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The quantum corrections on the soliton in polyacetylene is studied within the continu-
um version of the Su, Schrieffer, and Heeger model. First, the optical-phonon spectrum
in the presence of a soliton is determined. It is shown that the soliton generates two lo-
calized phonon modes; the one with @ =0 corresponds to the translation of the soliton,
while the other with ©w~0.8w, is Raman active where w, is the optical-phonon frequency
with k=0. The quantum correction to the soliton energy E; is also calculated. We find

the correction is rather important: SE;~— %E,.

I. INTRODUCTION

The concept of solitons introduced by Su,
Schrieffer, and Heeger' (SSH) and others®~* is cen-
tral in interpreting the magnetic, optical, and elec-
trical properties of pristine and lightly doped
trans-polyacetylene. In the discrete model pro-
posed by Su, Schrieffer, and Heeger,! two drastic
assumptions are usually made: (a) The soliton is
treated within the mean-field approximation, and
(b) the Coulomb interaction between electrons is as-
sumed to be small.

The object of the present paper is to clarify the
nature of the first approximation. In the absence
of topological disorder, Brazovskii and Dzyaloshin-
skii® have shown that the adiabatic approximation
is justified when wy/(2A) << 1, where oy is the
zero-momentum optical-phonon frequency, and 2A
is the Peierls energy gap. In the case of polyace-
tylene,® we can take wo~ 1400 cm~! and 2A=1.4
eV which yields w/(24)~0.125. Although in the
presence of the soliton the same justification is as-
sumed to hold,' it is worthwhile to study the valid-
ity of the mean-field approximation. For this pur-
pose we make use of the semiclassical approach
developed by Dashen, Hasslacher, and Neveu,” and
others.® We shall first determine the (optical-)
phonon spectrum in the presence of a soliton
within the continuum version of the SSH model.
We find that the phonon is drastically modified in
the presence of soliton; there appear two phonon
modes with frequencies below w(: The one with
o =0 corresponds to the translational motion of
the soliton, while the other with w~0.82w, should
be Raman active. The second mode may corre-

spond to the Raman-active mode observed experi-
mentally in lightly doped polyacetylene,®° although
the predicted frequency appears somewhat higher
than that observed experimentally. It is note-
worthy that the phonon obtained here is very simi-
lar to that of the ¢* model.” With the help of the
phonon spectrum thus determined, the quantum
correction (i.e., the second-order adiabatic correc-
tion) to the soliton energy is found to be

86E; = —0.60w,, which reduces the soliton energy
by roughly % Therefore, the quantum correction
to the soliton energy is rather important. On the
other hand, it is shown that the quantum correc-
tion to the soliton mass is extremely small (a few
percent of the mean-field soliton mass) and can be
neglected.

Making use of the present results, together with
the known quantum limit of the Gross-Neveu
model,'®!! we can establish within the perturbation
calculation that (a) the dimerized configuration is
the stable ground state of the SSH model even
when the quantum fluctuations of lattice are in-
cluded, (b) the soliton is a stable excitation in the
system, and (c) the polaron state!®'%13 in the SSH
model is also stable. Indeed, (a) follows from (b)
as in the case of the sine-Gordon system,'* while
(b) follows from the fact that E, < 2E,, where E,
and E; are the polaron energy and the soliton ener-
gy which include quantum corrections.

II. PHONON SPECTRUM

Before going into analysis of the phonon spec-
trum in the presence of a soliton, we shall first
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briefly describe the phonon spectrum in a soliton-
free polyacetylene within the mean-field approxi-
mation. In the discrete model of Su, Schrieffer,

and Heeger, the bare photon spectra are given by

(k) =w}sin? —;-k ,

and (1)

a

2% ] ’
where w4(k) and wy(k) are the acoustic- and
optical-phonon frequencies, respectively, and a is
the lattice constant. When the electron-loop

corrections are included, the optical frequency is
modified as

wp(k)=wpcos?

wb(k)=wb[2AF(1)]cos? %k
2 2|4
=awpF(n)cos —2—k , 2)
while the correction to the acoustic-phonon fre-
quency is negligible.'® Here,
F()=7""149%"%inh~!n, 3)

and

Wo

0.5 [«

Wa /wq

W

0.0 w4 /2
ak

FIG. 1. Phonon frequencies in the SSH model are
shown. The broken line represents the bare phonon fre-
quencies, while the solid lines are the phonon frequen-
cies where the electron-loop corrections are included.
We have chosen A=0.2 in the above calculation. ®; and
o, are two bound phonon states, which are generated in
the presence of a soliton.

n=5(Ek),
w0=(2k)’/2wQ ’ (4)
§=vp/A,

and A is the dimensionless coupling constant.

The phonon spectra, Egs. (1) and (2), are shown
in Fig. 1. The spectra are essentially same as that
calculated by Schulz'® for the case kp=1m/2a.
Furthermore, in the region of small k (i.e., ak
<< 1) the present results agree with those obtained
by Mele and Rice!” for the finite discrete system,
although in the region ak~/2, our results differ
from theirs. This may be due to the coupling with
other modes, which is not considered in the present
model. The derivation of Eq. (2) is given in Ap-
pendix A.

Here we note simply that the electronic polariza-
tion induces a large modification on the optical
phonon but has little effect on the acoustic pho-
non. In the following we shall consider a system
described by the Hamiltonian:

H = —2§;fdx['A2(x)+wZQA2(x)]
+ fdx ¢r;r(x)[—iv,.~cr3ax
+0Ax) )¢ (x) , (5

where
wy=4K/M ,
Alx)=g(a/M)"%(x),

(6)

and y, =(-)"p, is the staggered lattice displacement.
A dot on A(x) implies the time derivative. In
most of previous analysis of the Hamiltonian (5),
the first term has been neglected. To explore the
role of this term on soliton is one of the principle
objectives of the present paper.

In the following we shall first determine the
phonon spectrum of a polyacetylene in the pres-
ence of a soliton. For this purpose we shall first
calculate ([o,01])(p,p’), which gives rise to the
mean-field correction to the phonon spectrum.
Indeed, the phonon frequency in the presence of a
soliton is given by solving

0*(p)= whcos’

a
2p

A
X |vp)— 3~ [ SExeewen |, @
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where state, and A=gNwg>.
, , Making use of the method developed by Kivel-
X(p.p")=(lo,o1])p.p") @) son et al.'? it is possible to separate X(p,p’) as

No=(mvp)~! is the density of states for a one-spin
|

X(P»P'):%Nol In % —F(n) |8(p —p") + § csch[m(n—n") ][ ®(n)— D7) ] +EP(n,7") ¢, ®
where
<p(17)=_%f_:dqcoth[ﬂ(q—n)]
X[g~' (144"~ sinh~'g + 3 Im([q (g +1)]~*sin~'{2[q (g +D]'*))], (10
®(mn)="7 [ dg(14+4g") " sechlg —n)lsechl(g —"], an

and n= %(gp) and n'= %(gp’) and W is the full electronic bandwidth. Note that

7| (12)

A=Wexp

We shall give the derivation of Eq. (9) in Appendix B, since it is rather involved. Equation (7) is further
simplified as

ip)=aleos | Sp | [Fopip)— [ Konmdn'se) | (13)

a
2P

with
K(n,m")=2csch[m(n—n")][P(n)—D(y")]+2d(n,7") , (14)

and wg and F(n) have already been defined in Egs. (3) and (4).
It appears a little difficult to make further progress with Eq. (13). However, if one imposes limits to the
region of small p (i.e., ap << 1), Eq. (13) can be approximated by a Schrodinger-like equation,

2
1—-L 97 .0206sechx

~ 2
o*P(x)=w] 12 22

P(x)—gsechx [dy Ko |x —p |)sechyd(p) |, (15)

where K,(z) is the modified Bessel function, and ¥(x) is the Fourier transform of (p). Here we take £ as

the unit of length. In deriving Eq. (15), we have neglected higher-order terms in d?/dx?. Then, Eq. (15) is
solved variationally as

2
= fwd
X

2 J_,

— %f f_: dx dy sechxf (x)sechyf (y)Ko( |x —y |)

2

< —0.0206 [ dx sechxf>

(2]

af
dx

® -1
[ rax| ™ (16)
By carefully choosing forms of variational functions f,(x)=sech’x and f,(x)=tanhx sech*x where v and
1 are variational parameters, we find two bound states with
©}=0.1040) with v=1.95, (17
and

03=0.737T0} with p=1.25, (18)
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which curiously resemble the bound-state spectrum of the ¢* theory.’

We note that the present results are also qualitatively very similar to those obtained earlier by Mele and
Rice!” within a phenomenological model. We should stress, however, that quantitatively those frequencies
in the phenomenological model are somewhat different from ours. The above results may be somewhat im-

proved by including the next-order terms,

2 o) 1 pe |d¥f
8&) ——woll2o f_w x2

d.

With these corrections, co% and (og are now given by
w0=0.067w3 and w%=0.66co(2), respectively.

From the translation invariance of the system
the lowest eigenvalue should be w?=0 with
f1(x)=sech®x. Indeed, the result (17) is consistent
with this because of the approximation introduced
in going from Eq. (13) to Eq. (15). On the other
hand, we believe that the value of w, thus deter-
mined should be quite accurate; at least the first
digit is reliable. This second mode is Raman ac-
tive but does not appear in the infrared absorption.

Because of a close similarity between the contin-
uum version of the SSH model and the ¢* theory,
it may be useful to compare these two cases. In
Table I we present w/wq, w,/wq, and the phase
shift 8(k) for two models. In the case of the ¢*
theory, momentum k is normalized by wy/c, where
g is the boson mass.

III. QUANTUM CORRECTION

In order to calculate the quantum correction to
the soliton energy E;, we need the phase shift suf-
fered by phonons due to the presence of a soliton
as well. Again, we shall determine the phase shift
8(k), by making use of the Bethe formula,'® which
should be accurate in the small k region. For this
purpose we have to first find a solution uo(x),
which satisfies

ZL(up(x))=0, (20)

where

TABLE 1. The phonon spectra in the presence of a
soliton in the TLM model and the ¢* theory are shown.
Here w; and o, are the frequencies of the localized
modes and 8(k) is the phase shift of the phonon with
momentum k.

Model w1/ wg W,/ Wy ——tan[%S(k)]
SSH 0 0.82 1.2k /(1—0.56k?)
¢* 0 V732 1.5k /(1—0.5k?)

2
dx +0.0169 [~ sech’x

2
d*f | df /- 2]_1 19
— _— - : )
2fdx2 * dx] f_def |
|
82
Llux)=—1—Fu)
—0.0206 sech®xu (x)
—%sechxfdyKo( [x—y )
X sechyu () , 21
and

Furthermore, u, depends linearly on x for x >>1.
In analogy to the u, solution in the case of the ¢*
theory we choose

uo(x)=tanhx +ax +Bxtanh’c , (23)

with a and B as variational parameters, which are
determined so as to minimize the norm ||.%(uy)||.
We find =0.21 and B= —1.04, with
||-Z(ug)||>*~1072. In terms of a and B, the
scattering length b and the effective range r are
given by

b=—(a+B)"'=1.20,
and (24)
r=2 [ " (v —ub)dx =0.936,
where
vo=1+(a+pB)x .
Finally, the phase shift §(k) is given by
bk ] ’

8(k)=—2tan™! | ———
1—brk?

(25)

where k is in the unit of £~!. A factor of 2 in
front of the right-hand side (rhs) of Eq. (25) arises
from the definition of the phase shift in the one-
dimensional system. The phase shift decreases
monotonically from 8(0)=2 to 8( 0 )=0 as k in-
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creases consistent with Levinson’s theorem. With
these results we can calculate the quantum correc-
tion to the soliton energy,

E= %A+8ES : (26)

where

SE;=5 3 (0 —on) » @7
n

and o, is the phonon frequency in the presence of

a soliton, while w,, is the phonon frequency in the

perfectly dimerized state. Equation (27) is

transformed as

SES = ’;’a)2
_1_ kF 12 _q_k_ ds(k)
+ 57 20 fo dk[F(9)] "*cos > | "ac
~—0.60w, . (28)

Comparing this mass correction to the one for
the ¢* theory where
13
43 om
the present mass renormalization appears rather
large. We believe that this is due to the particular
circumstance that in the SSH model the integral in
Eq. (28) is cut off at the Fermi momentum, while
in the ¢* theory, the integral actually diverges log-
arithmically with the cutoff, which should be can-

8Es = o=~ —0.33(00 ,

H= [dxP,(x,0)(—vposd, )¥(x,1)

—322 3 [dx [ a0 (x, 0 (x,t W, t D (2 —1')

where
¢s=¢:-01 s
D(t—t’)=2l’a)Qe—imQIt—t” ,
and

g=gwg'=(A/No)'?, (30)

which reduces to the Gross-Neveu Hamiltonian in
the limit wg— oo (or M the ionic mass tends to 0),
keeping g finite. In the limit wg tends to O (or

M — «), on the other hand, the mean-field theory
becomes exact. Therefore, the Takayama—Lin-
Liu—Maki (TLM) theory,’ alias the SSH model,
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celed by the other term’ in E,. Since
wo/2A~10"", the quantum correction is negative
and roughly  of E;. Therefore, as far as the soli-
ton energy is concerned, the quantum correction is
sizable.

By making use of the method developed by
Maki and Takayama,”® we can also calculate the
quantum correction to the soliton mass. However,
it is easily seen the correction is of the order of
m (wo/ W), where m is the electron mass. Since
the soliton mass is of the order of m, the present
correction is less than the order of 10~%m, which
is completely negligible.

IV. CONCLUDING REMARKS

Making use of the continuum version of the Su,
Schrieffer, and Heeger (SSH) model, we have ex-
amined the quantum corrections to the soliton in
polyacetylene. We have shown that the soliton
produces a drastic modification in the optical-
phonon spectrum; the soliton induces two bound
states of phonon; one with @ =0 corresponding to
the translational motion of soliton, and the other
with ©~0.8w, which should be Raman active.
Furthermore, the effect of the modified phonon
spectrum on the soliton energy is found rather im-
portant. Therefore, the examination of the quan-
tum corrections to other properties of soliton are
certainly desirable.

We note also that by eliminating A(x,?) our
Hamiltonian (5) is transformed into

(29)

lies in between the mean-field theory and the full
quantum theory of Gross-Neveu model. In this
context our analysis of E; demonstrates within per-
turbation calculation that the dimerized state in
the SSH model is stable even in the presence of
quantum corrections, which follows from the fact
E; >0 [see Egs. (26) and (28)]. Furthermore, we

can prove the stability of the polaron state!®'>13 jn
the SSH model as follows. The polaron state is
stable when

E, <2E,, (31
where
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22
E,= TA +0E, ,
and 8E, (<0) is the quantum correction to E,. If
the accepted value of wg in polyacetylene is insert-

ed, the rhs of Eq. (31) becomes
2E,~ A (32)
T

Therefore, it is easy to see that Eq. (31) is satisfied
for polyacetylene even when 8E, is neglected. It
will be of great interest, therefore, to explore the
consequence of the polaron state in polyacetylene.
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APPENDIX A: THE OPTICAL-PHONON—
SELF-ENERGY CORRECTION IN THE
PERFECTLY DIMERIZED STATE

The self-energy correction due to the single elec-
tron loop is given by

IT (ko) =g’wgcos’ | Tk | ([o1,01D (ko) .
o

(A1)

Making use of the electron Green’s function in the
perfectly dimerized state,

G%k,w,)=(iw, —vpkoy—Aay)) ™!, (A2)
we obtain

([o,01]1) (k)

=273 [ L1 0,6%,po,
n

X G%w,,p +k)] . (A3)

In the above expressions we have neglected the
phonon frequencies, as they are much smaller than
2A. At T=0 K the sum over the Matsubara fre-
quency o, is replaced by an integral and we obtain

([o,01]) =2N, |In % _Fp|, (A9
where
F()=n"'1+7»)"%inh~!n, (A5)

and No=(mvp)~!, and n= %gk.
Substituting (A4) into (A1), we obtain Eq. (2) in
the text, where

}\.=g2N0(0§2 N

and we have made use of the relation (12).

APPENDIX B: THE OPTICAL-PHONON— SELF-ENERGY CORRECTION IN THE PRESENCE
OF SOLITON

We shall limit ourselves to the optical phonon only for simplicity, since the effect on the acoustic-phonon
spectrum due to a soliton is rather small. We shall calculate ([o1,01]1)(p,p’")=X(p,p’) in the presence of a
soliton. As in the calculation of the optical absorption,'® X(p,p’) splits in two terms X(p,p’)=X Dp,p")
+XP(p,p"), where X'V(p,p’) involves the midgap state, while X'*(p,p’) is given in terms of the scattering
states only. Furthermore, X'"(p,p’) and X'?(p,p’) are given by

(1) nqa L * —1 * Bl
XVipp")=4-= [k EC MM ) (B1)
and
I 2
X (p,p')=4 -] [ [ dkdk'(Ex+Ep) "My (p)Mi i (p) (B2)
27 —»
where
. B 1/2 -
=__l_ i(k—p)x, X _____71 Lk — B3
M (p) Nz_gfdxe sech |2 21[L} sech[zé‘( p)| > (B3)




25 QUANTUM CORRECTIONS TO SOLITONS IN POLYACETYLENE 7795

() L i—k'—pix | K Kk 11
M ie(p)=—~ -1 [axe 5T iAGe) | - 0
_ i sin[(L /2)(k —k'—p)]
=—7 [ cos¢ +cosg’) k—k'—p
. o | T ey oy |_ cos[(L/2)(k —k’—p)]
— (sing —sing’) 2é’,‘csch 2_[-,‘(k k'—p) k—k'—p ], (B4)

p=tan"'(A/k), ¢’ =tan"'(A/k’), and E; =(k*+A?)!/2, Hereafter we shall put vy=1 for simplicity.
Equations (B3) and (B4) follow from the exact electron solutions in the presence of a soliton:

¥s=|_; |5 ‘/g_sech g , B3
. ol 1+[k +iA(x)])/Ey (B6)
VE=20T |i05[k +iA0)]/E)

Furthermore, a small correction in the normalization of ¥ cancels out exactly the correction terms due to
the change in the electron density of states. Substituting (B3) into (B1), we easily find X'(p,p’):

XV(pp')=m2=" [~ dk Ei 'sech [%g(k —p) |sech | -&(k — (B)
On the other hand, in order to calculate X'*(p,p’), we shall first reduce M; 1/(p) to
2 cos[i(¢'+¢)]
My lp)=— 2 1y cos[(L ’/2)2
L k—k'—p
+ sin[5(¢'— )] gcsch ’ng(k —k'—p) (BS)
where use is made of the boundary conditions'® on k and k':
Lk +¢=2mv,
(B9)

Lk'+¢'=2a(v'+5) .

(Note here k is associated with electron, while k' is associated with hole.) Substituting this into (B2),
X®(p,p') is broken down to two terms:

XP(p,p") =xP(p,p" )+ X (p,p") . (B10)

The first term is calculated as follows:

2
@, n_ |2 ® ) -1 cos[(L/2)p] [(L/2)p']
’, - k !
XP(p,p") J [ dkdk B+ E)~ cos! 54 +4)] kb G
2
2 ® w 1 cos[(L /2)p]cos[(L /2)p'] 1 1
= |= dq |In— —F(5&q) ; -
7 f—oo A 75 p—p 9—p q-p'
4| w i L
~2 ¥ it s‘n[(Lp/i)g’, Pl _, ln%{—F(n) 5 —p") , (B11)
where use is made of the relation
-1
1 ~ 1 L 1 L 1 L
f_ dqq——p——nz_ n+~2——ﬁ =9 E——‘Es -9 >t Efj =mtan[(L/2)p], (B12)
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where

{z}=zmod 1, (B13)
and (z) is the diagamma function. Therefore, X{'(p,p’) recovers the term in the perfectly dimerized state.

On the other hand, X3?(p,p’) is given by
XPpp)=m"2f [7 dk dk'(Ey+Ey)\(sing —sing’')?

2
X | L& | csch | T&(k —k’'—p) |csch | &k —k'—p)
2 2 2
—=4csch %é‘(p—p') [D(p)—D(p")] , (B14)
where
(p)=15€* [ f_: dk dk'(Ej + Ey)~(sing —sing’)’coth %g(k —k'—p)
=¢ [ dqFi(gioth | Z£lq—p) | , (B15)

and
1 (Ek ——Ek —q )2
E;%E;%_q (Ex+Ex_gq)

Fip=¢ [~ dk

Z 7~ (147%)~%inh~'p— 5 Re

ey
—_\/7](77—-{4')8111 [2vVn(n+i)]

where n=%(§q). From (B7), (B11), and (B14) we obtain Eq. (13) in the text. It is difficult to make further
progress analytically However, for small 5, (B16) can be calculated as

] ) (B16)

1,1

Fi@=5(n—an*+5en®+ ), (B17)
which yields

®(p)=0.0103p +0.008 425p° —0.0026p° , (B18)
where we write £p as p.

Then, for small p and p’, X'®(p,p’) becomes

X$P(p,p’)=4csch %(p —p") [[0.0103(p —p')+0.008425(p*—p")] , (B19)

of which the Fourier transform is given by

X2 (p,p') =8 sech?x8(x —x')[0.0103 +0.008 425(32 + 3,0, +2)] - (B20)
Similarly, X 2X(p,p") can be expanded as

XPp,p) =4 1n—A”i_ 1+1—12p2—$p4‘ | s —p, (B21)
whose Fourier transform is given by

PP(x,x) =4 ln—z—/— 1”?25%‘"1%62‘1;—4 o | 80 —x1) . (B22)

Combining these expressions, we easily find Eq. (15) of the text.
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