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The cyclotron resonance line shape is dependent upon the current relaxation rate I (k).
%e have numerically determined I {k)and hence the cyclotron resonance linewidth f in

the quantum limit for a nondegenerate semiconductor using a previously derived formula

[J. Phys. Chem. Solids 41, 735 (1980)]. The electrons are assumed to interact with acous-

tic phonons via a deformation potential. For high temperatures we have found that the

dependence of the linewidth y and peak absorption I' '" on the temperature and the reso-

nance frequency mo is given approximately by yes T'~ mo, I' ~ T '~
mo ', whereas for

low temperatures y~ T ' mo, I' ~ T '5coq. The line shape is found to be almost

Lorentzian. %e have compared our numerical results for I {k)with the various approxi-

mations which are commonly employed.

I. INTRODUCTION

In 1955 Dresselhaus et al. ' observed cyclotron
resonance (CR) in germanium. Since then many
CR experiments have bccn carrie%i out to study
electronic band structures: The position of the ab-

sorption peak gives the value of the effective mass
of conduction electrons, me =eB/co&, where —e,
8, and ao are, respectively, the electronic charge,
the applied magnetic field strength, and the reso-
nance frequency. The linewidth or line shape of
thc power absorption has received less attcntlon.
However, in recent years the high-frequency CR
experiments performed with far-infared lasers have

opened up a new domain in semiconductor physics,
slid special Rttclltloli has bccll paid to thc stlldy of
the shape of a cyclotron resonance power absorp-
tion line: The shape of the line, and in particular
the linewidth (y) and its dependence on tempera-
ture (T) and magnetic field strength (8), depend
critically on the detailed nature of the scattering
mechanisms. Thus they provide 8 sensitive probe
for these interactions.

I oddcf and Fu)ita dcvclopcd 8 gcnefal theory to
describe a CR line shape of the power absorption,
starting from Kubo's formula and employing the

p1opcf connected d18gram cxpans1on. In thc11

theory, the gain and loss terms occurring in the
kinetic description of the relaxation process are

built in automatically and the inelastic scattering
Incchan1sms afc included foI' an clcctfon-phonon

system unlike other theories. Therefore their

theory gives a clear picture of the emission and ab-
sorption of a phonon by electrons, especially in the
low"tcmpcfatUfc fcglon whcfc onc-phonon 1nclast1c

processes play an important role. Recently one of
thc authofs, Suzukl 8t al. extended thc gcncfal
theory and obtained a formula valid in the vicinity
of coII in the quantum limit (%coo » ks T), and

studied the CR line shape near ~ coo at high tem-

perature, neglecting the inelastic effect. Their re-

sults agree with recent experiments on Gc.
In this paper we have carried out a quantum-

mechamcal calculation of the CR linewidth for a
Qondcgcncfatc semiconductor 1Q thc quantuQl hmit
for an electron-acoustic-phonon interaction via the
deformation potential, starting from the formulas
obtalllcd pl'cvlollsly [scc Eqs. (3.2) RIld (3.7) 111 Rcf.
4]. The CR line shape and hence its linewidth y
depend critically on the current relaxation rate
I'(k). To obtain correct information on the tem-

perature and magnetic field dependence of y, we

need to evaluate the expression for I'(k). To do so,
various approximations have been suggested. For
the high-temperature region if we neglect the
inelasticity of the scattering caused by the phonon
energies +Pm- and apply the high-temperature ap-

q
proximation for the phonon distribution function
X-, we can obtain

1 D mI'(k)= — -~-
4 cooksT

~
k, (~ dmso

This expression diverges as kg —+0 and as we shall
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show greatly exaggerates the magnitude of I'(k)
for the important region of the k, values. There-
fore the usual approximation

(co —coo)'+ (I )' (1.2)

breaks down. To offset this divergence, the effect
of inelasticity of the acoustic phonon is impor-
tant. ' For the low-temperature region, the equili-
brium phonon occupation number is often approxi-
mated as'

E- -0
q

In fact as seen in Figs. 1(a)—l(c), this approxima-
tion is invalid.

To obtain correct information on the tempera-
ture and magnetic field dependence of y, which
should be determined through its defining Eq.
(2.6), we retain the phonon energies +%co- and in-

clude the distribution function N- without the
q

usual approximations and so we can correctly
determine the effects of the inelasticity of the

scattering processes and of the temperature depen-

dence of the line shape. In Sec. II the basic for-
mulas for the further calculations are presented.
In Sec. III the current relaxation rate I'(k) is ex-

amined and the expressions for high- and low-

temperature limits are given. In Sec. IV the nu-

merical results are presented and discussed. In
Sec. V concluding remarks are given.

II. THEORY

The power absorption for a circularly polarized
electric field E(t} (IB) of frequency co is given by

P(co)= i E Re[cr+ (co)], (2.1)

where the symbol Re means the real part, and

0+ (co) is a combination of transverse components
of the conductivity tensor. In an earlier paper, one
of the present authors has extended the general
theory to the electron-phonon system and derived
a formula for the conductivity valid in the vicinity
of co=coo in the quantum limit (iricoo» kti T} (see
Ref. 4 for details). The results are

fokl (k)
Re[0+ (co }]= lim —g&, (~—~,)'+r(k)' '

Pal'(k) = n.g(1+N- )
~ Ce ~

t e '5(e(k, —q, ) —e(k, )+fico-)
q

+it+N
~

Ce
~

t e '5(e(k, q, ) e(k,—) fm—) . — (2.3)

N- = [exp(fico /ke T)—1] (2 4)

and t is given by

2
q —= , (q. +q, ).2' COO 2' No

(2.5)

e(k, ) is the energy associated with electron's mo-
tion along the magnetic field direction. Ce and

where lim means the bulk limit, fok is the distribu-
tion function for the lowest Landau states N =0,
namely in the extreme quantum limit, all electrons
occupy Landau states with the lowest oscillator
quantum number, coo——e8/I* the cyclotron fre-
quency, and I (k) is the current relaxation rate as-
sociated with transitions between states N =0 and
N =1. N- is the Planck distribution function for

q

phonons:

fico are, respectively, a coupling constant and a
phonon energy, which depend on the type of pho-
non. It is noted that expression (2.3) is strictly
valid for the vicinity of co=coo and is obtained
under the high quantum and weak coupling limit.
In fact, for a strong coupling case we have to solve
the self-energy (the memory function) self-
consistently, from which we can obtain the width
and the shift. 2'9 The expressions, (2.2) and (2.3),
are the basic equations for a further study of cy-
clotron resonance width. In the following sections,
we study the current relaxation rate I'(k), which
contains both gain and loss contributions correct-
ly, ' and derive the expressions for the resonance
width y of the power absorption line. The cyclo-
tron resonance width y is herein determined
through the following defining equations for a
width:
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(3.1)

pling, taking into account the inelasticity of the
scattering process. Then Cs takes the form

Cq iD——(Rq/2p~Sp V)'~,

where D is the deformation potential constant, p
the mass density of the bulk, and Sp the sound
speed. The presence of irau- in the 5 function

makes it difficult for us to obtain the analytical ex-

pression. Some approximation methods have been
introduced to study the effect of the inelasticity of
the acoustic phonon scattering by making some as-
sumptions on fm . ' However to obtain the ex-

q

act information about this effect, we evaluate the
current relaxation rate I'(k) without making any
approximation on Acu-.q'

Let us introduce dimensionless variables:

Ak,
It. :—

2m

m sg

2

Rqj
Qj.=

2m

m ~SO2

2

m~Sq

2

m~Sp2

np—=W
m~SO

2

m ~Sp

2
(3.2)

The current relaxation rate I'(k), Eq. (2.3), can then be expressed by

r(K) =I +(K)+1-(K), (3.3}

I +-(K)=+ '2 f dQ, f dQj[exp( —Qj/Qp)]{1 —exp[+2p(Qj+Q, )]'
0

XQ (Q +Q, )' 5(Q, —2KQ, +2(Q +Q, )'i ), (3.4)

A„=D m' Sp/(4M p~) . (3.5}

where + ( —) sign corresponds to the phonon
emission (absorption) part of the current relaxation
rate. It is apparent that I'-+(K) are positive and
that

Qj —— [(Q,—2K} —4]2 I/2

which contribute to the Qj integration only if

(3 9)

r'-(K) =I"+-(-K), (3.6) [Q,—2K
f

&2 (3.10)

(3.7)

(3 8)

and the solutions of (3.7) for Qz are given by

so that we need only consider positive values of K.
Let us consider I'+(K). To perform the Qz in-

tegral, we seek the solutions for Qz of the argu-
ment of the 5 function:

2KQ, —Q,'=2(Q', +Q,')'"
The right-hand side of (3.7} is positive so solu-

tions exist only if

0&Q, &2K for K&0,

is satisfied. From (3.8) and (3,10), Q, must be in
the range

0(Q, &2(K —1),
which imposes the restriction on K:

EC&1.

(3.11)

(3.12)

Keeping in mind the above restriction and the in-

tegral region for Q„after the Qz integration, we
obtain I +(K) as

0 for 0&K(1
I'+(K}= . A„&2(x—i) expI —Q, [(Q,—2K) —4]/4QpI 'Q, (Q, —2K) [(Q,—2K) —4] for K&1.

128n,' "p '
1 —exp[PQ*(Q. —2K)]

(3.13)

From the similar argument given above, I (K) is given by
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I' (K)=—
12gQ&~ Jmax[0, 2(1—ir)l

I

for K&0. (3.14)

exp —,( x+2K) —4 /4QO
dQ, — -Q, (Q, +2K) [(Q,+2K) —4]

1 —exp[PQx(Q, +2K) ]

exp —, ,—2L —4 4Qo

"«+" '
1 —exp[PQ, (Q.—2K}]

It should be noted that for 0(K ~ 1, i.e.,
0 (k, pm So/111, the phonon emission process is

proh1bited and onlp the phonon absorpt1on process
takes place. In terms of these variables and assum-

ing a nondegenerate semicollductor (l.e., a
Boltzmann distribution for fok), the power absorp-
tion is, apart from a constant, given by

P(r0) ~Re[o+ (a)}]

e-&"'r k~p'/2n(p) J u
(a) —coo} +r(K)

ing temperature and magnetic field dependence:

y~ T'~'coo . (3.19)

P '"( ) T '/ 'n(T) (3.20)

Under the high-quantum and high-temperature
limits, the temperature and the magnetic field
dependence of our results, (3.19) and (3.20), ap-
pears to be in good agreement with the experimen-
tal evidence on germanium. See also Ref. 4.

Letting co=coo and using (3.18) in (3.15), we obtain
a peak value P '"(co&) with the dependence

n(P} is the free-carrier density.
To perform the Q, -integration analytically in

(3.13) and (3.14) is difficult. However, in certain
limiting cases we can determine the form of the
temperature and magnetic field dependence of
I (K) and hence of y. For numerical evaluations

see Sec. IV.

&,(PQo) '«P,«1.,
Ns., 2 Ni So ((kiiT«( 2@i So%90)

In this low-temperature limit, we obtain the tem-

perature and the magnetic field dependence of
I"(K) as

r(K) =P "'Q-'(EP-'") (3.21)
A. High- and low-temperature hmits

P«(N4) '((1,
&is" ( , 111'Sxo~o)'—/2«ka T «~0

I'(K)=p 'Qo f(K/Qo (3.16)

In this high-temperature limit, we can extract
the temperature and the magnetic field dependence
of r(K) as

where g is a co1llpllcated fuilctlon of Kp
very rough estimate of the function g may be given

by

(EPl/2) (KP1/2)S[(K2P+ 1)1/2 EPi/2]6

(3.22}

where go is a constant. This gives the temperature
and the magnetic field dependence of the CR
11newidth p as

(3.17)

where f is a complicated temperature-independent
function. of E/Qo . For large values of E/Qo
we can approximate f(K/Qo ) as

g 1 /4

F(K/Qo }=fo

pc(- T No

and of the peak value P '" (a)0) as

pmxx( ) T 6.5&+ (T)—
(3.23)

(3.24)

and so we obtain r(K) as

Qo
I'..(K)=fo E ' (3.18)

where fo is a constant. From (2.6), (3.15), and

(3.18), we obtain a CR linewidth y with the follow-

Experiments in the high quantum and low-
temperature limiting case are much more difficult
than the high-temperature limiting case because
they require a signi6cantly higher magnetic field
and lower temperatures. Unfortunately we are
unaware of any experimental results in this limit-

ing case. It is interesting to note that Meye's
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Ql0

&.= 1.6 X 10

04

with temperature but at a much slower rate than
the normally expected linear growth' and varies
approximately as T'~ . A T'~ dependence of the
cyclotron resonance linewidth in a high-
temperature region agrees with the recent experi-
mental evidence. In the low-temperature region,
the width grows very rapidly and varies as T
To this date the authors were unaware of quantum
limit cyclotron resonance experiments in a low-

temperature region. %e hope these theoretical re-
sults will stimulate experimental work in this tem-

perature region (T(15 K for Ge).

2. Magnetic field (resonance frequency) dependence

3.0-

2.5-

2.0-

I

2,0
I

3.0

0=3000

The dependence of the cyclotron resonance
linewidth y on the resonance frequency Qo can be
evaluated numerically as in Sec. IV A 1. For dif-
ferent values of a fixed inverse temperature P
(=10 ',25 ',50 ', 100 ',500 ', 1000 ', 3000 ')
which corresponds approximately to a real tem-

perature T (=1, 2.5, 5, 10, 50, 100, 300 K), we

plot the frequency Qo dependence of the cyclotron
resonance width y. It is seen from Fig. 3(b) that
near an inverse temperature P-Qo ', which cor-
responds to a real temperature given by

ktt T ( , m-«So—%coo)'~,

Ql
0

0.5-

0-

-45-

— 5.0-
t

0.8 1.0 1.2

the width is almost independent of magnetic field.
In the case we are considering, Ge, this corre-
sponds to a temperature of about 10 K. For
AT & ( —,m«Sotrttoo)', the width increases as Qz
whereas for ktt T & ( —,m«Siikcuo)', the width de-

creases like Qo . From a least-squares linear re-

gression method, we have found that the resonance
frequency dependence of the cyclotron resonance
width is given by Qo

' for P=10 ', Qz
' for

P=50 ', Qo
' for P=100 ', Qii for P=1000

Qii for P= 3000

FIG. 3. (a) Temperature (P ') dependence of the

linewidth (y). {Linewidth y is in the units of m~SO/2R. )

{1)Resonance frequency {Qo) dependence of the
linewidth (y). (Linewidth y is in the units of m ~SO/2A. )

values of Qz (0.8)&10, 1.6X10 ) corresponding to
coo in an infrared region. (We have used the same
data as in Sec. IV A.) It is seen from Fig. 3(a) that
in the high-temperature region the width increases

C. Peak value of power absorption

The temperature and resonance frequency depen-
dence of the peak value of the power absorption is
obtained by setting to=coo in Eq. (3.15). The peak
absorption is then given as a function of the reso-
nance frequency Q and the inverse temperature P.
It is seen from Fig. 4(a) that in the high tempera-
ture region the dependence of the peak value of the
power absorption on temperature behaves like
T ' whereas in the low-temperature region like
T . It is interesting to note that, as seen in



776125 LOTRON RESONANCE LINEWIDTH DUE. . .QUANTUM-LIMIT CYCL

CL

8 X10~

I

2.0
I

3.0 log, (3

, 0

?.
1.0—

E

C)

0.5—

~ =1000

— 2.
0 =30QQ

— 2.5
I

1, 2

I

0.8 1.4 1.6

~.]&o

(b)
em erature (P ') dependence of thep

10 1 fh
ower absorption.

quency (00) dependence of the pea va ue

absorption.

4(a the width gets narrower and the
peak value grows significantly as t e tempe

. This characteristic behavior for a non-
degenerate semiconductor agrees wi

the linewidt y varies'd h 'es with temperature and mag-
netic frequency as

pc(- T COp .1/2

I th lou-temperature region,n eo-
I ~ i

)1/2—m S k T«( —,m Sofuoo2

6.5fc(- T '
Np

and in the extreme low temperature region, -

(5.1)

(5.2)

by Fukai et al. " (although their experiment does
n

'
um condition).not satisfy the quantum

re uency dependence oq
wer absorption [Fig. 4 is ovalue of the power rp

' '
is o

to be almost inverse y p p
'

eel ro ortiona to e
-de endent linewidth y 0 anance frequency- p

be ex ected for a Lorentzian ine s

h h temperature regionThis dependence in the ig - em

also agrees with experiment.

V. CONCLUDING REMARKS

abso tionThe basis o e abf th cyclotron resonance ab rp
'

rocess is an electronici transition from the (N, ,
h hndau state to the (N+l, k, ) state. In t e tg

k T, 'h
X= 1 transitions. esrises from the N=O to

transit&ons yb themselves would, of course, yie a
line of zero width.

urit oral width (in the absence of impuri y
defect scattering) arises from t e in erac

'

ith lattice vibrations. An electron in
(N k ) can absorb or emit a phononstate, , c

'
n can be sat-roviding energy conservationvector q provi

'

' k + ). Only the
' f d to yield a new state (N', ,+q, .1s le

N'=N, appreciably
' t -Landau-level scatten g,
affects the hnewi 'dth. So the four processes w ic

ntl affe:t the linewidth are the emission
and absorption of a phonon in o e
first excited Landau levels. These processes are

hicall in Fig. 5.
The theory of Suzuki et al. inc u es o

rocesses. We have, starting from the expression
Su

' ." h h h uld be valid for narrowSuzuki et al. w sc s ou
all determined the real

part of the ac conductivity as a function o t e

erature T. We have used an
1 tron-phonon interaction app ica e oeec ro-

e
' '

summarized as o-
tion potential interact&on in

The main conclusions can be s
lows:

(i) In the high temperature r-egion,

~S W ) « ks T« iricoo i2
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k& T ~& —,m*SO, the linewidth dependence is

l, k ftx: T No exp
2m ~So

AT
(5.3)

flail-~(d
r

r

Numerical results for this extreme low-temperature
region, T« O. l K for Ge, have not been included
because in practice this region would be deter-
mined by impurity scattering.

(ii) Over the whole temperature range of interest
the phonon absorption process, which is propor-
tional to the phonon occupation number N, pro-

duces a significant proportion of the linewidth.
Thus the frequently used approximation of setting
N- to zero at low temperatures is not valid.

q
(iii) The current relaxation rate I (k, ) varies so

much with k, that it is not practicable to replace it
by a constant.

(iv) The inelastic nature of the electron-phonon
interaction is important for all but the highest tem-
peratures.

Although these conclusions follow directly from
the numerical results, it is instructive to consider
the scattering processes in more detail and to deter-
mine those values of the electron wave vector k,
and of the components of the phonon wave vector

q„q~ which significantly affect the linewidth. We
call such values the "typical' values.

In the extreme low temperature region,
k~ T &p —,m*SO, such a typical process is specified

by

(c) flak, fi q, z~kg Ts ~PPl Soy gJ ~0
2P72 2@i

and only the phonon absorption produces the
linewidth.

In the low-temperature region,

—,m Sp«k+T«( —,I Spfmp)'

(5.4)

the typical scattering process has

fi k, fPqg A'
q f (ks T)

=k~T, ' =k~T,2' 2' 2' —~+So

(5.5}

FIG. 5. Phonon emission (a) and (b) and absorption
(c) and (d) in the lowest and the first excited Landau
levels. The electron states are represented by—,the
phonons by —,and the photons by ---. Time increases
from left to right.

For high temperatures,

( —,m ~Spficop) '/ && ks T &&%cop,

(5.6}

the typical values of the parameters k, and q& are
given by

Ak
kg T, %coo,2m* ' 2m*
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and there are two typical q, regions:

fi2q fz)p —,m*Sp

2m* kgT

+(q —2k )2 ficop 2
meSp

2m+ k~T

(5.7)

(5A) —(5.7) then the results (5.1)—(5.3) for the
linewidth follow.

Consider, for example, the high-temperature re-

gion. In this region we have shown that the elastic
approximation is valid and so the relaxation rate
I'(k) is to a good approximation given by Eq. (1.1):

Now consider the elastic approximation to the
scattering process. This involves the neglect of the
phonon energy fico in the energy conservation and

q
is valid only if the "typical" phonon energy is
small compared to the incident electron energy
fi k, /2m*. Using the above list of typical values,
we see that the elastic approximation is valid only
in the high temperature region where the typical
phonon energy is (ficop —,m ~Sp)'

The approximation of neglecting the phonon oc-
cupation number N is valid only if, in the typi-

cal process, %co y~ k~T. In the above three tem-
q

perature ranges the typical phonon eneriges are~-=( 2
m*Spficop)'~ (high temperatures),

%co- =kpT (low temperatures), and %co- = , m*S—p

(extreme low temperatures). In the high- and low-

temperature regions —this typically covers the
range 0.5 —300 K in high magnetic field cyclotron
resonance in Ge—the criterion is certainly not
valid and it is only in the extreme low-temperature
region, less than say 0.05 K for Ge, that the typi-
cal phonon occupation number becomes very small.
However in this region the phonon emission pro-
cess is forbidden —energy conservation cannot be
satisfied for irt k, /Zm* g —,m~Sp —and so the
linewidth, although very small, is due almost en-
tirely to the phonon absorption process.

The typical values listed above do not depend on
the electron-phonon interaction constant Cq. They
are equally valid for the piezoelectric interaction as
for the deformation potential interaction. However
the linewidth does depend on the specific form of
the interaction. If the deformation potential, Eq.
(3.1), is used together with the typical values

D m'
1 (k) =—

2 4 copks T
i
k, i

mp Sp g4

' 1/2
fiD2

4 COo.~ pmSo A'
(ks T)' (5.8)

and so varies linearly with magnetic field but is
proportional to the square root of the temperature.

This square root dependence on the temperature
has been predicted previously by Suzuki et al. and
also by Arora and Spector' and seems to explain
the experimental results.

The same procedure can be used to derive the
corresponding results for the coupling to piezoelec-
tric phonons. If we use the isotropic model of
Mahan' then we have

T (high temperatures)
T4' cop (low temperatures)

2m~So

k~T
3 —2T Et' exp

(extreme low temperatures).

This shows in particular that the relaxation process
for a giuen electron waue uector k increases linearly
with temperature. It should not however be con-
cluded from this that the linewidth y has this tem-
perature dependence. As a temperature is in-
creased so is the mean electron energy and hence
so is the mean wave vector k, . The linewidth is
approximately given by 2I'(k) with k, equal to the
mean electron wave vector (m~ksT/A )'~ That.
is, y is approximately given by
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