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Thermodynamic properties of solid sodium from quasiharmonic lattice dynamics
and molecular dynamics

Rjchard E. Swanson, s Galen K. Straub, Brad L. Holian, and Duane C. Wallace
Los Alamos ¹tional Laboratory, Los Alamos, New Mexico 87545

(Received 22 December 1981)

Quasiharmonic-lattice-dynamics and molecular-dynamics calculations were performed
on metallic sodium from the low-temperature region to above melting at several different
volumes. A pseudopotential model was used that consisted of a large volume-dependent

potential plus a smaH effective two-body potential. From the molecular-dynamics results
for the solid phase, we have constructed the Helmholtz free energy and calculated the
thermodynamic properties up to the melting temperature. The anharmonic contributions
to the internal energy and pressure are determined directly from molecular dynamics
without using thermodynamic perturbation theory. Calculated and experimental values of
the zero-pressure volume-temperature curve, isothermal bulk modulus, heat capacity, and
Griineisen parameter are found to be in good agreement. %e conclude that the pseudo-
potential model provides an accurate representation of the potential for energies up to
melt; molecular-dynamics simulations accurately represent the classical vibrational contri-
butions to the thermodynamic functions at high temperatures and give a meaningful
evaluation of the anharmonicity. The combination of quasiharmonic-lattice-dynamic
theory in the quantum regime and molecular dynamics in the classical regime provide a
simple and natural representation of the vibrational thermodynamics of a solid.

I. INTRODUCTION

In the theory of thermodynamic properties of
solids there are two significant temperature ranges
separated by the high-temperature harmonic Debye
temperature 8H „.For T & 8~„,quantum effects
are important, and thermodynamic functions de-
pend strongly on the distribution of phonon fre-
quencies. For T)8H„, quantum effects are not
important, but anharmonic contributions to ther-
modynamic functions have to be reckoned with.
%hile anharmonicity is complicated in quantum
theory and is generally treated as a perturbation,
the technique of computer simulation treats the
anharmonic motion of the atoms essentially exactly
in classical statistics. It is therefore sensible to
combine the two approaches, to use quasiharmonic
lattice dynamics in the low-temperature range and
classical computer simulation at high temperatures.

In the present work we are interested primarily
in metals. Several computer simulations based on
pseudopotential theory have been done. The
Monte Carlo technique was used by Cohen and
Klein' to study potassium at zero pressure, and by
Cohen et al. to study sodium at zero pressure.
Rahman examined density fiuctuations in liquid
rubidium by molecular dynamics, and MacDonald
et al. computed the anharmonic specific heat of

solid rubidium by the Monte Carlo method. At
Los Alamos, we have undertaken examination of
the use of molecular dynanucs to calculate thermo-
dynamic properties of solid and liquid metals as
functions of temperature and pressure. For this
purpose we consider sodium, and we use a local
pseudopotential theory for which extensive lattice-
dynamics calculations were done previously. The
present paper reports our results for bcc sodium at
temperatures up to melting and at modest pres-
sures.

II. METHOD

We have a system of S iona and zN electrons in
a volume V. In the adiabatic approximation, the
total energy is the sum of kinetic energies of all the
iona, plus the total adiabatic potential 4. If the
zero of 4 corresponds to having neutral atoms in-
finitely separated, and I, is the ionization energy,
then in the pseudopotential perturbation formula-
tion 4—M, contains a volume-dependent term
Q( V) and a sum over all distinct pairs of iona of
the effective ion-ion potential P(r):

4 M, =Q(V)+—gP(r) .

Expressions for Q( V) and P(r) ares
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3 eQ(V)=zN ep-+ex+ac —eF—+5 3m(

f F(q)q dq,

z'e'

Qq dq+ae (3)

at time t=0, and is given a random initial velocity.
The coupled classical equations of motion are
solved numerically for increasing time in the cen-
tered finite-difference approximation, with a time
step approximately 1% of the mean vibrational
period of the particles. Each calculation is per-
formed under the constraints of constant volume
and constant total energy. When the system is in
equilibrium, the total energy is the thermodynamic
internal energy U and the temperature T is related

to the ensemble-average kinetic energy

Here —,e~+ez+ec is the kinetic plus exchange

plus correlation energy per electron of a uniform
electron gas, f is the free-electron Fermi wave vec-

tor, g is the parameter in the Hubbard form of the
screening corrmtion, Vz ——V/N is the volume per
atom, and F(q) is the energy-wave-number charac-
teristic, which is quadratic in the pseudopotential.
The band-structure energy has been transformed
into the second term in (3},plus contributions to
(2). The potential P(r} depends on V, through the
second term in (3), and it includes a Barn-Mayer
repulsion, the last term in (3). For the parameters
in P(r), we take those that were determined earlier

by requiring agreement between theory and experi-
ment for the crystal binding energy, and its first
two volume derivatives, at zero temperature and
pressure. A graph of P(r) for Na at Vz ——256ao is
shown in Fig. 1.

For the molecular-dynamics system, we take a
cell containing 672 particles (ions) in a rectangular
volume with periodic boundary conditions on all

sides. Each particle is located on a bcc lattice site
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FIG. 1. Total effective ion-ion pair potential for Na
calculated from a modified point-ion pseudopotential at
a volume V& ——256ao. The dotted lines are multiplied by
the factor indicated near the curves. The potential ener-

gy is in units of rydbergs (Ry) and the separation is in
units of Bohr radii (ao).

kT= —,M(U ),
where k is Boltzmann's constant, M is the particle
mass, U is a particle velocity, and the brackets ( )
denote an ensemble average. Because P(r) depends
on V, the pressure P is given by

dQ NkT BP r BP
dV+ V ~ aV+3V a.

Again, the sum in (5}is over all distinct pairs of
ions.

Because the initial distribution of particle veloci-
ties is not a Maxwell-Boltzmann distribution, the
system is not initially in thermodynamic equilibri-
um. The approach to equilibrium can be observed
in a graph of the "instantaneous temperature"
T(t), which is defined by (4) with (u ) replaced by
the system average of U at time t. Figure 2 shows
T(t) for two different systems, with T(0) only a
few degrees apart. Upon equilibration, the higher-
temperature system was in the fluid phase, while
the lower-temperature system remained in the bcc
crystalline phase. The figure shows a result
characteristic of our calculations, namely that T(t)
increases toward equilibrium for the crystal, and
decreases toward equilibrium for the fluid. The
fourth-order cumulant of the velocity distribution
is the kurtosis C(t). In equilibrium, the time
average of C(t) is zero for an infinite system, and

slightly negative for a finite N. Figure 3 shows

C(t), scaled by T /N, for two systems in the solid

phase; the function approaches zero rapidly in the
first ten time steps, and then approaches its final
value on approximately the same slow timescale as
does T(t}.

We can gain insight into the molecular-dynamics
results by comparing them with the classical limit
(high-T limit) of lattice-dynamics theory. The
high-T lattice-dynamics equation for the Helm-
holtz free energy F is a quasiharmonic term plus
an anharmonic term Eq.
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FIG. 2. Temperature in kelvin (K) as a function of
time for the equilibration of two different molecular-

dynamics calculations. The dashed curve is for a system

that came to final equilibrium in the fluid phase while

the solid curve remained in the solid phase.

Uz ——Fz —T
BT y

(10)

III. MOLECULAR-DYNAMICS RESULTS

BV

In these equations the anharmonic contributions
are not necessarily small and are not necessarily
expressed by perturbation theory. Thermodynamic
contributions from electron excitation are negligi-
ble in the present calculations.

lnk8= (lnirau ) . (7)

I' =Co 3NkT 1n—(T/8)+Fz,
where 4o is 4(T=0) and the classical characteris-
tic temperature 8 is related to the phonon frequen-
cies N by

Molecular-dynamics calculations were carried
out for the three volumes Vz ——232, 256, and 270
a o. For each volume, the results for U NI, as a-
function of T are shown by the points plotted in

Fig. 4. At sufficiently high temperatures, the
molecular-dynamics system automatically equili-

Here the brackets ( ) denote a Brillouin-zone aver-

age. Corresponding to E, the internal energy and
pressure are SODIUM
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FIG. 3. Kurtosis C of the particle velocity distribu-
tion, scaled by T /N vs time during the equilibration of
molecular-dynamics calculations at T=50 and 100 K.
m is the particle mass.
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FIG. 4. Total internal energy per atom U minus the
ionization energy I, vs temperature from the molecu-
lar-dynamics calculations. The solid lines are the
quasiharmonic part of Eq. {8)for U; i.e., they express
the quantity 4p —NI +3NkT. The dashed lines
through the fluid phase points are not theoretically de-
rived curves.
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brated in the liquid phase; the corresponding points
on each U(T) graph are seen to lie on a line dis-

placed upward from the solid-phase U(T) curve.
The solid lines in Fig. 4 are the quasiharmonic
part of Eq. (8) for U, i.e., they express the quantity
40—M, +3XkT. The dashed lines through the
fluid points are not theoretically derived curves.
The obvious conclusion from Fig. 4 is that the
anharmonic contribution to the internal energy,
U„, is extremely small for bcc Na.

Agam for each volume, the molecular-dynamics
results for I' as a function of T are shown by the
points in Fig. 5, awhile the solid lines are the
quasiharmonic terms from Eq. (9). As for the en-

ergy, the anharmonic contribution to the pressure
is extremely small for bcc Na. Also for each
volume the fiuid points for P(T) lie on a line dis-
placed upward from the solid-phase P(T) curve.
All the molecular-dynamics data for solid and
fiuid Na are listed in Table I. We are continuing
our study of the fluid phase, and will reserve fur-
ther discussion of these results until later.

Even though the anharmonic contributions are
small the molecular-dynamics calculations still
contain accurate information about them. Uz and
Pq are determined by subtracting the quasiharmon-
ic contribution, s from the molecular dynamics re-
sults; the values obtained are shoran in Figs. 6 and
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FIG. 5. Total pressure P vs temperature from the

molecular-dynamics calculations. The solid lines are the

quasiharmonic part of Eq. (9). The dashed lines

through the Quid phase points are not theoretically de-

rived curves. The scale on the right side is in units of
kbar.
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predicted by leading-order anharmonic perturba-
tion theory. We were not able to discover a simple
functional form for the anharmonic quantities, and

so we attempted to fit the data by means of a
power-series expression for F„:

20— Fg ——A2T +A3T +AgT (12)
E
8

i5-
O

IO—

With each of the coefficients Ai, Ai, A4 taken as a
quadratic function of the volume, giving a total of
nine fitting parameters, it is possible to obtain a
good representation of all the anharmonic data, a
total of 30 values of U~ and P~ at different vol-

umes and temperatures. The fitted curves are
shown by the lines in Figs. 6 and 7.
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FIG. 6. Anharmonic contribution to the internal en-

ergy U& vs temperature. The solid curves are from the
fits to all the molecular dynamics results for the internal

energy and pressure using the coefficients given in Eq.
(12).
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FIG. 7. Anharmonic contribution to the pressure P~
vs temperature. The solid curves are from the fits to all

the molecular dynamics results for the internal energy
and pressure using the coefficients in Eq. (12).

300

7. The error bars represent rms deviations from
the mean, arising mostly from fluctuations in T(t),
and do not account for systematic errors. It is ob-
vious that the constant-volume curves of Uz and

Pz are not simply quadratic functions of T as is

In our computer simulations, every atomic cell
in the crystalline phase is occupied; there are no
vacancies. We therefore estimated the vacancy
contribution to each thermodynamic function in

the solid phase, and subtracted this from the exper-
imental result, before comparing it with our calcu-
lations. Equations for the vacancy contributions
are given by Schoknecht and Simmons. For the
vacancy formation energy e and entropy 0 we used

the values @=0.354 eV and 0 =3.9k, determined by
the experiments of Feder and Charbnau and of
Adlhart et al. ' As an estimate of the vacancy
formation volume we used the measured self-
diffusion volume, "which is 0.4 Vq. The vacancy
corrections are quite small for Na at P=O, being
essentially zero for T below 290 K, and at the
melting point amounting to —0.03%%uo for the
volume, —0.5% for the isothermal bulk modulus

BT, —2 4% for the constant-pressure specific heat

Ci, and —0.6%%uo for the Gruneisen parameter y.
Another concern in comparing our calculations
with experiment is that the stable phase of Na at
low temperatures is hcp. In some cases, experi-
mental values have been estimated for the bcc
phase at low temperatures, and these are the values
shown in the following figures.

The melting temperature of Na is TM ——371 K,
and the temperature which approximately separates
quantum and classical regimes is SH „——167 K.
Calculated and measured curves of the volume at
P=O are shown in Fig. 8; comparison of the two
curves may be understood as follows. Neglecting
anharmonicity, the lattice-dynamics expression for
E at T=0 is 40+ , +fico. At high —temperatures

the zero-point energy is explicitly cancelled, and
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FIG. 8. Calculated and measured curves of the
volume vs temperature at P=O.

the quasiharmonic F goes over to the classical ex-
pression 40—3NKT ln(T/8). In the experimental
curve of V vs T, Fig. 8, quantum effects are im-

portant at T=O and at low T, in the region of
strong curvature. Now when the model parameters
for Na were determined some years ago, the ap-
proximation was made of neglecting the zero-point
energy compared to 40. Hence the present classi-
cal calculation, in which I" =40 at T=O, agrees
with the experimental volume at T=O; however,
the present calculation does not reproduce the
quantum low Tcurvature -in V(T), but merely
shows a roughly linear classical curve. We could
construct a more accurate classical model by either
including the zero-point energy in the fitting of
model parameters at T=O, or by fitting the param-
eters to experiment in the classical region. In any
case the discrepancy between calculation and ex-
periment in Fig. 8 is not serious, the two volumes
differing by & 1.7%. We note that the anharmon-
ic contribution to the calculated zero-pressure
volume for Na is negligible. Also the fact that the
two curves in Fig. 8 are nearly parallel means that
our calculated thermal expansion coefficient is
about the same as experiment for T & ez„.

In Fig. 9, a collection of experimental
values' ' of the isothermal bulk modulus is
shown by the plotted points (adiabatic moduli were
converted to isothermal where necessary). There is
overall good agreement among the various experi-
ments. The calculated classical curve of B~ at
P=O is shown by the solid line in Fig. 9; also, the
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FIG. 9. Isothermal bulk modulus BT vs temperature.
The solid curve is from the calculated P=O volume and
the dashed curve is from the experimental P=O volume
as given in Fig. 8.
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FIG. 10. Heat capacity at constant pressure C~ from
classical theory using molecular dynamics and quantum
theory using quasiharmonic lattice dynamics compared
with experiment. The experimental results have been
corrected to the case without vacancies as indicated near
TM

dashed line shows our evaluation of Br at the ex-
perimenta/ volume corresponding to P=O. The
agreement between the calculations and the experi-
ment is remarkably good. The anharmonic contri-
bution to ST is not entirely negligible, and amounts
to about 1.2% for temperatures from around 200
K to T~.

The heat capacity of solid sodium was measured
by Filby and Martin' and Martin. ' ' In Fig. 10
the measured C~ is shown, and also our estimated
vacancy correction, as well as two theoretical
curves. The curve labeled quantum theory is ob-
tained from quasiharmonic lattice dynamics, and
the classical curve shows our molecular-dynamics
evaluation. The quantum and classical curves
nearly intersect at 225 K.

Experimental data for the thermal expansion
coefficient P of crystalline sodium exist for T
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above 80 K. 2 Corresponding to these data,
values of the Gruneisen parameter y= VPBz/C~
are shown by the points in Fig. 11. To calculate y
from molecular dynamics we used the equivalent
expression y= V(BP/BU) ~, and the result at P=O
is shown by the solid line in Fig. 11. The theory is
in excellent agreement with the experiments, except
possibly for T below 100 K. The anharmonic con-
tribution to y, which arises from both P„and U„
in (BP/dU)~, is small for T &200 K, and then in-

creases to 7% at Tst.
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V. CONCLUSIONS

We can make the following conclusions, based
on the overall comparison of theory and experi-
ment, and the internal consistency of the pressure
and energy calculations.

(1) The pseudopotential model we are using pro-
vides an accurate representation of the large poten-

tial 0( V) and the small effective two-body poten-
tial P(r; V) for Na at Vz ——232 —270a& and at ener-
ergies up to kT~.

(2) Given the potential P(r; V), molecular-
dynamics simulations accurately represent the clas-
sical vibrational contributions to thermodynamic
functions, and give a meaningful evaluation of the
anharmonicity even when this is very small (in the
present work the anharmonic contributions to I'
and U are at most 3% and 4%, respectively, of the
total vibrational contributions).

FIG. 11. Griineisen parameter y vs temperature.
The points shown are determined from experimental
values of the thermal expansion, isothermal bulk
modulus, and heat capacity at constant volume.

(3) The combination of quasiharmonic-httice-
dynamics theory in the quantum regime and
molecular dynamics in the classical regime provide
a simple and natural representation of the vibra-
tional therinodynamics of a solid (as shown especi-
ally in Fig. 10 for the specific heat).
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