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Diffuse scattering from crystals containing dislocation loops has been calculated. An
emphasis was made to reduce numerical computation of lattice sums by an appropriate
summing procedure and by limitation of the summation volume by a smooth damping
function. The fundamental details of the scattering pattern are discussed in relation to
various analytical schemes. Detailed examples are given for circular loops on {111}
planes in an elastically isotropic fcc crystal. Characteristic differences are shown between
perfect and faulted loops and between vacancy- and interstitial-type loops. Procedures for
quantitative determination of loop sizes and concentrations are discussed.

I. INTRODUCTION

For many high-energy-particle irradiation and
thermal-annealing conditions in metals, the pri-
mary irradiation defects (i.e., vacancies and inter-
stitials) condense into dislocation loops that are
stable up to rather high temperatures ( > 600 K).
The number density and the detailed structure of
these loops are of fundamental interest for the
understanding of the mechanical behavior of irradi-
ated metals.

The dominant method for the investigation of
these loops has been the electron microscope,
which yields direct information on individual
loops. On the other hand, it has been quite tedious
and difficult to routinely investigate sufficiently
large numbers of defects to provide statistically re-
liable information simultaneously on the number,
size, orientation, and vacancy-interstitial nature of
loops present in a sample using the electron micro-
scope. For smaller-sized loops where the resolu-
tion of the microscope becomes important, this is
especially true.

Diffuse scattering of x rays has been successfully
used for the detailed investigation of smaller-sized
defects' and can be used as a method to obtain
average defect parameters for a distribution of
larger-sized defects as well. Considerable progress
has been achieved in this area during the last 20
years as discussed in a recent review.? At present,
the experimental techniques are rather well
developed, and with the added availability of syn-
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chrotron radiation for diffuse-scattering measure-
ments, very detailed measurements will be possible.

For reliable quantitative evaluations of these
measurements, however, accurate and routinely
available calculational methods need to be provid-
ed. Exact analytical expressions have been given
for the scattering very close to Bragg reflections.>*
For the scattering at larger distances approxima-
tions yield only the qualitative behavior of the
scattering.*~7 However, for quantitative analyses of
diffuse-scattering data, numerical calculations are
necessary.>® Although general expressions have
been available for numerical calculations of the
scattering from dislocation loops using the strain
field surrounding the loops, straightforward calcu-
lations have proved to be very time consuming,
even on the largest computers.®

This work was undertaken to improve both the
computational techniques and the analytical under-
standing of the scattering characteristics. Because
of the complicated nature of the strain field, no
single analytic or numerical approach can be used
to evaluate the scattering for all regions of recipro-
cal space. Rather, the scattering has been con-
sidered in terms of the Huang diffuse scattering
(HDS) from the long-range part of the strain field,
asymptotic diffuse scattering (ADS) from the high-
ly strained region in the close vicinity of the loop
plane, and structural diffuse scattering (SDS) from
the atomistic crystal-structure stacking sequence
and the core of the dislocation loop.

In the following section the basic scattering
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equation is introduced. In Sec. III we show the
numerical methods that have been used to over-
come the problems connected with the slow con-
vergence of the lattice sums and the corresponding
large computer times. In Sec. IV we will show
how the most characteristic features of the scatter-
ing pattern can be derived from an analytical study
of its zeros and maxima. The relevance of these
results for the interpretation of the numerical cal-
culations is demonstrated at some specially orient-
ed loops. In Sec. V a more detailed set of results is
shown for circular loops on the close-packed {111}
planes in an elastically isotropic fcc lattice. For all
numerical examples the lattice spacing a =4.04 A
and the Poisson ratio v=0.347 of aluminium are
taken for which elastic isotropy is a good approxi-
mation. Elastic anisotropy does not change the
basic features of the scattering. Its quantitative in-
fluence will be discussed in a subsequent paper.

II. SCATTERING EQUATION

In the kinematic theory of diffraction, the
diffuse-scattering intensity arising from a small
concentration of randomly distributed lattice de-
fects is obtained by the incoherent summation of
the contributions from each defect. The scattering
amplitude of the individual defects is given by a
coherent superposition of the scattering amplitudes
resulting from the defect atoms and the displaced
lattice atoms in their neighborhood. Accordingly,
in units of a single lattice atom, the diffuse-
scattering intensity arising from a dislocation loop
may be written as®~’

ik’-?m(ei‘ﬁ~‘s’

I=|Xe
m

(1a)

The first sum in Eq. (1a) describes the diffuse-
scattering amplitude (total amplitude minus the
Bragg reflection amplitude) from the lattice atoms
m displaced from their ideal positions T,, by §,,
due to the presence of the dislocation loop (“distor-
tion scattering”). The second sum represents the
scattering amplitude from the additional or missing
atoms n, which define the lattice defect (“Laue
scattering”). K is the scattering vector.

The distortion scattering and the Laue scattering
are essentially different in character. Since the
(long-range) displacement field of a dislocation loop
is smoothly varying in the lattice, the distortion

scattering is concentrated in the regions
|q|=|K—G| <Ge~Gb /R around the
reciprocal-lattice points where e ~b /R gives the
order of the strains in the region (for example, in
the center) of a dislocation loop of Burger’s vector
b and radius R. In contrast to this, the Laue
scattering arising from disorder on an atomic scale
is spread out over reciprocal space.

A basic assumption underlying Eq. (1a) is that
the dislocation loops are randomly distributed.
Accordingly, the considerations in this paper are
restricted to crystals with small loop concentra-
tions (loop separation large compared with loop di-
ameter), for which correlations or intersections of
loops may be neglected.

III. NUMERICAL METHODS

As the displacement field § of a dislocation loop
can be calculated by elastic continuum theory,°
the scattering can be calculated in a straightfor-
ward manner by the use of Eq. (1a). Because of
the slow 1/r? decrease of the displacements, the
convergence of the sum is very poor and, conse-
quently, a very large number of atoms must be con-
sidered.® Therefore, it was necessary to reduce the
number of actual summation steps drastically.

A. Use of periodicity and symmetry

Using the periodicity of the lattice we can
rewrite Eq. (1a) as
G 2
e L], (1b)

m

I=

where L indicates the Laue scattering.
If we are mainly interested in the scattering
close to Bragg reflections, this formula has the ad-

vantage that the phase factors (e’ ° ™) are identi-
cal for different Bragg reflections. However, it
must be remembered that the phase factor

d=c' G Tm is, in general, not equal to 1 if the
center of the loop is considered to be the origin of
the lattice. For an intrinsic defect like a vacancy
loop, =1 always, but for extrinsic interstitial
loops, ®=1 for even reflections; for odd reflec-
tions, ®= —1 because the distance from the loop
plane to the first neighboring lattice plane is only
half a lattice translation vector.

summation in Egs. (1a) and (1b) is necessary only
over half of the lattice volume ¥ /2, and only the
real part of the sum must be considered so that
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I =
Vs/2

2

23 {cos(§-T)cos(K-3)—1]—sin(§-P)sin(K-3) } +L | . (2a)

Thus the lattice sum can be split into a symmetric and an antisymmetric part with respect to d and §.
For calculations of the scattering intensity around Bragg reflections, the scattering vector may be turther

divided into (K=G+q):

I=127 {cos(q-T)cos(qd-§ )eos(G-3 ) —sin(G -3 )sin(G-3)—1]
v/2
o . 2
—sin(q-T)[sin(q ¥ )cos(G-§)+cos(q-§ )sin(G-3) }+L | . (2b)
Thus intensities at points  and q'= —{ can be evaluated with one set of trigonometric functions.

B. Convergence of the lattice sum

In order to limit computer time the lattice sum
must be confined someway. Since a sharp trunca-
tion of the sum results in spurious ripples in the
intensity distribution, a smoothly decaying function
should be used as has been discussed by Keating
and Goland.!" Accordingly, we have introduced a
Gaussian function exp[ —(1/2d?)r?] to Eq. (2).
Mathematically, this is related to a convolution of
the intensity distribution I(q) with a Gaussian
function exp (— %d 2¢?). The corresponding
smearing out of the intensity distribution can be
kept negligible compared to the resolution of the
experiments, and still results in significant compu-
tational savings. Values of d~2 to 3 times the
loop radius (R) were found to be reasonable values
for 20-A loops as discussed below.

For small values of g (qR < 3) this method can-
not be applied (or only with a much broader
Gaussian, which would no longer be effective in
reducing the integration volume). For this region
of g the convergence of the sum was improved by
subtracting K- under the sum of Egs. (2) [i.e., the
leading term of the expansion of exp (iK-§)] and
correcting this'? by adding

where v is the atomic volume. Then, Eq. (2a) be-
comes

I= ‘22 { cos(q-PI[cos(K-$)—1]
Vs/2

—sin(q-7)[sin(K-3)—K-5,,1)

- ., 2
+K-$(4)+L| . 2c)

In addition, a considerable amount of calculation
time can be saved by calculating the trigonometric
functions for equally spaced distances in reciprocal
space as shown by Keating and Goland.?

A further reduction of calculation time was
achieved by the introduction of a structure factor
F| that sums the scattering amplitude from many
atoms at larger distances from the loop. Therefore,
the integration volume was divided into cubes of
varying sizes for different distances from the loop.
In the innermost regions (r <3R) the calculations
were done completely atomistically according to
Egs. (2a) and (2b). For the next inner shell, 12
atoms were summed in a unit cell with a structure
factor F,. This particular unit cell was chosen for
convenience to get a simple lattice. For the
succeeding areas the dimensions of the unit cell
were increased by a factor of 2 in each direction
yielding 96, 768, and 6144 atoms per cell, respec-
tively. The unit cell of the second region of the in-
tegration volume is shown in Fig. 1 as an example
of an fcc lattice in which the three (111) planes
corresponding to the 4, B, and C stacking se-
quences are indicated by different symbols. In or-
der to obtain a cell with inversion symmetry and,
consequently, a real structure factor



FIG. 1. Projection on the (111) plane of a unit cell
containing 12 atoms of the fcc lattice. The three dif-
ferent stacking planes (4, B, and C) are indicated by
different symbols. :

Fi=3y, KT 2. cos(K-T) , the atoms at
the border of the cells are shared between the
neighboring cells. Doing the summation of Eq. (2)
over such cells instead of individual atoms corre-
sponds to neglecting the change in the lattice dis-
placements §(T) within the cells. However, for
larger distances, the change in the displacements is
small and the corresponding error is not serious.
On the other hand, because the large distances
from the loop contain the majority of the atoms of
the sum (n « r3), the corresponding reduction in
calculation time is very large, especially for large
loops.

A further reduction of calculation time can, in
principle, be obtained by a simultaneous calcula-
tion of interstitial and vacancy loops because in the
continuum approach the displacement fields differ
only in sign. However, care must be taken to con-
sider the different stacking sequence associated
with the intrinsic vacancy loop and the extrinisc
interstitial loop. This yields a complex phase fac-
tor, and therefore, the imaginary part of Egs. (2)
must be calculated as well. Nevertheless, there is
some calculation time saved since no additional tri-
gonometric functions must be calculated for the va-
cancy loops.

C. Comparison of atomistic and
continuum calculations

For small values of g a continuum approach
(that is more convenient in programming) has been
used for calculations along symmetry directions.’
Because of the difficulty in estimating the sys-
tematic errors introduced by a nonatomistic sam-
pling, we have carried out additional calculations
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based on a continuum approach for comparison.

In the numerical integration it is important to
avoid any artificial periodicity in the integration
elements as they can introduce spurious maxima in
reciprocal space. This was avoided here by using
spherical coordinates and integration volumes that
increased monotonically (but nonlinearly) with in-
creasing 7 in the integration. For the individual
volume elements involved in Egs. (2), cos (°T)
was replaced by the average over the element.

This is analogous to the introduction of the struc-
ture factor F; in the atomistic calculation and was
done analytically by approximating the volume ele-
ments by spheres [AV = %Tf( Ar)*]. This yields

41 .
(7)) ap=——"[sin(qAr)
(cos(4-T))ay q3AV[ n(g

—gArcos(gAr)]cos(q-Ty) .

Because of the more rapid convergence of the in-
tegrand of the sine transform the analogous pro-
cedure was not carried out for the sine term. For
the region of gR <6 this continuum approach
yields very good agreement with the atomistic cal-
culations. At large g values, however, the detailed
structure of the stacking fault scattering was not
fully reproduced by the continuum approximation.

IV. CHARACTERISTIC FEATURES OF THE
SCATTERING FROM LOOPS

A. Typical regions in reciprocal space

To characterize the expected scattering pattern,
the displacement field of a dislocation loop must be
considered in some detail. For loops with R > 5 A
the displacement field may be described by elastic
continuum theory and after use of lattice periodici-
ty K'T,, =qT,,, the lattice sum in the first term
of Eq. (1) may be replaced by an integral. In linear

]
100

1 HDS SDS
(0] (3)

o1 1 1
01 1 10 100 gR

FIG. 2. Sketch of the regimes of the di_f"fe_r’ent types
of scattering introduced in the text ina |K-b|, gR
plane.
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elastic continuum theory the displacement field of a
loop is proportional to Burger’s vector b, and

scales as a function f of r /R, i.e.,, s ~bf(r/R).
Transition to the new integration variables » /R
shows that the distortion-scattering (DS) intensity
scales as'®

Ips ~RF(Kb,qR) . 3)

Far away from a dislocation loop, r >> R, the dis-
placement field varies as s ~bR?/r% If, in addi-
tion r> >R'=V'GbR, K3 << 1 is obtained, and
exp (iK:$)—1in Eq. (1) can be approximated by
its first-order term iK-%. According to reciprocity
between the real and reciprocal lattice, the regime
of this approximation is gR <1 and gR <1/ V'Gb,
i.e., the immediate vicinity of the Bragg reflections
as described by region 1 in Fig. 2. The scattering
in this region is often called Huang diffuse scatter-
ing (HDS).

In the opposite case when K-§ >> 1 asymptotic
approximations must be applied to obtain analyti-
cal results. The regime in reciprocal space of this
approximation lies between HDS and the limits of
the total distortion scattering, i.e., in
1/VGb <gR <bG (regions 2 in Fig. 2). The
scattering in this region will be called asymptotic
distortion scattering (ADS) (sometimes called
“Stokes-Wilson scattering”). It will be discussed
later that this region is determined by differential
Bragg reflections from locally distorted lattice re-
gions.>®

The region gR > Kb and > 1 (regions 3 in Fig. 2)
is determined by short-range disorder, i.e., by addi-
tional or missing defect atoms and their correlation
with the neighboring lattice atoms (dislocation
core, stacking fault). The scattering in this region
can be understood as Laue scattering from the de-
fect atoms and its interference with distortion
scattering. It will be called structural diffuse
scattering (SDS).

The most important consequence of Eq. (3) for
practical applications is the possibility of scaling
the intensities for different loop sizes: as long as
the diffuse-scattering intensity is dominated by the
distortion scattering (regions 1 and 2 of Fig. 2), the
intensity distributions for loops of different radii
can be obtained directly from that, for one certain
radius by scaling according to Eq. (3). This con-
clusion has been tested and confirmed by the nu-
merical calculations.

B. Huang diffuse scattering

The scattering in the immediate vicinity of the
Bragg reflections gR’ < 1 is determined by the

small displacements of the long-range part of the
displacement field. Thus, the scattering intensity,
Eq. (1), becomes

Iups= | G$*(g)|2. @)

Two important features of this expression are
easily obtained.® From s ~bR?/r? it follows that
s* ~bR?/(vq) and

I'yups ~(GbR?)?/(vg)? ;

thus, the intensity increases as 1/g> when ap-
proaching a reciprocal-lattice point.»* From the in-
version symmetry §(T)=—73(—T) it follows that
G-3*(§)=—G-$ *(—q) must change sign

and thus I'yps must vanish on at least one surface
passing through the reciprocal-lattice point G.
Since I'ypg is “homogeneous” ( « 1/g2) in g, such
a nodal surface is generated by straight lines
through ¢ =0.

Because measured intensities usually consist of
the contributions from several equivalent defect
configurations, the I'yps =0 surface of a certain
configuration may be masked by the intensity from
other configurations. From remaining surfaces or
lines of vanishing intensity, conclusions on the
symmetry of the defects can be drawn, as has been
shown earlier.’

In order to get more detailed features of Huang
scattering from dislocation loops we express their
displacement field $(T) via the elastic Green’s
function G (r) and the force array f(T) describing
the loop. Fourier transformed, this relation is>

3*(@)=G*)-T*T), (5a)

where G*(q) satisfies the Fourier-transformed
equilibrium condition

2 Gl; CkImn 919m = Sin (5b)
kim

with the elastic constants Cyy,, and

—

[e@)=i 3, Cumniby [ dAne’ T . (5)
Imn

For gR’ << 1 the integral over the loop area 4 be-
comes identical with A.

In the case of elastic isotropy a general state-
ment can be made on the number of nodal surfaces
at which G*$*(q) =0 and hence I'ypg(q)=0.
Then, $ *(q) is of the cubic form ¢;q;qx /q* as a
result of a product of terms g;g; /q* and g, arising
from the elastic Green’s function and the force ar-
ray, respectively. Hence, due to the cubic form in
a plane in reciprocal space, G-S *(d)=0 has three
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- (222)
Ay
B=3(017) interstitial
E a(&) 08

FIG. 3. Scattering from a dislocation loop with A paralled to [11T] and b=(a/2) (0,1,T). Isointensity lines are
shown for the region close to the (222) reflection in the (011) plane of the reciprocal lattice. (a) | G-s*(q)|?, the nodal
lines (thick) have been calculated analytically, and (b) numerically calculated isointensity lines for a R =20-A loop. The
numbers give the intensity in a logarithmic scale.

solutions (one or three real solutions) describing $*(q||b)=iAb/q for gR <<1.
straight lines through d=0. In the case of elastic
anisotropy additional solutions can exist.

For special cases one of the solutions can become
very simple. Thus if

G'b=0, Iyps=0 for G||A, (6a) If K-b << 1 the expansion of exp (iK-3) up to
if the linear term is also valid for gR > 1. However,
in this case the “form factor” of the loop

These nodal lines of HDS are shown in Figs. 3 and
4 which are described in more detail in the next
section.

C. Scattering for Kb <<1

G.K:O’ Tups =0 for g ]1—5 ’ (6b) f dAe' 9T, appearing in both the distortion and
since for q||A, i.e., for A,, =Aq,, /q, Eq. (5a) the Laue term, has to be considered: for the case
yields with (5b) and (5¢): of a circular loop

$*(q||A)=ibd/q forgR < <1, A*(g)= fdAeiq.‘r’
and analogously for G||b, =2AJ,(g4R)/(¢4R) , o

T o8
L 5 04
F (@]
b Q2
T A Q)
L (o]

s wnsbsliodboebubsseed - 0f
-04 -02 o Q2 q‘x.q)

FIG. 4. Isointensity lines as in Fig. 3 for a loop with A parallel to [T11] and b=(a /2)(T,1,0).
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where J is the first-order Bessel function, and
24=[a’—(GA1/4]'"

results from the projection q on A. Hence, in ad-
dition to the zeros of I due to the long-range part
of $(T), as discussed in the previous section, zeros
due to the loop structure appear. For circular
loops they are cylinders perpendicular to the loop
area and with radii determined by the zeros of J;.

The characteristics of the scattering pattern are
essentially determined by the nodal surfaces in re-
ciprocal lattice as is demonstrated in Figs. 3 and 4.
These figures show the nodal lines [Figs. 3(a) and
4(a)] and the numerically calculated isointensity
lines [Figs. 3(b) and 4(b)]. The nodal lines passing
through the origin are due to Iyps =0 while the
other ones are due to A*(q)=0. In spite of the
finite numerical resolution, the zero intensity lines
shown in Figs. 3(a) and 4(a) are all reproduced by
the isointensity lines, in Figs. 3(b) and 4(b).

In the region of small-angle scattering I_{zﬁ, the
Laue term can no longer be neglected:

1

I~— |ig-3*(q)+bA*(q|2. (8a)
v

With the use of Eq. (5a)—(5c), and the Lagrange
identity

for the vector product, this can be written as'*

1 .,
I=—[[q
v

X(b—b)][4XA*)]/q%|%,  (8b)

with

2 q; ]kaImnqlbm EIGZEG

Jkin
which shows clearly that 1=0 for G||A (see also
Fig. 10 below).

D. Asymptotic distortion scattering

If Gb>> 1, the contributions to the scattering
amplitude from the region r < (G+b)'/?R are rapid-
ly oscillating in T and essentially cancel each other.
Relevant contributions come only from _those posi-
tions =T where the phase p=7q-T F+K % be-
comes statlonary

Vo=4+ V(K-3)=0 for F=T, . )

Expansion of the phase according to the method of
stationary phase up to second-order terms yields an

amplitude

3/2
d— (277')

3 expliglty) +ig Fmo(F,)]/[D(F)]'2,

rs

(10)

where o(T) is the difference between the number of
positive and that of negative eigenvalues of
(3/0x;)(0/3x;) XK-3), and D(F) is its determinant

d 0 =
D(T)=det ox; dx, (K s)

Equation (9) induces a point-to-point mapping
from the real into the reciprocal lattice. It can be
interpreted as the Bragg condition for locally de-
formed regions (local Bragg reflection). For in-
stance, compressed regions (strain € < 1) scatter on
the opposite side of G from expanded regions
(strain € > 1) as indicated schematically in Fig. 5.
Neglecting the oscillations described by the phase
factor in (10) we get for the intensity

1 1

Iaps~— .
2 —
v _r:. D(rs)

(11

Thus the intensity is given by the density of local
Bragg reflections. For the long-range displacement
field of a dislocation loop s ~bR 2/r2 this becomes
with

D(r,)~(KbR?)/r)>
and ¢ ~KbR?/r,
I ps~KbR?/(v%q") , (12)

a general trend which is confirmed by the numeri-
cal calculations.

E. Oscillations in the scattering pattern

Owing to inversion symmetry S(f)=—S(—T)
there are (always) at least two points of the real lat-
tice “scattering” into one point of the reciprocal
lattice. This interference between local Bragg re-
flections leads to oscillations in the scattering pat-
tern occurring at one side of the reciprocal-lattice
point as depicted in Fig. 5. For the long-range dis-
placement field s ~bR?2/r? the phase goes as'’

@(T,) =G T, +K-3(7,)~(KbR%?)'? . (13)

Of course, the behavior is strongly constricted by
the limits of both types of asymptotic approxima-
tions, the one for the displacement field and the
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FIG. 5. Mapping from the real into the reciprocal lat-
tice. The distortion in the real lattice is indicated by
rectangular figures; € is the strain along the direction of
G.

one for the distortion scattering, i.e.,
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+ |/
S0
ol (222)
30
20
10
ke +
S
3
S 1 (333)
50
©
= 40
W
S 30
€ x
N
& 10
- + -
140
L (bhd) ]
60
50
40
30
20
10
ol vy PVYW
-0 -6 20246 gR

FIG. 6. Oscillations of the scattering intensity from a
loop A parallel to [111], b=(a/3)(1,1,1) at (111), (222),
(333), and (444) reflections. To demonstrate that the in-
tensity has zeros the changing signs of the scattering
amplitudes are shown for the different regions. The os-
cillations scale with the loop size according to Eq. (3).
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(a)

04 J

v

1

0% o4 02 0 02 ok

qu. 7. Lines of “stati_gnary strain” (a), for a loop
with A parallel to [111], b=(a /3) (1,1,1), and the
corresponding “caustics” (b) at the (444) reflection.

The number of maxima within this region can be
estimated by considering the change of the phase
@(Ty). It increases from O for r— o (¢ =0) to
G'b/2 in the center of the loop. In a plot of Ig*
[which best shows the oscillations for the g —* fall
off of I(q)] this will result in

n=(Gb)/2m (14)

maxima. This is borne out clearly by the calcula-
tion for loops with A||[111], b=7a(1,1,1) and §
along [111] for four orders of the (hhh) reflection
in Fig. 6. In contrast to these oscillations along
the [111] direction there is no structure along
[T11] because the spatial separation of points con-
tributing to scattering on this side of G has no
projection on G (see Fig. 5).

F. Caustics

According to the picture of Bragg reflections
from locally deformed parts of the lattice, strong
intensity contributions may be expected from re-
gions where the relevant deformation V(K-3) is
slowly varying and, in particular, where it has an
extremum. Thus high intensity should come from
the equatorial plane of a loop and especially high
intensity can be expected from its center (see Fig. 7).
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In fact, at those surfaces D(T;)= 0, i.e., the den-
sity of local Bragg reflections becomes infinite,

I— 0. In optics such surfaces are known as caus-
tics. Caustics define the bifurcation set for the
mapping from the real into the reciprocal lattice.
Here at least two stationary points coalesce and
higher-order terms in the expansion of the phase ¢
must be considered in the asymptotic approxima-
tion. !

Again, for the case of inversion symmetry
$(T)=—T8(—T7), it follows from D(T)=—D(—T)
that D(T)=0 has real solutions, i.e., that caustics
must exist. In the case of rotational symmetry, as
shown in Fig. 7, ring-shaped regions in the equa-
torial plane of the loop “scatter” into single points
in reciprocal lattice (caustic 1). For s ~bR2/r2, in-
tegration over the rings gives

I~(KbR 2)4/3/(v2q 10/3)
close to the Huang region and
KbR)*/(v%q*)

further away. For the center of the loop where
gR ~ Kb, expansion of the phase up to third-order
terms yields I ~R%/(vKb)? (caustics 2 and 3 ).

Of course, even for the highest order of reflection
which can be investigated the extreme asymptotic
region characterized by strongly pronounced caus-

“tics is never reached. However, even in the inter-
mediate case, one can say that the caustics form
the “skeleton” of the scattering pattern. For indi-
vidual loops with Kb >1 (see Fig. 8) the “back-
bone” (caustic 1) and the “skull” with its “horn”
(caustics 2 and 3) can clearly be recognized.

The position of the final peak of the distortion
scattering related to caustics 2 and 3 lies close to

04

102

1.02

-04

interstitial

! o -06
-06  -04 -02 0 Q2 a(Z)

FIG. 8. Caustlcs as the skeleton of the scattering pat-
tern for large b- G shown close to the (444) reflection,
for a loop with A paralled to [111] and b=(a /3)(1,1,1).

the local Bragg reflection due to the center of the
loop 4. = — V(G- $). and the Bragg reflection due
to the average strain within a sphere including the
loop (§)=—(V(G-3)). Both positions are intro-
duced in Figs. 10 and 12.

G. Stacking fault scattering

Planar discontinuities of the displacement field
as well as added (or removed) lattice planes (the
source of the displacement field) yield intensity
streaks perpendicular to these planes. In the case
of perfect loops these types of contributions cancel
each other as can be seen from Fig. 9. The reason
for this is that the region surrounded by the dislo-
cation loop has a continuously disturbed lattice
structure and that for infinitely large perfect loops
diffuse scattering at a certain finite § must vanish
asymptotically. This fact can be used to separate
stacking fault scattering from other types of contri-
butions: Faulted loops are considered to be gen-
erated from perfect loops by specific shear displace-
ments.

For randomly distributed loops, the scattering
from individual loops can be added incoherently in
contrast to the case of cold worked materials for

o\

FIG. 9. General features of the scattering pattern in
the (017) plane of the reciprocal lattice. Isointensity
curves are shown for interstitial loops on all {111}
planes: upper part for Frank or faulted loops and lower
part for perfect loops.
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which, in general, long-range correlations between
stacking faults are important. )

The scattering contribution due to the stacking
fault of a crystal can be separated from the other
contributions by a rearrangement of the lattice
sums (corresponding to partial integration for in-
tegrals) and extraction of the terms describing the
discontinuities. Let F(K) be the structure ampli-
tude of a stacking plane, T, =F (K)exp(ﬁ-f’m) be
the scattering amplitude of a stacking plane m in
the unfaulted crystal, and S,, the phase factor
describing its transversal position in the faulted
crystal (shear factor). Then the scattering ampli-
tude 4 of a crystal with N stacking planes may be
written as

843

For a dislocation loop of radius R the sum is
thought to be carried out over a cylinder with ra-
dius R and height 2 ~R (h need not be specified
precisely since we will find that it drops out in the
stacking fault scattering).

The first term in (15) describes the Bragg ampli-
tude Ap due to the unfaulted crystal, the second
one the amplitude 4; due to the stacking fault.
For a single stacking fault the shear factor S,,
differs only for some, for example, z, pairs of
neighboring planes at m > L (z =1 for an intrinsic
stacking fault, z =2 for an extrinsic stacking fault):

Sm+1—Sm =0

N for
A= 3 SuT,
m=1 m<Landm>L+z—1.
N N—1 m
=+Sy MZ_I T — mz_l (Sm +1—Sm) hgl Ty |- Extracting the stacking fault term we get a scatter-
- B B ing amplitude
(15)
|
k’ g z—1 .]_(’_—v
L=z—1 m SL+z—SL“e‘ Fot b (SL+m+1"SL+m)e' o
=z— - =0
Ag=— 2 (Sm+l—Sm)2Tn=F(K) = _iR-T ’
m=L n=1 (1—e 0) (16)

where T is a lattice vector connecting two neighboring stacking planes. Averaging the corresponding inten-

sity I, =( | 4 | 2) over AK-FoL >> 1 yields

2 z—1
)SL +z2—SL ’ +

m =0

Is=‘F(K)|2

2 (SL+m +1 =S +m Je

.=

—
iK T,

|

[4sin¥(K-Ty/2)]

(17

Application to faulted vacancy loops (intrinsic stacking fault) yields

sin2(K-$ /2)

I,=2F(K)*>—2 ,
sin((K-tp/2)

(18)

where S is the shear displacement generating the stacking fault.
For interstitial loops (extrinsic stacking fault) the scattering intensity is

sin(K-3) +4sinA(K -3 /2)cos2(K-Ty/2+K-3 /2)

I,=|F(K)|? —=
sin“(K-1/2)

(19)

b

where now ¥ is the shear displacement of the upper lattice planes with respect to the loop plane. The cosine
term describing the interference between the two shear displacements necessary for extrinsic loops yields no-
dal points in the streak pattern at 0.273 of the distance between two reflections as shown in Fig. 9. This
property can, in principle, be used to separate faulted interstitial and vacancy loops.

The structure factor gives the width 8¢ =~1/R of the stacking fault streaks yielding the size of the loops
whereas their maximum intensity ( < R*) provides the fourth moment of the size distribution.
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V. RESULTS FOR LOOPS ON {111}
PLANES IN fcc LATTICES

In this section, the intensity contours for disloca-
tion loops on {111} planes are discussed in detail.
In addition to contours for selected loop orienta-
tions, contours are shown for the average over
loops on all cubic equivalent planes, which is the
usual situation experimentally.

A. Symmetry of loops on {111}
planes in cubic lattices

With a statistical distribution of loops in a single
crystal we have to consider the four equivalent
{111} planes. This yields four different Frank
loops (of %a( 1,1,1)-type Burgers vector) and
twelve different perfect loops (of %a (1,1,0)-type
Burgers vector). Because of the translation sym-
metry of the lattice, loops of 4, B, or C type are
equivalent. As the direction of the stacking se-
quence 4, B, and C of the lattice is well defined,
there are in a given crystal no possibilities of dif-
ferent stacking directions, as was discussed for
basal loops in hcp crystals® (4B or BA loops).

If the intensity is considered on symmetry planes
in reciprocal space, the number of different loop
orientations to be calculated is reduced. For the
(017) plane considered below, the loops to be cal-
culated are shown in Table I (together with the
weighting factor, the different loops get in the
averaging). For calculations around a high sym-
metry reflection, e.g., of (A00) type, the actual
number of calculated loops can obviously be re-
duced by a mirror operation.

B. Intensity contours

Isointensity contours for 20-A loops on {111}
planes of both Frank [Ez %a( 1,1,1)] and perfect
[E:%a(l,l,O)] nature are shown in Fig. 9. This
figure gives an overall view of the scattering in the
(011) plane of reciprocal space. Figure 9(a)
represents the scattering for Frank loops and con-
tains intense scattering streaks along all [111]
directions except the radial direction from the ori-
gin. These streaks are due to scattering from the
stacking fault associated with Frank-type loops as
discussed in Sec. IVG. The scattering from un-
faulted (perfect) loops [Fig. 9(b)] contains no such
scattering streaks. The scattering close to
reciprocal-lattice points will be shown below in an
enlarged scale for the regions around (hhh)-type re-
flections indicated in Fig. 9(b). The crossed circles
in Fig. 9(a) represent the positions of nodes in the
stacking fault scattering predicted by Eq. (19). It
can be seen that minima remain at these positions
even when the scattering is averaged over all {111}
loop orientations. Calculations for vacancy loops
(not shown) of faulted and perfect types indicate
qualitatively similar results, except that the nodes
(or minima) in the stacking fault scattering do not
appear for the intrinsic stacking fault case [Eq.
(18)].

Figure 10 shows intensity contours for Frank
loops in the vicinity of the (000), (111), and (222)
reciprocal-lattice points in more detail. Column 1
contains the scattering from only the loop with
A[[[111], and columns 2 and 3 contain the scatter-
ing for the A||[111] and A||[T11] loop, respective-

TABLE 1. Loops to be considered for the scattering in the (01T) plane of reciprocal lat-

tice.
Perfect loop Faulted loop
Nr A b Weight Remark b Weight Remark
la (111) (110) (111) 1
b (111) (011) 1
c (111) (101) id,la
2a (117) (110) 2 (11T) 2
b (117) (01T) 2
c (117) (10T) 2
3a (1T1) (170) id,2c (171) id,2a
b (1T1) (011) id,2b
c (171 (101) id,2a
4a (T11) (T10) (T11) 1
b (T11) (011) 1
¢ (T11) (To1) id,4a
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ly. Figure 11 contains the average scattering (see
Table I) from all four loop orientations, as was
presented in Fig. 9(a). For the case of the (000) re-
flections (which corresponds to small-angle scatter-
ing) the zero intensity line along q||A is obtained
for the individual loops (columns 1 and 3 of Fig.
10), but the superposition of scattering in the
averaging over the {111} orientations gives rise to
an essentially isotropic scattering pattern, as shown
in Fig. 11. Although the scale of Figs. 10 and 11
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is too large to distinguish details in the HDS at
very small g, the features of the ADS and SDS can
be clearly identified at both the (111) and (222) re-
flections. A satellite is apparent in the (222)-
reflection case for A||[111] (as discussed in con-
nection with Figs. 6 and 8), and both the stacking
fault scattering and their minima are observable in
column 3. The averaged intensity for both the
(111) and (222) cases retains the identity of the
stacking fault scattering, but much of the other

T T T T

1 1 v T 1T T T 1 T 171

oal (000) Q)] 1 (000) 1] 1 (000) (a3} ] . :

@l A 1 2,00

] AN I a2 J— |

0 i G 3\2\9 [!1{ (S 211 — / i (211

| AUOM T ) 1 #urm ]
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FIG. 10. Scattering intensities for the different orientations of Frank loops (see Table I). Isointensity plots are shown
for the regions close to (000), (111), and (222) reflections in the (011) plane of the reciprocal lattice. Calculations for a
R =20-A loop; intensities are given in a logarithmic scale. The positions of the local reflections due to the strain at the
center of the loops (x), and due to the average strain within a sphere including the loops (0), respectively, are intro-

duced.
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scattering. The asymmetry in the scattering for q
parallel and ¢ antiparallel to G, even after averag-
ing, makes it possible to distinguish vacancy from
interstitial loops with confidence. The result gives
more quantitative proof for the interpretation of
earlier experimental observations at low-tempera-
ture irradiated Cu (Ref. 17) and Au (Ref. 18)
where a large change in this asymmetry was ob-
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Q2 L 4
of (\\ vy
L 3, _
-2} \/2 J
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Y g ard interstitial |
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o (111) :

ol N
-OA: interstitial :

..........

R S S N
LI BN SR B

L SNy

= vacancy

T S R TN S S T T

04 -02 0 Q2 q(X—1)

FIG. 11. Average intensities of the different Frank
loops shown in Fig. 10.

served during annealing stage III, when vacancy
agglomerates are formed in addition to the preex-
isting interstitial loops.

The scattering from perfect dislocation loops is
shown in Fig. 12 for the (222) reflection. Only two
examples of the intensities of the seven different
loop types are shown in the figures together with
the average intensity (see Table I). Loop 1(a)
looks, except for some distortion, very similar to N
the corresponding Frank loop with A parallel to G.
As the intensity in this situation is determined by
the projection of § on G there are also only minor
differences to loop 1(b), (not shown) that has the
same habit plane but a Burgers vector lying within
the (011) plane of the figure. A typical representa-
tive of the loops of types 2 and 3 was shown in
Fig. 3; the others also show no prominent struc-
ture. The loops of type 4 (the normal of 4 in the
measuring plane but not parallel to G) look quite
different depending on the direction of b. For b
outside the (011) plane the scattering has been
shown in Fig. 4. The loop 4b [with b in the (01T)
plane] is shown in Fig. 12; it is characterized by a
strong intensity peak in the direction of the loop
normal.

Except for the missing stacking fault scattering
the average intensity is qualitatively very similar to
that for the Frank loops in Fig. 11. For this case,
there is an even better mirror symmetry between
vacancy and interstitial loops. The similarity in
the scattering from Frank and perfect loops for
q<03 A" renders this lower-q region rather in-
sensitive to the faulted or unfaulted nature of va-
cancy or interstitial loops; on the other hand, this
fact does allow size determinations of vacancy and
intersitital loops independent of the presence (or
absence) of stacking faults.

Although the intensity oscillations arising from
the A||[111] loop for the (222) reflections in Figs.

10 and 12 are not resolved in the averaged intensi-
ty plots in these figures, plots of g*I do show well-
resolved peaks which have been observed experi-
mentally.!” The position of these peaks can be
used as a direct estimate of the loop sizes and
vacancy-interstitial nature, as discussed above.
When distributions of sizes are present, a fitting
procedure can be used to determine the dislocation
loop density and size distribution.

SUMMARY AND CONCLUSIONS

The problem of long computation time associat-
ed with numerical calculations of diffuse scattering
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FIG. 12. Isointensity curves similar to Figs. 10 and 11 for two different perfect loops of interstitial and vacancy type
and for the average over all possible loop orientations (see Table I). Positions (x) and (o) as in Fig. 10.

from dislocation loops has been addressed through tion. These approaches have made the calculation
the use of a Gaussian damping function to reduce of the scattering from loops to R ~100 A tractable.
the size of the integration volumes required. In ad- Further, the application of new analytical ap-
dition, summing procedures were introduced to proaches as guides throughout the investigation
combine the scattering of groups of atoms into a have provided a better fundamental understanding
single structure factor in order to preserve the of the features of the scattering distributions, have
atomistic nature of the calculation while using - provided insight into the selection of the appropri-

larger differential volume elements in the integra- ate expressions for numerical computation in the
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various scattering regimes, and have helped to
reduce the possibilities for numerical errors.
Characteristic differences in the scattering from
faulted and perfect dislocation loops, and differ-
ences between the scattering from vacancy type and
interstitial type loops have been demonstrated,
which provide a sound basis for an experimental
discrimination between these loop types. Absolute
intensities of the scattering can be used for the
determination of the concentration and size of the

dislocation loops. It must be borne in mind, how-
ever, that the dislocation loops are assumed to be
randomly distributed (no correlations between
loops) and they are not intersecting to form dislo-
cation networks rather than individual loops.

The authors acknowledge helpful discussions
with Dr. S. M. Ohr on the calculation of displace-
ment fields.
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