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Electrostatic contributions to cohesion of an intercalated ion lattice are examined.
Employing a sandwich model consisting of point charges and fixed bounding
compensating charge sheets, we obtain a minimum in the electrostatic energy at a finite
intercalant density, unlike the situation for any isotropic solid. Scaling arguments are
applied to yield analytic results for the constant energy surfaces and potential energy as a
function of intercalant density. The results suggest the additional importance of
nonelectrostatic contributions to cohesion of intercalant lattices in the graphite

intercalation compounds.

A variety of recent experimental investigations
of the graphite intercalation compounds have re-
vealed that, in addition to staging, a rich variety of
phenomena related to the in-plane order of the in-
tercalated species, especially the alkali metals (K,
Rb, and Cs), occur in these systems.! The theoreti-
cal understanding of cohesion and the origin of
these phenomena in the intercalated compounds is
not well developed. In addressing this problem we
have observed that the electrostatic contributions
to the total energy in the intercalation compounds
possess several unique properties which distinguish
these materials both from ordinary metallic and
from ionic crystals. In donor intercalation com-
pounds, excess negative charge is distributed al-
most uniformly over the carbon planes and the
metal ions carry the compensating positive charge.
While the Madelung constants of such structures
have been calculated recently,? no detailed study of
the Coulomb contribution to the cohesive energy
has been attempted. We have discovered that so
long as the graphite-intercalant-graphite sandwich
thickness is constrained by some other effect (e.g.,
hard-core repulsion between the metal and carbon
atoms), then the electrostatic energy has a stable
minimum for a particular value of the in-plane in-
tercalant density. Furthermore, as the sandwich
thickness d varies (as the alkali-metal donor is
changed, for example), the most stable intercalant
density scales in a particularly simple way, varying
as 1/d>. This implies that on electrostatic grounds
at least, the in-plane distance between intercalants
is determined solely by the c-axis lattice constant.
So far as we know, these effects have no analog in
the theory of cohesion for isotropic solids.

25

In order to demonstrate these observations, we
present results for the electrostatic energy of the
simplest possible system having the essential
features of charge separation in the graphite inter-
calation compounds. As Fig. 1 shows, we model
the intercalant ions by point charges +¢ placed in
a triangular two-dimensional lattice with lattice
separation a. The bounding carbon planes are
represented by isotropic sheets of negative charge
with surface charge density —q/v3a’=—q/24,,
where A, is the two-dimensional unit cell area.

'This density is chosen such that whatever the value
of the in-plane lattice constant a each unit cell is
electrically neutral. The planes are symmetrically
placed on each side of the point-charge lattice and
the separation between them is d. Naturally the
model ignores the atomicity of the carbon planes.
It also ignores the fact that excess negative charge
will not be distributed uniformly on the carbon
planes but will screen the positive ions by accumu-
lating around them.? Nevertheless, the model
should provide useful information for the graphite
intercalation compounds, especially those in which
the intercalant species is pointlike and in which the
graphite planes are significantly spread apart by
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FIG. 1. Sandwich model of a triangular intercalated
ion lattice between two compensating charge sheets.
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the intercalant. The alkali compounds KCg, RbCq,
and CsC; satisfy these requirements.

The calculation of electrostatic energies for this
model was performed using an extension of the
Ewald decomposition technique used for simple
metals.* The formula for the Coulomb energy
U(d,a) is

2
U(d,a):ﬁz—[ Ug(a)+ Uy (d,a)+ Ug(d,a)]

(1a)

where Uj; is the electrostatic energy of the lattice
of point ions
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where ﬁ||( (3”) are the real (reciprocal) lattice vec-
tors parallel to the basal plane, the primed sums
delete the R)|(G||)=0 term, and V7 is the usual
Gaussian convergence parameter employed in the
Ewald decomposition. The last two terms in Eq.
(1a) giving the ion-sheet and sheet-sheet energies
may be combined to yield
U;S+USS=Z—‘Z+ 1/‘;77—;0 . (1¢)
A similar formula for layers of point charges

has been used in the literature.” Eq. (1) permits
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FIG. 2. Constant potential surfaces in the a,d plane
where a is the near-neighbor intraplane spacing and d is
the intersheet spacing. Dotted line is the locus of poten-
tial minima and the dashed horizontal line corresponds
to d=5.41 A, an intersheet separation appropriate for
KC;.

very rapid computation of U(d,a) for a range of
sandwich thicknesses d and lattice constants a.

Our results for the Coulomb energy are given as
a contour plot in Fig. 2. Observe that for fixed d
(e.g., along the horizontal dashed line in Fig. 2)
U(d,a) does indeed have a minimum, thus, there is
a stable lattice spacing a,;, as asserted above. In
the upper left-hand corner of the figure, that is, for
d/a>>1, U(d,a) rises very steeply since the repul-
sive interactions between the ions are becoming un-
screened. In the limit a—0, d > 0 the energy
diverges: Ul(d,a)—>+ «. The d =0 axis corre-
sponds to the collapsing of the sandwich to a sin-
gle plane. In this situation U is finite and nega-
tive. Notice that for d=0, U(d,a —-0)— — w0, SO
that as the point a =0, d =0 is approached, U
diverges to either 4+ « Or — o, depending on the
direction of approach. Another universal property
which clarifies many of the features of Fig. 2 is
the scaling rule

U(Ad,ha)=—U(d,a), A>0. (2)

> =

Equation (2) immediately implies the following:

(1) all negative-energy contours of U(d,a) are
similar, i.e., have the same shape;

(2) all positive-energy contours are similar, but
are different from the negative energy contours;

(3) the zero-energy contour is a straight line (we
find a =0.87d on the zero-energy contour);

(4) the lattice constant a;, for which U(d,a) is
minimized is directly proportional to the fixed-
sandwich thickness d.

In fact, the scaling rule [Eq. (2)] and the simple
linear dependence of U on d [Eq. (1c)] lead to a
particularly simple form for the constant energy
contours given in Fig. 2. Equation (1c) requires
that

U(d,a)=U(0,0)+C%. 3)
a

where C is a constant, specific to the intercalant
lattice for the two-dimensional close-packed lattice
in our model, C =2(7/V'3). If U is determined at
a single point [Uy="U(dy,a,) is given] then
U(d,a) may be completely reconstructed:

a0 C

a a

d_d
a ay

4)

Then a constant energy contour for energy E is ob-
tained as the locus of points (a,d) which satisfy

a
E=2y,+ £
a a

d_%
a (20

(5)
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which are parabolic trajectories:

2 do
a°E +a C-a—~a0U0 —Cd =0. (6)

0

Thus, the E=0 trajectory is a line as asserted in (3)
above, with slope (dy/ag)—(agUy/C). Similarly
the locus of potential minima (@, @mi,) is given
by

1

dmin= Y

2

dy ayUp
do - C

which describes a line with half the slope of the
zero potential trajectory. This result implies that
the equilibrium point ion density is proportional to
1/d? as noted above.

It is worth reemphasizing what we mean by a
“stable electrostatic minimum.” According to
Earnshaw’s theorem,® no collection of charges can
even be stable under Coulomb forces alone. The
difference between our sandwich model and, for
example, an ordinary hcp metal is the mode of in-
stability. As Fig. 3 shows, a three-dimensional hcp
structure collapses to zero volume by a contraction
of all three dimensions simultaneously. This elec-
trostatic behavior would be reinforced by the ex-
change energy (-0.916/r; Ry in jellium)” which is
attractive and, in fact, stronger than the Cou-
lomb attraction. In our model system, zero volume
is reached by first the collapse of the planes
(d —0) then a uniform two-dimensional collapse
(a—0). If d—0 is prevented by some other effect
like core repulsion, then the system remains stable
for a finite in-plane lattice constant. (Naturally, a
similar isotropic mechanism is invoked to explain
why an hcp metal does not collapse.)

In Fig. 3 we have shown the Coulomb energy as
a function of a for d=5.41 A, which corresponds
to the sandwich thickness in stage one potassium
graphite. The analytic form of this curve is given
by Eq. (5). For large a it is attractive and scales as
1/a, and for small a it is repulsive, going as 1/a?.
Interestingly, this small a behavior mimics the den-
sity dependence of the kinetic energy in the quan-
tum model of a simple metal.” The minimum in
this curve of U=—1.6 €V fora=89 A ata
stoichiometry C,cK. This considerably underesti-
mates the packing density in the real first-stage
material CgK. The Coulomb energy at the actual
stoichiometry is U = —0.4 eV. Thus the system
sacrifices ~1.2 eV/K atom of Coulomb energy to
achieve its desired configuration. Where does it
gain back these 1.2 eV? A leading candidate is the
“commensuration energy,” that is, the energy
which the intercalant gains by conforming to the
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FIG. 3. U(a,d) for d=5.4 A. Sandwich potential is
compared with results for two- and three-dimensional
hexagonal close-packed lattices with a uniform compen-
sating background.

graphite lattice. Another source of binding energy
is the increased exchange of the excess electrons in
the graphite plane at higher density. No reliable
estimates currently exist for either of these contri-
butions to the total energy in alkali-metal intercala-
tion compounds. Finally, Fig. 3 demonstrates con-
clusively why K atoms do not pack at their ionic
radii, 1.33 A, in the intercalant plane. The
Coulomb energy at this packing is U~ 12 eV; thus,
the system at this density would lose an enormous
energy, ~ 13 eV/K atom, which is unlikely to be
compensated for by other attractive contributions
to the total energy.

In summary, we have found that the electrostat-
ic energy of a hexagonal array of ions situated in-
between two fixed compensating charge sheets ex-
hibits a minimum at a finite ionic density. This
situation is peculiar to the reduced dimensionality
of the system and is not possible in isotropic solids.
Finally, the electrostatic model considerably un-
derestimates the in-plane density indicating the im-
portance of other electronic contributions to
cohesion in these compounds.
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