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Quantum corrections to solitons in polyacetylene
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The quantum corrections on the soliton in polyacetylene is studied within the continu-

um version of the Su, Schrieffer, and Heeger model. First, the optical-phonon spectrum
in the presence of a soliton is determined. It is shown that the soliton generates two lo-

calized phonon modes; the one with co=0 corresponds to the translation of the soliton,
while the other with N 0.8')0 is Raman active where No is the optical-phonon frequency
with k =0. The quantum correction to the soliton energy E, is also calculated. %e find

the correction is rather important: 5E, —
4 E,.

I. INTRODUCTION

The concept of solitons introduced by Su,
Schrieffer, and Heeger' (SSH) and others is cen-
tral in interpreting the magnetic, optical, and elec-
trical properties of pristine and lightly doped
trans-polyacetylene. In the discrete model pro-
posed by Su, Schrieffer, and Heeger, ' two drastic
assumptions are usually made: (a) The soliton is
treated within the mean-field approximation, and
(b) the Coulomb interaction between electrons is as-
sumed to be small.

The object of the present paper is to clarify the
nature of the first approximation. In the absence
of topological disorder, Brazovskii and Dzyaloshin-
skiis have shown that the adiabatic approximation
is justified when toot'(26} «1, where coo is the
zero-momentum optical-phonon frequency, and 2h
is the Peierls energy gap. In the case of polyace-
tylene, we can take too-1400 cm ' and 2b, =1.4
eV which yields toot'(2b, }-0.125. Although in the
presence of the soliton the same justification is as-
sumed to hold, ' it is worthwhile to study the valid-

ity of the mean-field approximation. For this pur-
pose we make use of the semiclassical approach
developed by Dashen, Hasslacher, and Neveu, and
others. ' We shall first determine the (optical-)
phonon spectrum in the presence of a soliton
within the continuum version of the SSH model.
We find that the phonon is drastically modified in
the presence of soliton; there appear two phonon
modes with frequencies below coo. The one with
co=0 corresponds to the translational motion of
the soliton, while the other with co=0.82coo should
be Raman active. The second mode may corre-

spond to the Raman-active mode observed experi-
mentally in lightly doped polyacetylene, '9 although
the predicted frequency appears somewhat higher
than that observed experimentally. It is note-
worthy that the phonon obtained here is very simi-
lar to that of the P model. With the help of the
phonon spectrum thus determined, the quantum
correction (i.e., the second-order adiabatic correc-
tion) to the soliton energy is found to be
5E, = —0.60too, which reduces the soliton energy
by roughly —,. Therefore, the quantum correction
to the soliton energy is rather important. On the
other hand, it is shown that the quantum correc-
tion to the soliton mass is extremely small (a few
percent of the mean-field soliton mass} and can be
neglected.

Making use of the present results, together with
the known quantum limit of the Gross-Neveu
model, 'o'" we can establish within the perturbation
calculation that (a) the dimerized configuration is
the stable ground state of the SSH model even
when the quantum fluctuations of lattice are in-
cluded, (b} the soliton is a stable excitation in the
system, and (c) the polaron state'o'2's in the SSH
model is also stable. Indeed, (a) follows from (b)
as in the case of the sine-Gordon system, '~ while
(b) follows from the fact that Ep &2E„where Ep
and E, are the polaron energy and the soliton ener-

gy which include quantum corrections.

II. PHONON SPECTRUM

Before going into analysis of the phonon spec-
trum in the presence of a soliton, we shall first
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coo(k) =cogcos2 —k
2

where co& (k) and coo (k) are the acoustic- and
optical-phonon frequencies, respectively, and a is
the lattice constant. When the electron-loop
corrections are included, the optical frequency is
modified as

r

aug(k) =cog[2AE(q)]cos' —k
2

=m+(il )cos —k
2

(2)

while the correction to the acoustic-phonon fre-

quency is negligible. ' Here,

F(il) =rI '(1+re)'~2sinh

briefly describe the phonon spectrum in a soliton-
free polyacetylene within the mean-field approxi-
mation. In the discrete model of Su, Schrieffer,
and Heeger, the bare photon spectra are given by

~ (k) =a)gain~ —k
2

il = —,(gk),

cop=(2A, ) cog

(=uz/b, ,

slid A, is tlie diiiiciisioiiless coupliiig coiistaiit.
The phonon spectra, Eqs. (1) and (2), are shown

in Fig. 1. The spectra are essentially same as that
calculated by Schulz' for the case kq rr/2——a.
Furthermore, in the region of small k (i.e., ak
«1) the present results agree with those obtained

by Mele and Rice'7 for the finite discrete system,
although in the region ak=m/2, our results differ
from theirs. This may be due to the coupling with
other modes, which is not considered in the present
model. The derivation of Eq. (2) is given in Ap-
pendix A.

Here we note simply that the electronic polariza-
tion induces a large modification on the optical
phonon but has little effect on the acoustic pho-
non. In the following we shall consider a system
described by the Hamiltonian3:

i Jdx[5 (x)+cogb2(x)]
2g

+ g Jdx P, (x)[—iuposB

and +crib, (x)]f,(x), (S)

0,5

0.0

FIG. 1. Phonon frequencies in the SSH model are
shown. The broken line represents the bare phonon fre-

quencies, while the solid lines are the phonon frequen-

cies where the electron-loop corrections are included.

%e have chosen A, =0.2 in the above calculation. m j and
~~ are two bound phonon states, which are generated in
the presence of a soliton.

cog 4E/M, ——

h(x) =g(a/M) '/2y(x),

and y„=(-)"y„ is the staggered lattice displacement.
A dot on h(x) implies the time derivative. In
most of previous analysis of the Hamiltonian (S),
the first term has been neglected. To explore the
role of this term on soliton is one of the principle
objectives of the present paper.

In the following we shall first determine the
phonon spectrum of a polyacetylene in the pres-

ence of a soliton. For this purpose we shall first
calculate ([oi,o i] )(p,p'), which gives rise to the
mean-field correction to the phonon spectrum.

Indeed, the phonon frequency in the presence of a
Sollton 1s g1ven by solv1ng

co g(p)= aPgcos —p2
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where

x(p,p')=([, ])(p,p'),

Np=(~F) ' is the density of states for a one-spin

state, and A, =g NpNg .
Making use of the method developed by Kivel-

son et al. 's it is possible to separate X(p,p') as

&(pp') =4~Np» F(r—t) &(p —p') + g csch[n(rt —q')][4(q) —4(rI')]+ (@(rt,rI') (9)

where

@(g)= ——, f dq coth[n(q —r))]

X[q (1+q )
' sinh 'q+ —,Im([q(q+i)] '~zsin 'I2[q(q+i)]'~2))],

4(rt, rl') =—f dq( 1+4q )
'~

sech[@(q —rI)]sech[@(q —rI')],

and rj = —,(gp} and rj'= —,(gp'} and W is the full electronic bandwidth. Note that

16= 8'exp 2i

We shall give the derivation of Eq. (9}in Appendix B, since it is rather involved. Equation (7) is further
simplified as

(10)

(12)

co P(p) =copcos —p F(rt)g(p) f K(r—j,rt')de'g(p') (13)

with

K(rt, rj'}=2csch[n'(g —q')][4(rt) —4(rI')]+2C'(rI, rt'), (14)

and top and F(rI) have already been defined in Eqs. (3) and (4).
It appears a little difficult to make further progress with Eq. (13). However, if one imposes limits to the

region of small p (i.e., ap « 1), Eq. (13) can be approximated by a Schrodinger-like equation,

d2
co f(x) =cop 1 — —0.0206 sech x p(x) ——,sechx fdy Kp(

~

x —y ~
)sechy1((y)

12 dx2 (15)

where Kp(z) is the modified Bessel function, and g(x) is the Fourier transform of f(p) Here we ta.ke g as
the unit of length. In deriving Eq. (15},we have neglected higher-order terms in d /dx . Then, Eq. (15) is
solved variationally as

COp

'2
d=I+ —„f dx
dx

2

—0.0206 f dx sech xf

——,f f dxdy sechxf(x)sechyf(y)Kp( ~x —y ~
) f f dx

L

(16)

By carefully choosing forms of variational functions f~(x) =sech"x and f2(x) =tanhx sech"x where v and

p are variational parameters, we find two bound states with

and

co~ ——0.104cop with v=1.95,

ct)2 =0.737&()p with p = 1.25,

(17)
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(19)

which curiously resemble the bound-state spectrum of the P theory. 7

We note that the present results are also qualitatively very similar to those obtained earlier by Mele and
Rice'~ within a phenomenological model. We should stress, however, that quantitatively those frequencies
in the phenomenological model are somewhat different from ours. The above results may be somewhat im-

proved by including the next-order terms,
'2 '2

1 ~ d d2 d
5co2= —coo f dx +0 01.69 f sech x 2f — + dx f dx f

With these corrections, co& and co& are now given by
co~~ ——0.067coo and co~ ——0.66D, respectively.

From the translation invariance of the system
the lowest eigenvalue should be oui =0 with

f i(x) =sech x. Indeed, the result (17) is consistent
with this because of the approximation introduced
in going from Eq. (13) to Eq. (15). On the other
hand, we believe that the value of &02 thus deter-
mined should be quite accurate; at least the first
digit is reliable. This second mode is Raman ac-
tive but does not appear in the infrared absorption.

Because of a close similarity between the contin-
uum version of the SSH model and the P theory,
it may be useful to compare these two cases. In
Table I we present coi/coo, co2/coo, and the phase
shift 5(k) for two models. In the case of the P
theory, momentum k is normalized by coo/c, where

coD is the boson mass.

III. QUANTUM CORRECTION

In order to calculate the quantum correction to
the soliton energy E„we need the phase shift suf-
fered by phonons due to the presence of a soliton
as well. Again, we shall determine the phase shift

5(k), by making use of the Bethe formula, ' which

should be accurate in the small k region. For this

purpose we have to first find a solution uo(x),
which satisfies

W(uo(x)) =0,
where

W(u (x))=—1
2

u (x)
&2 Bx'

—0.0206 sech xu (x)

——, sechx f dy Ko(
~

x —y ~

)

X sechyu (y), (21)

and

uo(0) =0 . (22)

Furthermore, uo depends linearly on x for x &pl.
In analogy to the uo solution in the case of the P
theory we choose

uo(x) =tanhx +ax +pxtanh x, (23)

and

r =2 (Uo —uo)dx =0.936
D

(24)

where

with a and p as variational parameters, which are
determined so as to minimize the norm

~
~W(uo)

~
(.

We find a=0.21 and P= —1.04, with

~
[W(uo)

~

~~-10 . In terms of a and P, the
scattering length b and the effective range r are
given by

b = —(a+p) '=1.20,

TABLE I. The phonon spectra in the presence of a
soliton in the TLM model and the P4 theory are shown.
Here co~ and co2 are the frequencies of the localized
modes and 5(k) is the phase shift of the phonon with
momentum k.

5(k) = —2 tan
bk

1 —
2 brk

uo ——1+(a+P)x .

Finally, the phase shift 5(k) is given by

(25)

Model

SSH
y4

CO~ /COO

0.82
v 3/2

—tan[ —5(kl]

1.2k/(1 —0.56k )
1.Ski(1 —0.5k')

where k is in the unit of g '. A factor of 2 in

front of the right-hand side (rhs) of Eq. (25) arises

from the definition of the phase shift in the one-

dimensional system. The phase shift decreases
monotonically from 5(0)=2m. to 5( ao ) =0 as k in-
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creases consistent with I.evinson's theorem. Vhth
these results we can calculate the quantum correc-
t1on to the so11ton energy,

1
~En= 1 g(bosn —on) ~ (27)

Comparing this mass correction to the one for
the P theory where

the present mass rcnormahzation appears rather
large. Wc bcllcvc that this 18 duc to thc pRrtlclllal
circumstance that in thc SSH model the integral in
Eq. (28) is cut off at the Fermi momentum, while
in the P thcery, the integral actually diverges log-
arithmically with the cutoff, which should be can-

and to,„is the phonon frequency in the presence of
a soliton, while to,„is the phonon frequency in the
perfectly dimerized state. Equation (27) is
transformed as

1

SEg =
1 c01

cats f dk[F(11)] cos
uk d5(k)

celed by the other term in E,. Since
too/26, =10, the quantum correction is negative
and roughly —, of E,. Therefore, as far as the soli-

ton cncI'gy 1s concerned, thc quantuID coIYcction 1s

sizable.

By making use of the method developed by
Maki and Takayama, we can also calculate the
quantum correction to the soliton mass. However,
it is easily seen the correction is of the order of
rn (Rio/W), where m is the electron mass. Since
the soliton mass is of the order of m, the present
correction is less than the order of 10 lm, which
is completely negligible.

IV. CONCLUDING REMARKS

Making use of the continuum vcrsjon of the Su,
Schrieffer, and Heeger {SSH) model, we have ex-
amined the quantum corrections to the sohton in
polyacetylene. We have shown that the soliton
produces a drastic modification in the optical-
phonon spectrum; thc soliton lnduccs two bound
states of phonon; one with to=0 corresponding to
the translational motion of sohton, and the other
with to=0.8t00 which should be Raman active.
Furthermore, the effect of the modified phonon
spectrum on the soliton energy is found rather im-
portant. Therefore, the examination of the quan-
tum corrections to other properties of sohton are
ccrta1nly desirable.

We note also that by eliminating h(x, t) our
HanllltonlRII (5) 18 tl Rllsfomicd lllto

II = g fdx p, (x, t){ Up~id„)p, (x, t—)
S

——,'g g fdx fdt'P, (x,t)g, (x, t)P, (x,t')f;(x, t')D(t —t'), {29)

where

Pg=A &i+

D(t t') =2iai~e-
—im jIt —t'j

g =geog ' ——(ll, /ND)'i

which reduces to the Gross-Neveu Hamiltonian in
thc limit dog-+ ao (ol M thc lolllc mass tcllds to 0),
keeping g finite. In the limit cog tends to 0 (or
M~ nn), on the other hand, the mean-field theory
becomes exact. TheI'efore, the Takayama —I,in-
Liu —Maki {TLM) theory, alias the SSH model,

lies in between the mean-field theory and the full
quantum theory of Gross-Neveu model. In this
context our analysis of E, demonstrates within per-
turbation calculation that the dimerized state in
the SSH model is stable even in the presence of
quantum corrections, which follows from the fact
E, & 0 [see Eqs. (26) and (28)]. Furthermore, we
can prove the stability of the polaron state ' in
thc SSH model as follows. Tbc polaron state 18

stable when
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Ep —— 6+5Ep,2v2 g(k, co)=g co~ cos —k ([cri,cri])(k,co) .

and 5E~ ( &0) is the quantum correction to E~. If
the accepted value of coo in polyacetylene is insert-

ed, the rhs of Eq. (31) becomes

3
2E,=—6 .

7T'
(32)

Therefore, it is easy to see that Eq. (31) is satisfied
for polyacetylene even when 5E~ is neglected. It
will be of great interest, therefore, to explore the
consequence of the polaron state in polyacetylene.

G (k,co„)=(ico„—U~ko'i b—o i )

we obtain

( [cri,o i] )(k)

dp=2TQ f Tr[criG (co„,p)oi2'

(A2)

(Al)

Making use of the electron Green's function in the

perfectly dimerized state,
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APPENDIX A: THE OPTICAL-PHONON-
SELF-ENERGY CORRECTION IN THE

PERFECTLY DIMERIZED STATE

The self-energy correction due to the single elec-

tron loop is given by

& [cri, cubi] & =2zo ln I'(i))- (A4)

where

F(i))=ri '(I+r12)'~ sinh

and No (AU~) ', and rI——= 2 gk.
Substituting (A4) into (A.l), we obtain Eq. (2) in

the text, where

(A5)

g &0~@2 —2

and we have made use of the relation (12).

In the above expressions we have neglected the
phonon frequencies, as they are much smaller than

2b, . At T=O K the sum over the Matsubara fre-

quency u„ is replaced by an integral and we obtain
T

APPENDIX 8: THE OPTICAL-PHONON —SELF-ENERGY CORRECTION IN THE PRESENCE

OF SOLITON

We shall limit ourselves to the optical phonon only for simplicity, since the effect on the acoustic-phonon

spectrum due to a soliton is rather small. We shall calculate ([cr&,cr&] }(p,p')—:X(p p') in the presence of a

soliton. As in the calculation of the optical absorption, ' g(p,p') splits in two terms X(p,p') =X"'(p,p')

+ X' '(p,p'), where X"'(p,p') involves the midgap state, while X'2'(p,p') is given in terms of the scattering

states only. Furthermore, X"'(p,p') and X' '(p,p') are given by

f dk Ek '~k(p)Mk(p') (81)

and
2

g"'(p,p') =4 f f dk dk'(Ek+E/, ) ™k,k (p)Mk k (p'),
L

(82)

where
1 /2

sech —g(k —p)
2M, (p) = dx e'" -&'"sech —= i-—l i(k —)x

2v'L, g
(83)
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k' k 1M„.(p)= — fdxe"" '-~', + +i&(x)

7795i, sin[(L/2)(k —k' —p)]

—(sing —sin(II') —g csch —g(k k'—p)— cos[(L /2)(k —k' —p)]
2 2 k —k' —p

(84)

/=tan '(I, /k), P'=tan '(b, /k'), and Ei, ——(k +b, )' . Hereafter we shall put Uz ——1 for simplicity.
Equations (83) and (84) follow from the exact electron solutions in the presence of a soliton:

1
(85)

(86)

1 x
secll—l

1+[k +i b (x)]/Ei,
ek =

2~L l(1+[k+id, (x)]/Ek)

Furthermore, a small correction in the normalization of gl, cancels out exactly the correction terms due to
the change in the electron density of states. Substituting (83}into (Bl},we easily find X"'(p,p'):

r

g"'(p,p')=m g
' f dkEq 'sech —g(k —p) sech —g(k —p') (87)

cos[(L/2)p]
k —k' —p

On the other hand, in order to calculate X' '(p,p'), we shall first reduce Mi, i, (p) to

2i cos[ —,(P'+/)]
~ax(p)=—

L

+ sin[ —(P' —P)]—(csch —g(k —k' —p)2 2 2

where use is made of the boundary conditions' on k and k':

Lk+$=2nv,
Lk'+P'=2m(v'+ —,) .

(Note here k is associated with electron, while k is associated with hole. ) Substituting this into (82),
X' '(p,p') is broken down to two terms:

X"'(p,p') =X'i"(p,p')+X'i"(p, p') .

The first term is calculated as follows:

X' '( ')= — f f dkdk'(E +E ) 'cos [ '(~, ~)]
cos[(L/2)p] [(L/2)p']
(k —k' —p) (k —k' —p')

T

2 ~ W i cos[(L/2)p]cos[(L /2)p'] 1 1

p —p

I'( ,gp)—,-=4 ln p(q) 5(p —p'), —4 W' i sin[(L/2)(p —p')] W

p —p'

where use is made of the relation

(88)

(89)

(810)

(811)

oo 1 00
1 Lpf dq = y n+-

g —p ~ 2 2w

1 Lp
2 2'

—+ ~ . =n tan[(L /2)p],
1 Lp
2 2m
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(813)

and g(z) is the diagamma function. Therefore, X'i '(p,p') recovers the term in the perfectly dimerized state.
On the other hand, X2 '(p,p') is given by

X22'(p,p') =m 2f f dk dk'(Ei, +Ek ) '(sing —sin(()')

'2

csch —g(k —k' —p) csch —g(k —k' —p )
2 2 2

where

=4csch —g(p —p') [4(p)—4(p')],
2

(814)

@(p)= ,6 g —ff dk dk'(Ek+Ek ) '(sing —sing') coth —g(k —k' —p)

=g f dqFi(q)coth —g(q —p) (815)

«k —Ek-s)'
Fi(q)=g f dk

EkEk, (Ek+Ek v)

= ——i)-'(1+ri')-'"sinh-'r) ——,
'

Re sin '[2v'ri(i)+i)]
4 ' V'g(ri+i )

(816)

(817)

which yields

where ri = —,(gq). From (87), (811), and (814) we obtain Eq. (13) in the text. It is difficult to make further

progress analytically However, for small g, (816) can be calculated as

F (q)=-(—rl ——r) + i) +. )

@(p)=—0.0103p +0.008 425p —0.0026p 5,

where we write gp as p.
Then, for small p and p', X' '(p,p') becomes

(818)

X2 '(p,p') =4csch —(p —p') [0.0103(p —p')+0.008425(p —p' )], (819)

of which the Fourier transform is given by

Xz '(pp') =8 sechix5(x —x')[0.0103+0.008425(B„+B„B,+8„)].

Similarly, XP'(p,p') can be expanded as
r

(820)

Xi (p,p')=4 ln — 1+ p — p~ &(p —p'), (821)

whose Fourier transform is given by

Xi (x,x')=4 ln — 1 — z— 5(x —x') . (822)

Combining these expressions, we easily find Eq. (15) of the text.
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