day Qb KV Uyglly k71 15Q)2) =848, 1 By - 3.15)

Izu P4

It is a straightforward but tedious matter to
work out the explicit form of the equations of
motion for the semi-infinite fcc crystal with the
c(2XX2) overlayer. In the interest of brevity, we
shall not quote the full form of these equations; in-
stead, we examine one special subset of them. This
will serve to illustrate the method we have used to
obtain the results to be discussed in the next sec-
tion.

Suppose we wish to find the Green’s function
Uz(0,0;6||z) that may be used to form the spectral
density associated with motion of the ¢(2 X2) over-
layer normal to the surface. Here for the oxygen
overlayer the combination /,« is replaced by O; in
what follows, we suppress reference to the com-
bination Q)z. The equation of motion for U(0,0)
then reads

(2kgp—22)U,(0,0)— k1o UST(1,00=1, (3.16)
where we define

USY(1,0)=U,4(11,0)+ U, (12,0) . (3.17)
Also,

koo =2¢1g sin*(8y;) /M
|

I
and

k1o=2@14 sin®(0g,) /(MoMy;)' 2 .

Here ¢ is the second derivative of the O-Ni pair
potential evaluated at the equilibrium position, 6,
is the angle between the xy plane and a unit vector
from a Ni atom in the outermost substrate atomic
plane to its nearest-neighbor oxygen, and My and
My; are the mass of the oxygen and Ni atoms,
respectively.

The next step is to form the equation of motion
for the function US"(1,0) that enters Eq. (3.16).
This is given by

(2k 1y + k1o —22)UST(1,0)—2k 1, USH(2,0)
—2k10U,(0,0)=0, (3.18)

where k'o=2¢/ sin’(0,0)/My; and kq, =2¢{;
sin%(0;,)/My;, with @15 the second derivative of
the pair potential between the Ni atoms in the
outermost substrate layer (/,=1) and the first sub-
surface layer of Ni atoms (/,=2). The angle 0, is
defined similarly to 6,;; we allow for the influence
of surface relaxation by allowing 6, to differ from
the bulk value of 7/4 and for ¢{5 to assume a
value different than the bulk Ni-Ni interaction @, .
If k=@y5/My;, then UST)(2,0) has the equation of
motion

(2k 15 +2k —2)USH(2,0)— 2k, UST(1,0)—2kUSH(3,0)=0 , (3.19)
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while for /, >3 we have

(4k —z2)USH(1,,0)—2k[USH (1, — 1,00+ USH (1, +1,0)]=0 (I,>3). (3.20)

The physical content of this set of equations is that
vertical motion of the oxygen adlayer at QH =0,
i.e., rigid motion of the layer perpendicular to the
surface, excites similar motion in the first substrate
layer, and this disturbance propagates down into
the bulk of the crystal. We shall see that for the
p(2X2) overlayer its vertical motion at (_jllz 0 ex-
cites a motion of more complex character in the
substrate. Our next task is to solve the hierarchy
of equations displayed in Egs. (3.16)—(3.20). Be-
fore we do so, we note that to find the Green’s
functions U, (/,1;0) and UL(/,2;0) that describe
each of the Ni atoms at the two sites in the two-
dimensional unit cell, we require in addition to
USH1,;0) also the combination

US(1,;0)= Uy (1,1;0)— U, (1,2;0) . (3.21)

These functions satisfy the homogeneous set of
equations

(2k12+k'10—'22)Uz(z—)(1;0)=0 R (3.22a)
2k, +k —z2)US(2;0)=0, (3.22b)
(4k —zHUS (1,;;0)=0, [,>3. (3.220)

Since the functions U (1,;0) satisfy homogene-
ous equations, they vanish identically. Rigid verti-
cal oscillations of the oxygen adlayer excites the
two Ni atoms k=1 and k=2 equally in all sub-
strate layers, so U )(/,;0) vanishes as a conse-
quence. This is a special feature of the nearest-
neighbor lattice-dynamical model currently under
study. Later in the paper we shall see that when
next-nearest-neighbor interactions are added, the
vertical motion of the oxygen adlayer couples to
the function UL ~(,;0) for even values of I,. We
believe next-nearest-neighbor coupling is in fact
weak in the systems of interest, for reasons that
will become clear later.

To solve the system of equations displayed in
Eqgs. (3.16)—(3.20), one proceeds as follows. For
all values of /, >3, Eq. (3.20) is solved by any func-
tion proportional to exp(—al,), where the attenua-
tion constant a is found from
, 2

2k

2a

e — e*+1=0, (3.23)

and in order that the disturbance induced by the
vibrating oxygen layer decay into the bulk, that

T
root of Eq. (3.23) for which Re(a) > 0 is selected.

Suppose the complex variable z is allowed to ap-
proach the real axis of the w plane, as is required
in the calculation of the spectral densities [Eq.
(3.8)]. The maximum substrate phonon frequency
of the model is V'8k, and if we write z=w +i€, the
behavior of a in this limit depends on whether
©>V8k. If o>V8k, then independent of the
sign of €, Eq. (3.23) has a solution a=iw+X, with
X real given by

172
X o’

T4k

w2

2 1
4k

8k
1%
0)2

e (3.24)

Thus, for > V'8k the disturbance induced by the
adsorbate layer decays exponentially as one moves
into the crystal, with amplitude that changes sign
as one moves from one layer to the next (this
comes from the factor of i7 in a=im+X). For

® <V'8k in the limit €—0, the solution to Eq.
(3.23) has the form z=+i6, with the sign the same
as that in z=w+i€, where

, 1172
inflw)=—2_ |12 )
sinf(w) T 1 Sk (3.25)
172

Hence for o < (8k)'/“, a is pure imaginary and the
disturbance induced by the oxygen adlayer
penetrates deeply into the bulk. The oxygen ad-
layer thus couples to the bulk phonons of the sub-
strate.

Once a is chosen as outlined above, the hierar-
chy of equations, (3.16) through (3.20), is readily
solved by the ansatz

U,(0,0)=n¢(0) ,
Ut (1,0)=n,(0) ,
USH(1,,0)=n,(0) exp[ —alw)(l,—2)], (3.260)

where a set of inhomogeneous algebraic equations
may be generated for the coefficients ny(w), n;(w),
and n,(w) from Egs. (3.16), (3.18), and (3.19); we
omit the details. In the course of presenting our
results (Sec. IV) we shall require additional Green’s
functions not generated by the equations presented
here. We omit detailed description of these, and of
a generalization of Egs. (3.16)—(3.20) readily
solved in closed form, at the price of complexity.
[This generalization generates ULt ;0 k') for gen-
eral values of (; k').]

(3.26a)
(3.26b)
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C. Lattice dynamics at the zone center
for the p(2X2) overlayer;
the case of nearest-neighbor
central force interactions

As in the preceding section we once again exam-
ine the equations of motion that generate the
Green’s function U, (0,0) that describes the fre-
quency spectrum of the vibrations of the oxygen
adsorbate layer normal to the surface within the
nearest-neighbor central-force model. The equa-
tion of motion for this function now becomes

(2kgo—22)UL(0,0)— 5 k1o UL (1,0)
+5s0UR(1L,00=1, (327

where the constants k¢ and kq are the same as
those that appear in Eq. (3.16), and the Green’s
function UZ(ZL)(I,O) enters because vertical motion of
the oxygen adlayer excites vertical motion of the
outermost substrate layer. Here UX)(1,0) is a
Green’s function formed by summing over the four
atoms in the unit cell illustrated in Fig. 2(b). For
general /,,

U(1,,0)=U,(1,1,0)+ U, (1,2,0)
+U,(1,3,00+U,(1,4,0).  (3.28)

The term in U fﬁ)(l,O) enters Eq. (3.27) because for
the p(2 X 2) structure, vertical motion of the oxygen
atom also excites a breathing motion, parallel to
the surface, of the square of four Ni atoms to
which it bonds. The constant

5 10=216 $inBygcosBio/(MoMy)' 2
and the “breathing mode” Green’s function is
U{BA1,,0)= Uy, (1,2;0) — Uy, (1,4;0)
+U,,(1;3;0)—U,,(1;1;0) . (3.29)

To proceed, we need to generate the equations of
motion satisfied by the two new functions Uz(zl‘ ) (1,0
and U fﬁ)(l,O). For UZ(ZL )(1,0), we obtain an equation
of motion that couples us into no new Green’s
functions:

2k 12+ 3o —zD)UL(1,0)— 2k, UL(2,0)
— 5500 UP(1,00—2k1oU,(0,00=0.  (3.30)

Here sg0 =2/ sin(6y;) cos(6y;)/My; can allow for
relaxation between the outermost layer and the
layer just below it, as explained in the preceding
section.

The equation of motion of the “breathing”

Green’s function vU(,ﬁ)(l,O) couples into a new de-

gree of freedom of the substrate layer below. This
we call a rocking degree of freedom UX(1,,0).
Atoms at the sites k=1 and k=3 in the even num-
bered substrate layers are excited in a motion nor-
mal to the surface, with the motion of the atoms at
k=1 excited 180° out of phase with those at the
sites k=3. [Recall the earlier discussion in this
section which summarized how the sites in the unit
cells of even numbered substrate layers are related
to those in the odd numbered layers, as illustrated
in Fig. 2(b).] We define

UR(1,,0)=U,(1,1,0)— U,(1,3,0) , (3.31)

and the equation of motion of Uiﬁ)(l,O) then be-
comes

(4k 11 +c12+ e —z)UR(1,0)
~3500UL(1,0)+ 254U, (0,0)
—2s, UR(2,00=0. (3.32)

Here we encounter a new set of force constants.
One has k|, = ¢ /My;, with @{; the second
derivative of the pair potential between nearest-
neighbor Ni atoms in the surface plane. Then
c12=2¢13 cos’(01)/My;, cho=2¢15 cosX(010) /My,
and s, =2¢;; sin(0;,) cos(6,,) /My;. The various
coupling constants are written in a form that al-
lows for changes in the intralayer interaction
strengths, interlayer coupling strengths, and deriva-
tions of certain bond angles from the bulk values
caused by, for example, interlayer relaxation.

The new Green’s function U.X(1,,0) introduced
in Eq. (3.31) obeys an equation that introduces no
new mathematical structures:

(2k +2k 1, —z)UR(2,0) —s1, U{(1,0)
—kU{P(3,00=0, (3.33)

for I, even and greater than 2, the equation obeyed
by UL(1,,0) identical to Eq. (3.33), but with k,
and s, set equal to k. For [, >3 the two remain-
ing functions obey the set of equations

(4k -z UL(1,,0)—2k UL (1, —1,0)

—2kULEN1,+1,00=0, (3.34)

while a slightly modified form applied to [, =2.
Also

(6k —z2)U{(1,,0)+2k UL (1, —1,0)

—2kUL(1,+1,0)=0 . (3.35)
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We see that except near the surface of the ma-
terial, the function U’ is decoupled from both
U{f(1,,0) and also U;"(,,0). Then for our pur-
poses, Eq. (3.33) (with s, =k, =k) forms a hierar-
chy for which the “breathing” Green’s function in
odd numbered layers drives the “rocking” Green’s
function in the even numbered layers. Thus, Eq.
(3.34), combined with Egs. (3.33) and (3.35) form
two sets of “non-interacting” hierarchies in the
bulk of the material which are mixed by the oxy-
gen adlayer at the surface, along with force-
constant changes. These equations may be solved
by the appropriate extension of the method used in
the preceding section. Each hierarchy is solved in
the bulk by an exponential ansatz similar to that in
Eq. (3.26¢). In fact, the solution for UL(l,,0) has
precisely the same form as that given in Egs.
(3.26), with a found from Eq. (3.23). Equation
(3.33) in the regime I, >4, where we are to set
ki,=k, s1, =k, combined with Eq. (3.35) are
solved by writing

U{BA1,,0)=n)(w) exp(—a’l,) (I,>3;1, odd)
(3.36a)
and

UL1,,0)=ng(w)exp(—a'l,) (I, >4,], even) .

(3.36b)
One finds a’ by solving
2,2
sinh(20) = {8k =2 Nz —40) (3.37)
4k
while the ratio n||(w)/ng(w) is given by
2
ny(@) _ (4k —z%) (3.38)

nglo) 2k

Hence, solutions of the pair of Green’s-function
hierarchies in the bulk lead to a solution with two
free parameters, the analog of n,(w) in Eq. (3.26¢c)
which we call here n; (®), and either n)|(w) or
ng(w). Modifications of the basic bulk solutions
for the various functions may be introduced by
generalizing Egs. (3.26) in the appropriate manner,
and from the inhomogeneous set of equations near
the surface the unknowns may be found.

Once again, we omit the details which are of lit-
tle general interest. The equations displayed above
and the associated discussion allow one to appreci-
ate the nature of the substrate motion excited by
vertical oscillation of the adsorbate layer. For the
Pp(2X2) overlayer, the picture is considerably more

complex than for the ¢(2X2) case, but it remains

possible to solve the problem by analytic methods
in which the last step involves the inversion of a

small matrix that we have done with a computer
program.

IV. RESULTS OF THE
GREEN’S FUNCTION ANALYSIS

This section is devoted to the results of calcula-
tions of the electron-energy-loss spectrum generated
by the Green’s-function method described in the
preceding section. We first consider in detail re-
sults for the ¢(2X2) and the p(2x2) overlayers of
oxygen on the Ni(100) surface, with attention to a
number of general points. Then we compare our
results with the data reported by Lehwald and
Ibach, and we conclude by presenting results calcu-
lated for other adsorbate-substrate combinations.

We begin with the simplest picture which ig-
nores all force-constant changes near the surface.
Thus we have only two parameters in the model.
One is ¢7y,, which controls the strength of the Ni-
Ni interactions in the bulk. The maximum sub-
strate phonon frequency in the bulk is
(8¢5, /My;)!/2. For Ni, this is 295 cm ™!, so we
have @3 =3.79 X 10* dynecm~!. The nearest-
neighbor central-force model provides quite a good
fit to the Ni phonon spectrum, and there is no evi-
dence for appreciable surface relaxation. Thus we
believe this simple model provides an adequate pic-
ture of the lattice dynamics of the substrate. The
one remaining parameter describes the strength of
the interaction between an adsorbed oxygen atom
and each of its four nearest Ni neighbors. We need
to know the value of the parameter ¢}y and also
the angle 0, introduced in Sec. III to find the en-
tries in the dynamical matrix from this coupling.
If R, is the distance of the oxygen atom above the
Ni surface plane and a, the distance between
nearest-neighbor Ni atoms, then sin(6,q)
= ‘/_2R l/ ap.

We find @}, from the potential-energy curves
calculated by Upton and Goddard, as follows.
These authors calculate the interaction energy as a
function of distance, as an oxygen atom is moved
toward the fourfold hollow site, along the perpen-
dicular to the surface of a Ni,, cluster arranged to
mimic the semi-infinite Ni crystal with (100) sur-
face. As the oxygen is moved, the Ni atoms are
held fixed in position. The curvature of their
potential-energy curve about the minimum then
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gives a vibrational frequency that would be that for
perpendicular motion of the oxygen above the Ni
surface when the substrate atoms are regarded as
infinitely massive. In the notation of Sec. III this
frequency is V'2k,, so when 8,y is known we may
find @{j.

For an oxygen atom above an electrically neutral
Niyg cluster, they find an equilibrium position for
the oxygen atom (R ) at 0.88 A above the surface,
and for this position (2k¢)'/?=371 cm~!. For ox-
ygen above the Ni surface (and not for any other
adsorbate considered in their analysis), they find a
second equilibrium position at R, =0.55 A with
lower binding energy than the most favored posi-
tion R, =0.88 A. These authors argue that this
calculation should adequately describe binding ap-
propriate to the low-density p (2 X2) structure, but
for the more dense ¢ (2X2) structure there will be
appreciable charge transfer between the adsorbate
layer and the substrate and a better model would
be the binding of an oxygen atom to a Nil, cluster.
Here they find an equilibrium position of R; =0.26
A, and (2kg)!/?= 264.5 cm™"'. In essence, the
electronic configuration appropriate to the earlier
R, =0.55 A minimum becomes favored, and the
adsorbate layer is pulled in tighter to the surface,
in their view. The calculations below explore the
electron-energy-loss spectra for the oxygen adlayer
placed at various distances from the surface, with
choice of force constants dictated by the results of
Upton and Goddard.

In Fig. 4 we show calculations of the spectral
densities relevant to electron-energy-loss experi-
ments, for the ¢(2X2) oxygen overlayer placed
0.26 A above the Ni(100) surface. The two curves
are constructed as follows. One is the spectral den-
sity associated with vibrations of the oxygen ad-
layer normal to the surface. This is formed from
the function U, (0,0) obtained in Sec. III B using
the prescription in Eq. (3.8). We refer to this spec-
tral density as p(ol)(a)). This is compared with a
second spectral density pgni(w) formed for the
normal coordinate

Z) =u,(0)— 5 [u,(1,1) +u,(1,2)] ,

which describes the relative motion of the oxygen
adlayer and the outermost Ni layer. The latter
spectral density, called the dipole-moment density
function in earlier work by Allan and Lopez,'®
describes the energy-loss spectrum if in Eq. (3.11)
we assume that only atomic motions normal to the
surface lead to dipole scattering, and take the
dynamic dipole moment of each Ni atom in the

surface equal to half that of the oxygen adatom
with the opposite sign. The physical picture then
is that as the surface vibrates, the dynamic dipole
moment is produced by charge transfer only be-
tween the adsorbate layer and the outermost layer
of the substrate. There is rather little difference be-
tween these two spectral densities, except at rather
low frequencies where p%_)m(w) falls to zero because
the adsorbate layer and the outermost substrate
layer move in phase with equal amplitude.” It is
not hard to show that as w—0, pg)(co) tends to a
constant while on physical grounds p%_’Ni(w) van-
ishes. In the frequency regime of interest to most
of the calculations we shall present, we find no
dramatic difference between the spectral density of
the vibrations of the adsorbate layer normal to the
surface, and that associated with a normal coordi-
nate such as described above.

When the oxygen adlayer is very close to the
surface, as assumed in Fig. 4, the restoring force
for motion normal to the surface is not large.
From the work of Upton and Goddard we have
once again (2kq)'/2=265.4 cm~!, which lies below
the maximum substrate phonon frequency of 295
cm™!. In this situation, when the motion of the
coupled adsorbate substrate system is considered,
the adsorbate layer does not lead to the appearance
of vibrational modes (surface phonons) above the
maximum substrate phonon frequency. All the
normal modes of the system lie below 295 cm ™!,
and the electron-energy-loss spectrum assumes the
form of a continuous band of losses which extends

—————— g A
o 100 200 300 400
ENERGY LOSS (cm-!)

FIG. 4. The spectral density of fluctuations normal
to the surface for the oxygen adlayer and for fluctua-
tions in the distance between the adlayer and the outer-
most substrate layer. The calculations are for the
¢(2X2) overlayer, with parameters chosen as described
in the text.

SPECTRAL DENSITY (ARBITRARY UNITS)
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from zero frequency up to the maximum substrate
phonon frequency. Very similar spectra were dis-
cussed some years ago for the clean (100) surface of
an fcc crystal,” but one had to look at large scatter-
ing angles to see features such as those displayed in
Fig 4. Here the adsorbate layer allows the pho-
nons at the M point of the Brillouin zone of the
clean (100) surface [see Fig. 3(a) of the present pa-
per] to scatter electrons near the specular by the di-
pole mechanism. In the new Brillouin zone with
adsorbate layer present, the M point is folded back
to appear at ' in the new zone.

In Fig. 5, again for the ¢ (2X2) arrangement, we
show a sequence of spectral densities calculated
with rather different assumptions about the
geometry. The curve labeled R, =0.88 A gives the
energy-loss spectrum assumed to be described again
by pg_)Ni(w), for the case where the oxygen sits in
the high position and k¢, is chosen so (2kq)!/?
=371 cm~!. The calculated energy-loss spectrum
differs dramatically from the one shown in Fig. 4.
There is a delta-function feature in the spectral
density at 401 cm~'. This is produced by the
6” =0 mode of a branch of surface phonons
present when k is chosen this large. The shift
from 371 cm™! to 401 cm ™! has its origin in the
motion of the substrate Ni atoms, which has the
effect of shifting the “rigid substrate” frequency
(2koo)!”? upward.* For R, =0.88 A, very little
scattering is produced by the motions of the system
in the frequency regime below 295 cm~!. The
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FIG. 5. For several values of the distance R between
the ¢ (2X2) oxygen adlayer and the substrate, we show
the frequency spectrum of the fluctuations in the dis-
tance between the adsorbed layer and the outermost
layer of the substrate. See the text for a description of
the choice of parameters.

contribution to pg_)m(w) from this region can barely

be discerned on the graph.

To illustrate some general features of the lattice
dynamics of the adsorbate layer, the remaining
curves in Fig. 5 have been generated by keeping
@1o fixed, then moving the oxygen layer down-
ward, thus decreasing (2kq)!/? through action of
the factor sin(g;g). When this is done for
R,=0.75 A, we still have a surface phonon band
above the substrate phonon frequency. This pro-
duces the delta-function feature indicated in the
spectral density, and we still have little scattering
within the bulk phonon bands. By the time
R, =0.50 A, (2k)'”? lies well below 295 cm™! (it
equals 232 cm™?), and we now have a broad
feature that looks as if it is produced by a mode
with a rather short lifetime. This feature is in fact
a resonance mode of the surface environment, qual-
itatively similar to those encountered in the lattice
dynamics of imperfect crystals.!® If the substrate
atoms are held pinned in place while the adsorbate
layer vibrates, we would have a surface phonon
Q) =0, well below the maximum substrate phonon
frequency at 232 cm~!. Now if the adsorbate layer
is excited and the substrate atoms are allowed to
vibrate also, the energy associated with the adsor-
bate vibrational motion can be radiated into the
crystal in the form of bulk phonons. The surface
phonon thus acquires a finite lifetime in the har-
monic approximation of lattice dynamics. The life-
time may be short, and no recognizable linelike
feature may remain in the spectrum if coupling to
the substrate is sufficiently strong and the density
of bulk phonon modes at the relevant frequency is
high. In essence, Fig. 4 provides an example of a
situation where the coupling between the adsorbate
layer and the substrate is so tight that no identifi-
able adsorbate resonance remains. In our example,
as the oxygen layer is lowered further (again with
@10 fixed), the Q=0 resonance motion is shifted
farther down in frequency and narrows to more
closely resemble a real “mode” of the structure.

One expects to encounter such surface resonance
modes commonly in the following situation. When
a small molecule is adsorbed on a surface, there are
high-frequency vibrations close in frequency and
character to the internal modes of vibration ap-
propriate to the gas phase. These generally lie well
above the substrate phonon bands in frequency for
the case where the substrate is a metal, though this
may not always be so. There will be, in addition,
low-frequency modes which owe their existence to
the coupling between the molecule and the sub-
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strate. These are often called “hindered rotations”
and “hindered translations,” a nomenclature that is
rather imprecise because in general, a given mode
will involve the combination of center-of-mass
motion and rotation about the center of mass.?° If,
in a picture where the frequencies of the various
modes are calculated first with the substrate atoms
fixed in place, the influence of substrate motion on
the modes is then explored, each mode may be-
come a surface resonance mode such as those illus-
trated in Fig. 5 whenever its frequency lies below
the maximum phonon frequency of the substrate.
There is the distinct possibility that if the mode
couples strongly to the substrate atoms or if its fre-
quency lies in a regime where the density of sub-
strate phonons is high, it may no longer appear in
the energy-loss spectrum as a well-defined feature.
Very shortly we shall encounter an example of just
such a situation.

In Fig. 6(a) we show the energy-loss spectrum
calculated for scattering from the p(2X2) over-
layer of oxygen with R; =0.88 A. We have as-
sumed once again that the relative motion perpen-
dicular to the surface of the oxygen adlayer and the
outermost Ni layer is responsible for setting up the
dynamic dipole moment. It is important to note
that here the “breathing” motion parallel to the
surface of the square of Ni atoms just under each
oxygen can generate a dynamic dipole moment per-
pendicular to the surface. In essence, on the right-
hand side we should include the relevant off-
diagonal elements g,,(1k), g,,(1k) in the dynamic
effective-charge tensor so this feature is incorporat-
ed into the calculations. Since, as we see from Sec.
III, the breathing coordinate is coupled to the vert-
ical motion of the oxygen layer and that of the
substrate for the p(2X2) structure, inclusion of
this effect would influence the relative intensities of
the features in Fig. 6, but no new structure would
be introduced. It is hard to extract information on
the relative intensities of the structures present in
the data in a reliable fashion, so we have not in-
cluded this feature in the calculations reported
here.

We see three structures in Fig. 6(a). The first at
445 cm~! is again the 6” =0 surface phonon asso-
ciated with the oxygen layer, which for the
p(2X2) is shifted up in frequency above the value
401 cm™! found earlier for the ¢ (2<2) structure.?!
The two remaining lines, one at 180 cm~! and one
at 245 cm ™!, are resonance modes very similar in
character to those illustrated in Fig S. They are
distinctly asymmetric in shape, but very much
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FIG. 6. For two choices of the distance between the
oxygen adlayer and the surface (a) R, =0.88 A and (b)
R,=0.26 A, we give the electron-energy-loss spectrum
calculated as described in the text.

sharper to the point where they will be rather
long-lived resonances of the surface.

It is clear that the feature at 245 cm™! has its
origin in the following. There is a surface phonon
at the X point of the Brillouin zone of the clean
(100) surface that was referred to some years ago as
the S¢ mode.”> This mode has displacements in
the surface layer parallel to the surface, and is two-
fold degenerate since the eigenvectors at the X
and X, point illustrated in Fig. 3(a) are distinctly
different. Upon forming the linear combination
X1 + X, of these two eigenvectors, one obtains a
pattern of displacement in which the square of Ni
atoms under each oxygen breathe in phase. As we
have seen, this excites a vertical oscillation of the
oxygen adlayer which also excites similar motion
in the outermost substrate layer, and the energy as-
sociated with the last mentioned motion is radiated
off into the bulk. One of the two S modes is thus
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converted into a resonance mode by the presence of
the p(2X2) overlayer and becomes dipole active at
Q=0 for reasons outlined above. The second S,
surface mode, X| — X, fails to excite the oxygen
adlayer. We have been unable to relate the 180
cm™! feature to any well defined feature of the lat-
tice dynamics of the clean surface. The following
calculation proves instructive, however. Suppose
the second layer of Ni atoms and all interior sub-
strate layers are regarded as rigidly fixed in posi-
tion, and we consider the three degrees of freedom
associated with coherent vertical oscillations of the
oxygen adlayer, that of the outermost substrate
layer, and in addition the breathing motion parallel
to the surface of the outermost layer. This system
has three normal modes at 446, 242, and 181
cm™!, in rather good agreement with the three
features in Fig. 6(a). Coupling to the remainder of
the substrate then imparts a finite lifetime to the
two low-frequency modes, since they may radiate
their energy into the substrate in the form of bulk
phonons.

In Fig. 6(b) we show a spectrum for scattering
off the p(2X2) structure for ¢}, set equal to the
value used to generate Fig. 6(a), but with R de-
creased to 0.26 A. We now see two modes, not
three in the figure. These occur at 125 and 210
cm~!. If we repeat the calculation discussed in the
preceding paragraph where all layers but the adsor-
bate and first substrate layer are clamped in place,
we find three modes 117, 156, and 247 cm™!. The
two lowest modes correspond to those in the figure.
Our calculations indicate that the feature with ori-
gin in the S¢ mode never drops below the onset of
the phonon continuum at the X point which begins
at 210 cm ™! (V/4k), and the two-layer calculation
can never produce this “pinning effect” since it
fails to include the full participation of the sub-
strate. Upon examining our computed spectral
density function, we do find a weak feature at 257
cm~!. The structure is far too small to show on
the scale of the graph in Fig. 6. This is an exam-
ple of a situation where a surface mode lies inside
the bulk phonon continuum, and fails to appear as
a strong feature in the final spectral density. There
are, in fact, three “modes” in the full calculation,
with one rendered indistinct because of the effect of
coupling to the substrate motions.

Another view of the three-peak structure is the
following. A Ni,sO molecule in free space, with the
four Ni atoms arranged on a square with the oxy-
gen above its center, has three normal modes in
which the oxygen moves in the vertical direction
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FIG. 7. We show here (a) the data of Lehwald and
Ibach which explores near-specular energy loss of elec-
trons scattered from the p (2X2) overlayer of oxygen on
the Ni(100) surface, and (b) the energy-loss spectrum cal-
culated with the model presented in the text with
R,=0.88 A.

normal to the plane of the square. Two have finite
frequency (435 and 130 cm ™" for our force con-
stant model), and the third is the translational
mode which has zero frequency for the free mole-
cule. In essence, the calculations just described ex-
plore coherent vibrations of an ordered array of
Ni O molecules bound to a rigid substrate. Here,
by virtue of coupling to the substrate, the transla-
tion mode acquires a finite frequency, so we have
the three finite-frequency modes. When all sub-
strate atoms are allowed to vibrate, and not just
those in the outermost layer, our calculations show
that for the p (2X2) structure the basic three-mode
picture survives, though the systematic trends (res-
onance mode character of structures below w,,,
“hanging up” of one mode at 210 cm™}) reflect
features of the lattice dynamics of the full sub-
strate.

These calculations outline a number of basic
features of the influence of an adsorbate layer on
the lattice dynamics of crystal surfaces. We next
turn to a comparison of our calculations and the
data of Lehwald and Ibach.

In Fig. 7, the top figure presents the electron-
energy-loss data taken by Lehwald and Ibach for
the p(2X2) overlayer, and below this we show our
theoretical spectrum calculated for the case where
R,=0.88 A and @10 1s determined from setting 371
cm ™! as the oscillation frequency of an oxygen
adatom against a rigid substrate. All three features
in the theory show clearly in the data. There are
no adjustable parameters in the theoretical model,
thanks to Upton and Goddard, and we regard the
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fit as quite remarkable. Later we shall explore the
effect of various embellishments of the basic model.
The fit between theory and experiment shows that
their calculated potential-energy curves are very re-
liable, in our view.

The top entry in Fig. 8 shows the data for the
¢(2X2) structure. We assume the small and bare-
ly discernible feature at 440 cm™! is not a loss in-
trinsic to this structure. One sees in the data a
broad, asymmetric feature peaked just above the
maximum Ni substrate frequency, with a tail that
extends down into the phonon band. In Fig. 8(b)
we show the spectrum also displayed in Fig. 4,
which is calculated with the assumption that the
oxygen is only a distance R, =0.26 A from the
surface, as suggested by Upton and Goddard. A
small adjustment in the parameters produces an
improved comparison with the data. Figure 8(c)
shows a calculation with ¢}, fixed with the same
value used for Fig. 8(b), but with R, changed from
0.26 to 0.27 A. Now a surface phonon is split off
slightly from the Ni phonon bands, and the asym-
metric tail is a bit broader. [The spectral density
should be multiplied by (147 (w)) before compar-
ing with the data, where n(w) is the Bose-Einstein
function. This we have not done, and the Bose-
Einstein factor would “lift” up the tail a bit more.]
From Fig. 8 we see that by placing the c(2X2)
layer very close to the Ni surface, we obtain good
fit to the data. If, as suggested in the LEED
literature, we were to place the ¢ (2x2) layer 0.88
A above the surface and use the force constants
provided by Upton and Goddard, we would be lead
to results in qualitative disagreement with the data.
The relevant curve is that labeled R, =0.88 A in
Fig. 5; we see a single line at 401 cm ™! and very
little scattering below 300 cm ™.

Our model may be criticized on the following
grounds, however. While we obtain an excellent fit
to the energy-loss data with the nearest-neighbor
central-force model, for the ¢(2X2) structure a
large value of @y is required, simply because of
the factor of sin*(@;,) which enters the constants
koo, ko1, and ky defined in Sec. III. The physical
origin of this factor is clear; as the oxygen equili-
brium position is lowered toward the plane defined
by the four nearest-neighbor Ni atoms, ¢}, must be
increased substantially for there to be a restoring
force for perpendicular motions of the oxygen
atom, if there are only nearest-neighbor central-
force couplings. We have no restoring force at all
from this source, for 6;,=0 as one can easily see.
Now for R, =0.26 A, the large value of @7o leads
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FIG. 8. (a) The data of Lehwald and Ibach, which
explores near-specular energy loss of electrons scattered
from the c(2X2) overlayer of oxygen on the Ni(100) sur-
face, (b) the spectrum calculated with R, =0.26 A and
@10 chosen as described in the text, and (c) the spectrum
calculated with R, =0.27 A and @5 equal to the value
used in (b).

to a very high-frequency adsorbate-induced surface
phonon branch for oxygen motions parallel to the
surface. At Q) =0, our model gives 1440 cm~! for
this frequency. We are unaware of any experimen-
tal data which contradicts this prediction, since
such parallel motions of the oxygen atoms are not
probed in the electron-energy-loss experiments to
date, and we know of no molecules in which oxy-
gen resides very near a planar configuration of four
transition-metal ions. Nonetheless this frequency
seems very high from an intuitive point of view,
and one must inquire if the basic model may be
modified without greatly affecting our calculated
energy-loss spectra.

We have explored two possibilities, one of which
appears quite reasonable. We first tried to add
next-nearest-neighbor coupling of central-force
character between the oxygen adatom and the Ni
atom immediately below it in the second substrate
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layer. Such coupling does not affect the frequency
of vibration of the oxygen parallel to the surface in
the harmonic approximation, but stiffens the
response for motion perpendicular to it. One
might expect such coupling to enter importantly in
the description of the low-lying c¢(2X2) structure.
By adding next-nearest-neighbor coupling, and de-
creasing the magnitude of ¢}y, we can lower the
frequency for oxygen vibration parallel to the sur-
face, while the effective spring constant for perpen-
dicular motion is left unaffected. Figure 9 shows a
calculation of p3’(w) when the second-neighbor
coupling constant assumes a value equal to one
fifth of that associated with the nearest neighbor
for R; =0.26 (we mean that ¢@" for the next-
nearest-neighbor interaction is 0.2 times that for
the nearest neighbor). We have used the con-
tinued-fraction method (see below) to obtain this
result, and the small-amplitude oscillations are an
artifact of the way in which the continued fraction
was terminated. The prominent feature at 210
cm~!in Fig. 9 is, however, absent in the data.
The origin of this feature is as follows. In Sec. III
we saw that the Green’s function Uy~ (1,;0) de-
fined in Eq. (3.21) fails to couple to the oxygen
vertical motion for the c(2X2) structure. The ad-
dition of next-nearest-neighbor interactions couples
in this function. From Eq. (3.22b) we see that the
second layer has a resonance at V'4k =210 cm™,
and hence the feature in the energy-loss spectrum
displayed in Fig. 9. Our conclusion is that the
presence of next-nearest-neighbor coupling of ap-

SPECTRAL DENSITY p§)
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FREQUENCY (em™")
FIG. 9. The effects of second-neighbor interactions

on the energy spectrum calculated for the ¢(2X2) struc-

ture. The dashed curve reproduces the spectral density
in the absence of second-neighbor coupling, while the
full curve includes second-neighbor coupling as described
in the text.

preciable strength can be ruled out from the data,
which provides no evidence of a structure at 210
cm™

It has been suggested by Ibach?® that for a near-
planar configuration of the oxygen Ni complex
such as that we are led to for the c(2 X 2) structure,
angle-bending interactions may influence the vibra-
tional spectra importantly. Suppose we consider
an oxygen atom placed a distance R, above a
square arrangement of Ni atoms, and crudely mim-
ic angle-bending interactions by adding to the po-
tential energy a term of the form %kg(@—@lo)2 for
each O—Ni bond, where 0 is the angle between a
vector from the Ni atom directed toward the in-
stantaneous position of the oxygen atom and the xy
plane, while 0y, is the equilibrium position. A
dimensionless measure of the relative importance of
the angle-bending and nearest-neighbor central-
force coupling is the ratio a=kgo/@ipaj. Ibach has
argued that @ cannot be terribly large,>* possibly
not much larger than 0.05. Now if we consider
motions of the oxygen atom perpendicular to the
plane of Ni atoms, if #, is the amplitude of the ox-
ygen displacement, with nearest-neighbor central-
force coupling included, the potential energy of the
motion is

Vv, =2¢1, sin®(6,,)
X [142a cos*(8yo) cot?(0,0)Ju? , 4.1)
while for parallel motion one has
V)| =@l cos(010)[1+2asin®(010)Juf, . (4.2)

When 6 is small, the angle-bending interaction
enters the response for vertical motion importantly,
but leaves the potential energy for perpendicular
motion unaffected. For small value of 6,y and «,
we can choose a modest value of ¢} to obtain
modest frequencies for parallel vibration, while
there is an appreciable restoring force for vertical
motion.

We have included the angle-bending contribu-
tions described above to the dynamical matrix,
then recalculated the various spectral densities and
frequencies, including the substrate motion fully.
If we constrain ¢}y and a so Eq. (4.1) reproduces
Upton and Goddard’s potential-energy curve for
R,=0.26 A, inclusion of angle-bending terms has
no qualitative effect on the calculated electron-
energy-loss spectrum. The column labeled o, in
Table I gives the position of the peak in the
energy-loss spectrum for various values of a; we
see there is a systematic downward shift as « is in-
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TABLE I. The influence of angle-bending interac-
tions on the perpendicular and parallel motions of the
¢(2X2) layer of oxygen on Ni(100) for R, =0.26 A. For
various values of a and for @j, and a constrained as de-
fined in the text, the column labeled w, gives the peak in
pS@), which remains asymmetric as in Fig. 8(b). The
column labeled w)| gives the frequency of the 6|| =0 op-
tical phonon associated with motion parallel to the sur-
face.

a o, (cm™!) @ (em™"
0.00 295 1440
0.01 287 1037
0.02 282 853
0.03 280 742
0.04 278 667
0.05 278 609

creased, and one may appreciate from comparison
of Figs. 8(b) and 8(c) that rather small changes in
R, may compensate for this. Also shown in Table
I is the frequency of the surface phonon at Q=0
for motion parallel to the surface. As expected
from Eqgs. (4.1) and (4.2), this frequency decreases
dramatically as a increases.

Our conclusion is that angle-bending contribu-
tions are likely important for the low-lying c¢(2X2)
structure proposed here. To describe them, we
need at least one more parameter in the model, and
at the moment we have no data in hand which can
be used to constrain the model. Motions of adsor-
bate layers parallel to the surface may be probed in
‘electron-energy-loss studies which examine large-
angle deflections.”* Such experiments on the
¢(2X2) overlayer of oxygen on Ni(100) will provide
crucial information on the lattice dynamics of this
system.

Although in Fig. 7 we find very good agreement
between the data of Lehwald and Ibach and our
calculations, there appear minor discrepancies like
the exact location of the peak frequencies and the
relative energy-loss intensities. We have tried to
obtain a better fit with the experimental data by
varying the force constant for the coupling between
Ni atoms in the first layer to those in the layer
below. The result of our calculation for the p(2X2)
overlayer is tabulated in Table II where f
is given by the relation k, = fk, with
ki, =29}, sin?07,/ My; and k=g¢’;/My;. The
frequency w, gives us the positions of the peaks in
the energy-loss spectrum, while in the next column
the intensities of the loss peaks inside the phonon

TABLE II. Frequencies of features in the electron-
energy-loss spectrum of the p(2 X 2) structure as a func-
tion of f=k,/k.

Intensity

f o, (em™) (arb. units)

1.5 186.67 1.233
255.00 0.0016
448.33

1.3 185.00 1.181
255.00 0.052
448.33

1.0 180.00 0.6683
243.33 0.7317
445.67

0.8 176.67 0.8613
235.00 1.421
445.67

0.7 175.00 1.000
230.67 2.062
445.67

0.5 168.33 1.014
226.67 1.242
445.67

band are presented in arbitrary units. As obvious
from the table we obtain best fit to the data when
f=0.7, where not only the locations of the peaks
are closer to that observed experimentally but also
the relative intensities of the two peaks inside the
phonon band. Such force-constant changes can
easily be produced by relaxation of the outer layers
by a few percent.?’

We have also explored the possible influence of
changes in the parameter k;, which enters the
near-specular energy-loss spectrum for only the
p(2XX2) structure. As k; is chosen equal to 0.7k,
1.0k, and 1.3k, respectively, the high-frequency
445-cm ™! mode shifts by only +5 cm~!. The
low-frequency 180-cm ™! (k,; = 1.0k) mode is most
sensitive to changes in this parameter, moving from
155 em ™! (k;; =0.7k) to 180 cm~! (k,; =1.0k),
then to 203 cm ™! (k;; =1.3k). Thus, a comparison
with the data suggests k; is not greatly changed
from its bulk value, though for this conclusion to
be strong, a systematic analysis of the data within
a multiparameter space would be required. Our
model is simple, and we do not believe such a so-
phisticated analysis is meaningful.

The discussion above has assumed that in the
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near specular direction, the dipole selection rule
operates so that dynamic dipole moments perpen-
dicular to the surface are the only features probed
in the experiment. We have calculated the loss
spectrum that would be expected from our model if
the dipole selection rule were violated, so motions
parallel as well as normal to the surface scatter.
We can do this by following the method outlined
in Sec. III, but one calculates at Q”—O the func-
tions U,, (Lk,l; ,Q”,co) and Uy, (Lk,l; K,QHw)

Once again, for the nearest-neighbor central-force
model with angle-bending contributions to the po-
tential energy inserted as described earlier, it is
possible to obtain these functions in closed form by
analytic methods.

In Fig. 10, we show the frequency spectrum as-
sociated with relative parallel vibrations of the oxy-
gen adlayer and outermost Ni layer for the model
of the ¢(2X2) structure when it is 0.26 A above
the surface. The calculation has been carried out
for the central-force model supplemented by
angle-bending interaction with ¢=0.05. The
parameters are those chosen to generate Table II.
We see the Ql |=0 surface optical mode at 610
cm~! and an asymmetric structure in the phonon
bands near 200 cm~'. In contrast to the case
where the spectral densities were calculated for
motions normal to the surface, the spectrum in
Fig. 10 is very different from the data. We see no’
evidence in the data for scattering from dynamic
dipole moments parallel to the surface.
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FIG. 10. The frequency for relative parallel motion of
the adsorbate layer and outermost substrate layer for the
¢(2X2) oxygen layer placed 0.26 A above the surface.
The angle-bending parameter a has been chosen equal to
0.05; we have tried several values of a and found the
shape of the feature below 295 cm~! to be insensitive to
this parameter.
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We have also extended the calculation to the
electron-energy-loss spectrum for p(2X2) and
¢(2X2) sulfur overlayers on the Ni(100) surface.
Here again we have deduced the force constants
and the perpendicular distance above the Ni sur-
face where the sulfur atom sits in the hollow four-
fold site, from the ab initio work of Upton and
Goddard in the manner discussed earlier. Conse-
quently, for both the overlayers we get the perpen-
dicular distance (R) to be 1.24 A, and the 393-
cm ™! frequency for perpendicular motion leads to
a value of 1.26 X 10° dynecm ™! for ¢}y. In Fig.
11(a) we show the resulting spectrum for the
energy-loss intensity for the p(2X2) coverage of
sulfur on Ni(100) and in Fig. 11(b) we have the
corresponding spectrum for the ¢ (2X2) coverage.
The p(2X2) overlayer of sulfur, with two peaks
within the Ni phonon band (at 180 and 240 cm~))
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FIG. 11. The energy-loss spectrum for (a) the
p(2X2) overlayer of sulfur on Ni(100) and (b) the
¢(2X2) overlayer of the same. The distance R, =1.24
A for both cases as described in the text.
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and the localized sulfur mode at 380 cm ™!, as rem-

iniscent of a similar oxygen overlayer on Ni(100) in
Fig. 6(a). On the other hand, the ¢ (2X2) over-
layer of sulfur on Ni(100) [Fig. 11(b)] does not
resemble that of oxygen on the same substrate (Fig.
4), because for sulfur we find much more scattering
below the maximum phonon frequency of the Ni
substrate. For the ¢ (2X2) case of sulfur on
Ni(100) we have the local mode at 347 cm~! and
an asymmetric peak at 278 cm~! within the Ni
phonon band. The only experimental data that we
know of for sulfur on Ni(100) is that of An-
dersson?® where he observes an energy-loss peak at
370 cm~! for the p(2X2) overlayer and at 355
‘cm™! for the ¢(2X2) one; the lower-frequency loss
peak seems to be lost in the instrumental noise.

We believe the observed peak to be the sulfur local
mode which, as in our calculation, is downshifted
for the c(2X2) overlayer as compared with the
p(2X2) one. The agreement between theory and
experiment for the case of sulfur suggests that in
contrast to oxygen, the sulfur adlayer lies roughly
the same distance above the surface for both struc-
tures. This is in accord with the view of Upton
and Goddard who find only one equilibrium posi-
tion for sulfur.

V. THE CONTINUED-FRACTION METHOD:
THEORY AND DETAILS

A. General remarks

The results described in Sec. IV were all generat-
ed from analytic solutions to the equations of mo-
tion for the Green’s functions. This approach be-
comes much more cumbersome when one moves
away from 6” =0 in the two-dimensional Brillouin
zone, though we have studies of an extension of it
underway. This section is devoted to a description
of a different method, the continued-fraction
method, which also may be used to generate spec-
tral density functions once the dynamical matrix is
known.

The application of the continued-fraction
method to problems in surface lattice dynamics has
been discussed by Black, Laks, and Mills'? for a
model of the W(100) surface, and Black* has subse-
quently applied it to analyze the clean Ni(111) sur-
face and that with isolated adatoms on it. In both
papers the focus was not on the partially Fourier-
transformed Green’s function defined in Eq. (3.7)
of the present paper, but rather on a closely related
form UGB(TK, 1'k’;2) obtained by Fourier-

transforming the former with respect to 6”:

Uag T, 520 =2 3 exp i [Rol T T2
N; q

X ULk, k'5Q2) .
"(5.1)

The Green’s functions defined in Eq. (5.1) are use-
ful for the study of the frequency spectrum of par-
ticular atoms near the surface, such as an isolated
adatom, and also for the calculation of mean-
square displacement. In this section we describe
our attempts to use the continued-fraction method
to calculate the Green’s functions defined in Eq.
(5.1) and the partially Fourier-transformed form in
Eq. (3.7), in the presence of an ordered overlayer.
In Ref. 17, the reader will find a summary of the
method, along with references to earlier work in
the field.

The continued-fraction method when applied, for
example, to the calculation of U,,(1 Kk 1k;z) defined
in Eq. (5.1), provides a method for calculating a set
of coefficients (4,,B,) which appear in the expan-
sion

1
|B, |?

U, (Tk, Tkyz)= )
a1, 1Kz |B3|2

22—— :

22—A1 —Z2~—A2—

(5.2)

The issue of whether or not the method is useful in
a particular instance centers on whether the se-
quence of coefficients (4,,B,) converges to a recog-
nizable limiting behavior for n sufficiently small,
say n < 10. If this occurs, one may truncate the
calculation of these at finite n, then extrapolate the
series to n = o and sum the remainder by analytic
methods. Once again, the procedure is described in
Ref. 17, and for the W(100) surface and the Ni(111)
surface with isolated adatoms present, we found the
method fast and easy to use with excellent conver-
gence properties.

However, when we at_tpm_pted to calculate the
Green’s functions U,,(1k, 1k;2) for the Ni(100)
surface with a ¢ (2X2) overlayer of oxygen, we en-
countered convergence difficulties. For roughly
1600 atoms in the basic cluster, we found that the
sequence A4,,B, was oscillatory and had gone
through only about one cycle by the time the itera-
tion sequence led to sampling all atoms in the
basic cluster. The number of atoms that must be
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included in the basic cluster rises rapidly with the
maximum value of n included in the sequence, and
it was clear that we could not obtain adequate con-
vergence with the computer available to us (Sigma
7). We believe the problem has its origin in the
fact that the basic 1600-atom cluster includes rath-
er few oxygen atoms (roughly 125), so the influence
of the oxygen adlayer is only crudely accounted for
with a cluster of this size.

We have also explored the calculation of the
Green’s functions in Eq. (3.7) with the continued-
fraction method. The technique is exactly the
same as that described in Ref. 17 once again, ex-
cept it is the Fourier-transformed dynamical ma-
trix in Eq. (3.14) which enters as the basic entity
about which the iteration scheme is developed. In
Table III we show the sequence of coefficients
(A4,,B,) calculated for the Green’s function U,(00)
examined by analytic methods in Sec. III. This is
the function frequency spectrum of perpendicular
vibrations of the oxygen adlayer for the ¢(2X?2)
structure. We also show the sequence that gen-
erates the spectral density for the parallel vibra-
tions and also that for the clean surface. The cal-
culation used to generate Table III places the oxy-
gen adlayer 0.88 A above the surface. The first
column gives the sequence (4,,B,) for generating
U(0,0), the Green’s function at Q;=0. We see
rapid convergence, so the Green’s function and
spectral density are easily calculated for this case.
The behavior exhibited in this sequence is quite
different from that found for the isolated adatom
case explored earlier, since there, even with n as
large as 10, full convergence of the sequence was
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not obtained, though the sequence was smoothly
approaching an asymptotic value. We have con-
structed the spectral density for the oxygen adatom
with the continued-fraction method and compared
the result with that generated by the analytic tech-
nique to find excellent agreement.

The next two columns show the results of the se-
quence for the case where Q)| is chosen at the X
point of the two-dimensional Brillouin zone for the
¢(2X2) structure [Fig. 3(a)]. Here we see that B,
converges rapidly to a unique value, but 4,, oscil-
lates between two asymptotic values. In such
cases, with the sequence (4,,B,) appropriately
truncated, at n =n,, one may use analytic methods
to sum the remaining terms if the B, is everywhere
replaced by its asymptotic value B, for n >ny,
while in this region 4, is allowed to oscillate be-
tween the two asymptotic values. We then obtain
a form for the Green’s function as adequate as that
provided by the analytic approach.

The information in columns five and six of
Table III explores the spectral density for parallel
motion of the oxygen layer at the T point of the
zone. The value of 4, and B, oscillate here, and
the first impression is that they each converge to a
pair of final values, such that as n— o it alter-
nates between these two values. If one assumes
this to be the case, and extends the sequence to
n =« by analytic methods, the spectral density in
Fig. 12(a) is generated. The result differs dramati-
cally from that provided by the analytic method.
A more careful analysis of the sequence shows, in
fact, that in this and similar cases the sequence is
converging to a single value of both 4, and B, (in

TABLE III. Examples of the sequence (4,,B,) for various Green’s functions for the ¢ (2X2) adlayer of oxygen on

Ni(100). For these calculations we have taken R, =0.88

A

Atom and motion Oxygen, | motion

Oxygen, L motion

(Clean surface)

Oxygen, || motion Ni surf. atom, 1 motion

wave vector I' point X point X point T' point
n A, B, A, B, A4, B, Ap B,
1 4878 0 4878 0 9763 0 777 0
2 1445 1805 4617 3611 3840 5109 1555 550
3 1555 777 1555 550 1244 869 1296 952
4 1555 777 2332 550 1796 733 1814 733
5 . . 1555 550 1364 767 1555 673
6 2332 550 1708 794 1399 869
7 . : 1433 743 1710 762
8 1654 812 1555 710
9 1477 737 1444 840
10 1616 817 1666 769
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(a)

(b)

OXYGEN SPECTRAL DENSITY

N——

100 200 3000
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FIG. 12. The spectral densities for parallel motion of
the oxygen at the I point of the two-dimensional Bril-
louin zone, calculated from the two different termina-
tions described in the text. In (a), it is assumed (4,,B,)
converges as each approaches a sequence that alternates
between two values, while in (b) it is assumed that each
converges to a unique asymptotic value.

this particular case 1554 and 777), but in an oscil-
latory fashion. If we use these values for all values
of n >20 to analytically sum the continued-
fraction sequence, we obtain the results in Fig.
12(b). Note that the scales of Figs. 12(a) and 12(b)
are different. The result in Fig. 12(b) comes close
to matching that obtained from the analytic ap-
proach. It is not possible to extend the numerical
computation beyond n=20 by the computational
resources at our disposal. In fact, even with use of
double precision it is difficult to carry the calcula-
tion beyond n=10 or 15 and still maintain suffi-
cient accuracy. More terms are needed, in fact, to
pin down the convergence properties unambiguous-
ly. We find this sort of difficulty occurs whenever
there is a sharp feature, such as the resonance
mode illustrated in Fig. 12(b), inside the bulk pho-
non band. The slow convergence of oscillatory
character seems always to be present in the se-
quence (4,,B,) in such a situation.

The last two columns in Table III show the se-
quence of coefficients (4,,B,) for forming the spec-
tral density at 6“-—-0, for motion of a Ni atom in
the clean crystal surface in the direction perpendic-
ular to the surface. Here there is again evidence of
slow oscillatory convergence.

For values of 6“ at other general points in the
surface Brillouin zone for the clean surface and
also with the overlayer present, the behavior of the
sequence (4,,B,) becomes more complex than that
indicated in Table III, unfortunately.

At this point, we can make some overall com-
ments on the strengths and the weaknesses of the
continued-fraction method applied to surfaces with
a periodic overlayer. Its chief strength lies in the
fact that once the dynamical matrix d defined in
Eq. (3.14) is known, the method can be applied to
any atom or to any value of 6”, with no increase
in computational labor required over that necessary
for the points of high symmetry in the two-
dimensional Brillouin zone. In addition, there is
no great labor involved in adding second- and
third-neighbor interactions or angle-bending contri-
butions to the lattice potential energy; one merely
makes the appropriate changes in d and the
remainder of the calculation goes through unal-
tered.

However, when there are sharp resonances below
the maximum phonon frequency of the crystal, we
find it difficult to carry out the calculation of the
sequence (A4,,B,) sufficiently far and with sufficient
accuracy for the convergence properties to become
clear. One must then terminate the sequence of
numerical calculations at some n =n,,, and for
n > nyy use possibly artificial values for 4, and B,,.
The procedure becomes tedious and possibly unreli-
able; each Green’s function must be examined indi-
vidually and the appropriate procedure tailored to
it. The method loses some of its attractiveness for
the class of problems addressed in this paper,
though we remind the reader that it has worked
most impressively in our earlier studies.

When we studied vibrational modes which lie
above the bulk phonon bands—most particularly
the high-frequency surface optical phonons induced
by an adsorbate layer, no matter how complicated
the behavior of the sequence (4,,B,), we found
three-figure convergence insensitive to the method
of terminating the continued-fraction sequence.

We next present results of calculations of the sur-
face phonon dispersion curves for the structures of
interest to us.

B. Dispersion of the adsorbate-induced
surface phonon bands

In Sec. IV, for a number of situations examined
in the spectral densities at Q=0 we found surface
phonon features at frequencies above the maximum
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TABLE 1V. Frequencies (cm~!) of adatom vibrations perpendicular to the surface for
various points in the two-dimensional Brillouin zone. The frequency v is that calculated in

the limit of infinite substrate mass.

Perpendicular p(2X2) c(2Xx2) c(2x2) c(2X%2)

distance (A) Vo I' point T’ point M point X point
0.88 371 450 400 450 486
0.55 331 373 236 356 398
0.26 265 296 199 202

phonon frequency of the substrate. For example,
for the p(2X2) oxygen overlayer on the Ni(100)
surface, there is such a mode at 445 cm ™!, and this
drops down to 400 cm ™! for the ¢ (2X2) structure
when R =0.88 A. These surface phonons have
frequencies that depend on the wave vector Q)| of
the mode parallel to the surface. This is true even
for the models such as those explored in Sec. III,
which have no direct lateral coupling between the
adsorbate atoms. In the absence of such coupling,
there are indirect interactions between adsorbates
through excitation of the substrate, and these in-
direct interactions are a source of a substantial
amount of dispersion when the surface-mode
branch lies not too far above the maximum phonon
frequency of the substrate. This is discussed at
some length elsewhere, where a method is devel-
oped to expand the dispersion relation in a power
series with expansion parameter equal to the mass
of the adsorbate atom divided by the substrate
atomic mass.” Here we present exact results for
the dispersion obtained from the continued-fraction
method. Incidentally, the variation of the frequen-
cy of these modes with wave vector may be mea-
sured in off-specular electron-energy-loss experi-
ments, as demonstrated in the very elegant work of
Andersson and his colleagues.?®

In Table IV we summarize our calculations of
the dispersion in the surface-mode frequencies at
selected points in the two-dimensional Brillouin
zone for the dense ¢ (2X2) structure, where we ex-
pect these effects to be largest. The first column
gives the vibrational frequency for perpendicular

motion of the oxygen adatom in the limit of infin-
ite substrate mass for the three possible equilibri-
um positions discussed in the text. The second
gives the frequencies at Q=0 for the p(2Xx2)
structure (discussed earlier), with the entry for

R, =0.26 A omitted because the feature in ques-
tion lies just below the maximum Ni phonon fre-
quency and is barely visible in the spectral density.
The last three columns give the frequencies at the
I', M, and X points, respectively. It is intriguing
that for R, =0.88 A, the surface-mode frequency
increases as Q)| increases, while the opposite .
behavior is found for the low-lying R =0.26 A
position. In the latter case, all features in the spec-
tral density lie below the maximum frequency of
the Ni phonon bands, so we give the position of
the peak in the principal prominent structure in
each case. We hope that off-specular electron-
energy-loss experiments may be able to explore the
variation with 6” of the features in the energy-loss
spectrum.
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