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Correlated diagonal and off-diagonal disorder in amorphous solids
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A self-consistent self-energy approximation is developed to study effects of fluctuations

in site energies and transfer matrix elements in tight-binding models of disordered solids.

Correlations between energies for adjacent sites, and between site energies and transfer

amplitudes to neighbor sites, are included explicitly. The latter are shown to produce

asymmetries in the energy spectrum, while the former have effects similar to those of un-

correlated diagonal and off-diagonal fluctuations with altered variances.

I. INTRODUCTION

Electron energy eigenstates in many disordered
solids can be described in terms of a tight-binding
Hamiltonian which includes "diagonal" terms
representing the various energies of localized (e.g.,
Wannier) electron wave functions at the sites of the

solid, and "off-diagonal" tertns representing the
different transition matrix element associated with

electron transfer between neigboring sites. The en-

ergy spectrum for such a system is then the set of
eigenvalues of a very large, sparse matrix whose

nonzero elements are random, though not neces-

sarily independent, variables. The present work

studies the estimation of the eigenvalue distribution
(or density of states) when correlations among ma-

trix elements, both diagonal and off-diagonal, asso-

ciated with neighboring sites may be important.
An effective-medium approximation is developed

which incorporates such correlations in a natural
and self-consistent fashion, and the use of the
method is demonstrated for systems in which fluc-
tuations of each site energy are correlated with

fluctuations in the transfer matrix elements cou-

pling the site to its neighbors.
This application of the general technique can be

compared. with the calculations of John and
Schreiber, ' and more recently Klafter and Jortner,
who treat a model in which diagonal matrix ele-

ments are correlated with off-diagonal elements

which have a Lorentzian or Cauchy distribution.
Except for features associated with the unphysical-

ly large tails of Lorentzians, the results found here
confirm the main qualitative features of previous
calculations —in particular a pronounced asym-
metry produced by correlations between diagonal
and off-diagonal disorder.

It is worth noting that in many real amorphous

materials, it is reasonable to expect that structural
irregularities will produce fluctuations in off-
diagonal matrix elements which are likely to dom-

inate variations in site energies. Moreover, the
same variations in local geometry which change
off-diagonal terms from their average value also
are responsible for variations in site energies, thus
significant correlations of diagonal with off-
diagonal fluctuations are to be expected.

To model a solid in which geometrical disorder
leads to both topological and local quantitative
variations, one can consider a lattice of X sites,
without translational symmetry, but with uniform
coordination (each site has the same number n of
immediate neighbors), described by the so-called
"adjacency matrix, "defined explicitly below, which
specifies which sites are neighbors of which other
sites. The structure should have long-range homo-

geneity and isotropy, which means essentially that
matrix elements of sufficiently high powers of the
adjacency matrix should be site-independent. The
topology of the lattice itself influences the energy
spectrum in important ways, including the round-

ing of the Van Hove discontinuities of periodic
structures and the introduction of asymmetries as-
sociated with changes in ring statistics. The in-
terest here, however, is on the effects of matrix ele-
ment within a given structure. One then can con-
sider ensemble averages, for a fixed topology, over
values of the random diagonal and off-diagonal
Hamiltonian matrix elements

The effective-medium approximation developed
here differs from the widely used coherent-poten-
tial approximation (CPA) in the criterion for the
choice of values of the energy-dependent parame-
ters which serve as the uniform diagonal and off-
diagonal elements in an equivalent effective Hamil-
tonian. Yonezawa and Odagaki have discussed
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the extension of the CPA, originally developed for
the treatment of systems with independent diago-
nal disorder, to systems decomposable into a set of
independent homomorphic units or clusters. More
recently, Kaplan et al. 5 have shown how to extend

the calculation of conditionally averaged Green's

functions (useful for the treatment of substitutional

defects, as in alloys) to include self-consistently

scatterings from clusters of various sizes. This
method, like the CPA of Yonezawa et al. , provides
the correct analytic properties of Green's functions
for any amount of disorder. However, it cannot in

its present form deal with correlations among fiuc-
tuations except for those uniquely specified by
which species of ions are present at the involved

sites. The CPA criterion for parameters of an

equivalent effective medium is that the average of
the single-cluster scattering matrix vanish. This

approach can deal satisfactorily with correlated

fluctuations only if they occur within a single clus-

ter. Instead, the approach presented here identifies

a self-consistent self-energy which incorporates (to

all orders in a perturbation expansion) the contri-

butions of double scatterings by any pair of corre-

lated fluctuations. The resulting Green's functions

can have unphysical analytic properties for large

enough amounts of disorder, but are acceptable for

quite large fluctuations, such as those to be expect-

ed in a real material with a reasonably stable struc-

ture.

X, =(VG, V), (3a)

which involves the corresponding approximate
average resolvent

6, =(zl P'—Xg)— (3b)

This approximation, or its equivalent, has been

used with good results for a number of different

problems. In diagrammatic terms, it amounts to a
summation of "nested diagrams. " For the present

calculation it has two important features. First, it
allows inclusion of correlations among the dif-

ferent random terms in V. Second, however, when

correlations exist only over short distances between

sites, X, will have nonzero matrix elements only

between nearby sites. In particular, suppose the

only nonvanishing expectation values of products
of two elements of V are the following:

and b;J, respectively, so that the random e; and v;J
have zero expectation values. Neglecting V com-
pletely would thus be the so-called "virtual crystal
approximation. " A self-energy operator is defined

by
(2)

A diagrammatic representation of the perturbation
series for X includes only linked diagrams. A
self-consistent approximation to X is obtained by
taking

II. THE SELF-CONSISTENT SELF-ENERGY
(e;ej) =p& for i =j

=P2 for i andj (4)

The tight-binding Hamiltonian is represented by
the matrix A;j ——a;5j+b&M&, where the indices i

and j label sites. The adjacency matrix M;J has
elements 1 when i and j are nearest neighbors and
zero otherwise; it thus specifies the topological
structure of the atomic array. The site energies a;
and transfer matrix element b;j are random (but

perhaps correlated) variables. The goal is to ap-

proximate the ensemble average of the resolvent

operator (zl —M ' as a function of the complex

energy variable z. A formal perturbation expan-
sion for the resolvent results if the Hamiltonian is

separated into fixed and fluctuating parts:

P =H+V,

H,j——a5,J +bM,J,
V,J

——eg5;J. +u,qM,~
.

a and b are taken to be the average values of a;

(eivij ) Y '

nearest neigbors

G, = (z'1 —b'M)

with renormalized parameters

Then a direct evaluation of X, yields only a diago-

nal element (P~+na)GO+2nyG& and nearest-

neighbor elements

2yGO+(Pz+a)G) .

The new quantities are averaged elements of 6„
defined by

Go=% TrGs ~

Gi (nN) 'TrMG——, .

It follows that G, has a form equivalent to a renor-

malization of A:
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z'=z —a —(Pi+na)Gp —2nyGi,

b'=b +(Pz+a) Gi+2yGp .
(7)

These are self-consistency relations, since Gp and

G~ on the right-hand sides of the equations are
functions of z' and b' through Eq. (6).

The functional form of Gp is determined by the
eigenvalue spectrum of M. The eigenvalues are
real and bounded by +n. A convenient spectral
representation may be introduced by denoting the
eigenvalues of M by nx;, —1 &x; & 1, and defining
a density of eigenvalues by

f(x)=—+5(x—x;) .1

l

(8)

It can be seen that f(x) is simply the density of
states in the absence of disorder, with energy units
chosen so that a, the energy at the band center, is
zero, and the total bandwidth is 2. It is normal-

ized so that its integral over all x is unity.
The representation of Gp then has the simple

ofm

f(x)dx
0 z' —nb'x

It is also useful to note that

z'G, —O'MG, =1,
from which Gi can be expressed as

Gi ——(z'Gp —1)/nb' .

(9)

(10)

For specific applications of this technique, then,
one selects an appropriate f(x), specifies values of
the disorder parameters a,P Piyz, and solves Eqs,
(7), (9), and (11). An approximate density of states
is then given by

g(E)= ——lim ImGp(E+ie) .1

7T e—+0+

The results for some particular examples are
presented in the following section.

(12)

III. SOME SPECIFIC EXAMPLES

It is convenient to rewrite the equations to be
solved as follows. Dimensionless variables are de-
fined by

Z =z'/nb,

E=z/nb,

F=b'/b .
Energy units are chosen as described above,' i.e.,

a =0 and b =1. Then Eqs. (7) become

Z=E —ciGp —cpGi,

F=1+c260+c3G) .
(14)

The three parameters measuring the disorder are

c i Pi——+an,
c2 =2/if

c3 —(a +P2 )n

(15)

In order to explore the consequences of correla-
tions among Hamiltonian matrix-element fluctua-

tions, a generalization of the model studied by
John and Schrieber' and Klafter and Jortner2 can
be used. The off-diagonal fluctuations v;J are tak-
en to be independent identically distributed random
variables with zero mean and variance (v ). For
the diagonal fluctuations, take

e( =5(+A gM(~vg~
J

(16)

where the quantities 5; are independent random
variables with zero mean and variance (5 ). A is
any real constant, and when nonzero, produces
correlations between adjacent diagonal fluctuations
as well as between diagonal and off-diagonal ele-
ments. The coefficients c; are then given by

ci ——(1+3 )(v )/nb2,

ci ——c&+(5 )/n b

cz ——2A(v )/nb

(17)

Before a discussion of general features, it may be
useful to consider some numerical results. The
first examples use the spectrum for a linear chain,
only because the effects of varying disorder param-
eters are easily seen in the sharp peaks of the den-'

sity of states. For this topology n =2, and the
Green's functions are

Gp(Z, F)= (Z F)—
Gj =(ZGp —1)/F .

(18)

Equations (14) and (18) may be solved iteratively.
For an initial choice of Z and F, Eqs. (18) give Gp
and Gi, which can be inserted in Eqs. (14) to give
a new pair Z,F. This straightforward approach
converges quite rapidly for reasonable amounts of
disorder except very close to the band edges, where
alternative numerical techniques may be used to
speed convergence.

Figure 1 shows the density of states when
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FlG. 1. Linear-chain density of states vs energy for fixed off-diagonal disorder and varying correlation, the diagonal

disorder being due entirely to the correlations. Values of the correlation parameter A (see text) are: ———A =0,
A =0.5 A =1.0 ———A =1.5.

(52) =0, with (u ) =0.04nb2, which corresponds
to an rms variation 1Q the off-diagonal Hamiltoni-
an matrix elements of -28% of their mean. Re-
sults are shown for values of A =0, 0.5, 1, and 1.5.
This corresponds to the earlier work in which all

the diagonal disorder is induced by the correlations
between diagonal and off-diagonal fluctuations.
The results are in qualitative agreement with the
features found previously. In addition to rounding
of the peaks and broadening of the band, there is a
strong asymmetry about the band center.

When (U ) and (5 ) are held constant and A is
varied, the size of the diagonal energy fluctuations
changes at the same time that the amount of corre-
lation does, so that both effects are present togeth-
er in the results of Fig. 1. Alternatively, the
mean-square flucuations of both diagonal matrix
elements may be held fixed as the amount of corre-
lation is varied, by changing (5 ) together with A.
Changes in the density of states for different
ainount of correlation, with the variances of the di-

agonal and off-diagonal matrix elements held fixed
in this way, are shown in Fig. 2. The same value
for (u ) as for Fig. 1 is used, and the diagonal

fluctuations chosen so that (5i) =0 when A =1.5.
It can be seen that the total band width is deter-

mined primarily by the widths of the diagonal and
off-diagonal matrix element distributions and is
quite insensitive to the varying degree of correla-
tion. The asymmetry, however, clearly reflects the
correlation. Figures 1 and 2 also show that values
of A greater than unity present no problem, in con-
trast with the Lloyd-type model of the earlier stud-
1eS.

As a final example, Fig. 3 shows the same gen-
eral features for the density of states in the three-
dimensiona1 diamond lattice. Here the coordina-
tion number is four, and the Gro:n's function re-
placing Eq. (18) can be written in terms of com-
plete elliptic integrals. The explicit formulas
and their numerical evaluation are discussed in the
Appendix. The parameter values of Fig. 3 corre-
spond to the same fractional spread in transfer ma-
trix elements of -28%. The two disordered spec-
tra are for the same fluctuations of the diagonal
and off-diagonal elements, but with no correlation
(A =0) in one case and A =1 in the other.

It can be scen that the same fractional variation
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FIG. 2. Linear-chain density of states for fixed diagonal and off-diagonal order but varying correlation. Correlation
parameter values are the same as in Fig. 1.

in matrix elements produces a smaller fractional
change in bandwidth, which is simply a conse-
quence of the higher coordination. The qualitative
effects of broadening and asymmetry are the same
for this lattice, however, and would be found in the
spectrum for any other topology.

IV. DISCUSSION

In addition to permitting the explicit evaluation
of electronic energies incorporating the conse-
quences of correlated disorder, this calculation pro-
vides direct insights into the nature of spectrum
changes from different types of disorder, through
the form of the self-consistent renormalization re-
lations of Eqs. (7), which involve the parameters

a!, a2, P, and y measuring the size and correla-
tions of Hamiltonian matrix element fluctuations.

Asymmetry of the spectral bands is due directly,
and solely, to the parameter y, the correlation be-
tween flucuations in site energies and transfer am-
plitudes to neighboring sites. To make this expli-
cit, it is useful to rewrite the spectral representa-
tions in terms of the function

f f(x)dx
l —x /N

where co=z'Ib' Then the .relevant Green's func-
tions take the form

z'=z (P2+ na)G—p 2nyG!, —

b'=b +(P2+a)G! +2yGp, (7')

under the mapping z~ —z' and b~b'. From the
symmetry of D(co), we also have Gp~ —Gp and

G~ ~G~. The equations are changed only in the
sign preceding y in each. Thus the self-consistent
spectrum is symmetric if and only if y=0.

It may be noted that a sign change in y simply
reflects the spectrum about the band center, so that
only positive values of the parameter A needed

Gp(z', b') =D(a))Iz',

6!(z', b') = [D(co)—1]lb' .

When the unperturbed spectrum is symmetric,

f(x)=f ( —x), then so is D (co)=D ( —co). Also
D (co) is an analytic function of co off the real axis,
so that D( co') =D'(co). —

Now consider the behavior of the relations
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FIG. 3. Diamond lattice density of states for fixed diagonal and off-diagonal disorder but different correlations.
———A =0, A =1, . state density with no disorder.

consideration in the preceding section. Also, the
induced asymmetry does not shift the mean eigen-

value. This is simply a consequence of the choice
of the "unperturbed" Hamiltonian as that for the
virtual crystal approximation, with all fluctuations
having identically zero mean values. In fact, since

the self-energy is exact through second order in the
fluctuations, the spectral moments through the
second are exact.

Useful insights are also provided concerning the
effects of other correlations. From Eqs. (7) it can
be seen directly that positive (or negative) correla-

tions between site energies on neighboring sites,
parameterized by P2, have the same effect as a de-

crease (increase) in the variance of off-diagonal
fiuctuations, parametrized by a, together with an

increase (decrease) in the single-site energy variance

1'

The self-energy approximation developed here
can be extended in a straightforward manner to in-

clude additional types of correlation among Hamil-

tonian matrix elements, including those of longer
range. The success of the approximation depends

basically on whether those contributions to a per-
turbative expansion for the true self-energy which

APPENDIX: SPECTRAL FUNCTIONS FOR
THE DIAMOND LATTICE

Collected here are the main formulas used to
evaluate Green's functions for the diamond lattice,
with a few comments on computational implemen-
tation.

The normalized eigenvalues x; (see Sec. ID for
the diamond lattice are given by the dispersion re-
lation

4x = 1 +cos6 )cosOp+ cos82cos83

+COS03COS6 ]= 1 +(X]23 (Al)

are contained in the self-consistent approximation
are in fact those of major importance: a question
which can best be answered by direct consideration
of specific applications. A general benefit, howev-

er, will be the grouping of various statistical
parameters in the renormalization relations. From
these groupings the relative importance and in-

teraction of different forms of correlation can be
recognized, providing valuable clues to the under-

standing of the complex variations in real disor-
dered solids.
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where the wave vector components 8i (j =1,2, 3)
are uniformly distributed between +n. The spec-
tral function D(to) defined in Sec. IV can then be
written as

until a~ ——b~ to the desired accuracy. Then

(A6)

k+ ——— 1 — 1—1 1

2Q)

' 1/2
11—

N
I

" 1/2

+ 1—1 1

N 4N
(A4)

Using the symmetries of D(to) we need consider
only complex values of co in the first quadrant. A
study of the values of k+ as to moves froin infini-

ty toward the origin reveals that k+ crosses the
real k2 axis only to right of k =1, while k
crosses to the left. For the evaluation of E(k ),
then, we may use the standard arithmetic-
geometric mean (AGM) algorithm. 'o Starting with
an=1, be=(1 —k )' we iterate

1

an+i = —,(a.+b. )
(A5)

b„+, (a,b„)'", -

f f(x)dx
1 —x/to

4e) f f f d8id82d8s[4co~ —1 —ai2s),

(A2)

which is thus put in a standard form similar to
those defined by Morita and Horiguchi and by
Joyce, and therefore expressible as a product of
complete elliptic integrals of the first kind':

D(to)=(4lto )K(ki)E(k ),
with

where

Zn —(Zn —Zn - i)(Zn —Z ln )

(Z„—Z„ i —Z 1„+Z1„ i)

Zl. =E-ciGo(Z. P;)-c,G, (Z„g„) . (Ag)

Simila~ equations are used for F. This provides
quite satisfactory acceleration of the iteraction pro-
cess, which is useful in the vicinity of the singular
points of D(co).

When principal values of square roots are taken
throughout, this produces E for k in the complex
plane cut along the real axis to the right of k~ = l.
For E(k+ ) there is also a simple alternative to the
analytic continuation formulas of Morita and
Horiguchi: In the AGM, all complex square roots
are taken with positive imaginary part, which cor-
responds to cutting the k plane from k =1 to the
left along the real axis. This provides a simple and
effective algorithm for the computation of D(to),
from which the Green's function Go and Gi are
obtained. The iterative solution of Eqs. (14) then
proceeds efficiently.

One way to accelerate the convergence of these
iterations is to use a version of the "secant algo-
rithm. "" Each time a new approximation to Z
and F is obtained, one can use it together with
values from the preceding evaluation to extrapolate
linearly to values for the next evaluation of Go and

Gi. The extrapolation formulas for Z, would be
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