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The cyclotron resonance line shape is dependent upon the current relaxation rate I'(k).
We have numerically determined I'(k) and hence the cyclotron resonance linewidth y in
the quantum limit for a nondegenerate semiconductor using a previously derived formula
[J. Phys. Chem. Solids 41, 735 (1980)]. The electrons are assumed to interact with acous-
tic phonons via a deformation potential. For high temperatures we have found that the
dependence of the linewidth ¥ and peak absorption P™* on the temperature and the reso-
nance frequency o, is given approximately by y < T'%wq, P™* « T 05", whereas for
low temperatures ¥ « T5°wg %, P™* « T 5w}, The line shape is found to be almost
Lorentzian. We have compared our numerical results for I'(k) with the various approxi-

mations which are commonly employed.

I. INTRODUCTION

In 1955 Dresselhaus et al.! observed cyclotron
resonance (CR) in germanium. Since then many
CR experiments have been carried out to study
electronic band structures: The position of the ab-
sorption peak gives the value of the effective mass
of conduction electrons, m* =eB /w,, where —e,
B, and w, are, respectively, the electronic charge,
the applied magnetic field strength, and the reso-
nance frequency. The linewidth or line shape of
the power absorption has received less attention.
However, in recent years the high-frequency CR
experiments performed with far-infared lasers have
opened up a new domain in semiconductor physics,
and special attention has been paid to the study of
the shape of a cyclotron resonance power absorp-
tion line: The shape of the line, and in particular
the linewidth (y) and its dependence on tempera-
ture (T) and magnetic field strength (B), depend
critically on the detailed nature of the scattering
mechanisms. Thus they provide a sensitive probe
for these interactions.

Lodder and Fujita? developed a general theory to
describe a CR line shape of the power absorption,
starting from Kubo’s formula and employing the
proper connected diagram expansion. In their
theory, the gain and loss terms occurring in the
kinetic description of the relaxation process are
built in automatically and the inelastic scattering
mechanisms are included for an electron-phonon
system unlike other theories.®> Therefore their

theory gives a clear picture of the emission and ab-
sorption of a phonon by electrons, especially in the
low-temperature region where one-phonon inelastic
processes play an important role. Recently one of
the authors, Suzuki et al.* extended the general
theory and obtained a formula valid in the vicinity
of g in the quantum limit (#wy>> kpT), and
studied the CR line shape near o~y at high tem-
perature, neglecting the inelastic effect. Their re-
sults agree with recent experiments on Ge.’

In this paper we have carried out a quantum-
mechanical calculation of the CR linewidth for a
nondegenerate semiconductor in the quantum limit
for an electron-acoustic-phonon interaction via the
deformation potential, starting from the formulas
obtained previously [see Egs. (3.2) and (3.7) in Ref.
4]. The CR line shape and hence its linewidth y
depend critically on the current relaxation rate
I'(k). To obtain correct information on the tem-
perature and magnetic field dependence of vy, we
need to evaluate the expression for I'(k). To do so,
various approximations have been suggested. For
the high-temperature region if we neglect the
inelasticity of the scattering caused by the phonon
energies ihma» and apply the high-temperature ap-
proximation for the phonon distribution function
N 4> We can obtain

2 *2
r(k)=i—1’~—2-ﬁ’ﬁ7~wokBT |k |='. (LY
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This expression diverges as k,—0 and as we shall
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show greatly exaggerates the magnitude of I'(k)
for the important region of the k, values. There-
fore the usual approximation

r
P —_—
(@) oc< (w—wo)2+r2>

(r)

~—= 1.2
(@—wpP 4 (T)? (1.2

breaks down. To offset this divergence, the effect
of inelasticity of the acoustic phonon is impor-
tant.%” For the low-temperature region, the equili-
brium phonon occupation number is often approxi-
mated as®

Ng~0

In fact as seen in Figs. 1(a)—1(c), this approxima-
tion is invalid.

To obtain correct information on the tempera-
ture and magnetic field dependence of y, which
should be determined through its defining Eq.
(2.6), we retain the phonon energies ihwa» and in-
clude the distribution function N g Without the
usual approximations and so we can correctly
determine the effects of the inelasticity of the

scattering processes and of the temperature depen-
dence of the line shape. In Sec. II the basic for-
mulas for the further calculations are presented.
In Sec. III the current relaxation rate I'(k) is ex-
amined and the expressions for high- and low-
temperature limits are given. In Sec. IV the nu-
merical results are presented and discussed. In
Sec. V concluding remarks are given.

II. THEORY

The power absorption for a circularly polarized
electric field E(¢) (L B) of frequency w is given by

P(w)=5ERe[o,_(0)], @.1)

where the symbol Re means the real part, and

0, _(w) is a combination of transverse components
of the conductivity tensor. In an earlier paper, one
of the present authors has extended the general
theory to the electron-phonon system” and derived
a formula for the conductivity valid in the vicinity
of w~w in the quantum limit (%wy>>kgT) (see
Ref. 4 for details). The results are

2%, 1 SorI'(k)
Re[o, _(0)]= m*hm V% @ —a P TR’ (2.2)
AD(k) =721+ N )| C; | *t%e ~'8(e(k, —g;)— (K, ) +Fir )
T
+73 Ny | C, | *1Pe~"8(e(k, —g,) —elk,) —Finrg) . (2.3)
T

where lim means the bulk limit, £ is the distribu-
tion function for the lowest Landau states N =0,
namely in the extreme quantum limit, all electrons
occupy Landau states with the lowest oscillator
quantum number, wo=eB/m* the cyclotron fre-
quency, and I'(k) is the current relaxation rate as-
sociated with transitions between states N =0 and
N=1. N 3 is the Planck distribution function for

phonons:

Ny =[exp(fiog /kpT)—1]7", (2.4)

and ¢ is given by

= ﬁ 2= ﬁ
- 17 2m*w,

2 2
2m*ag? (gx+gy) . (2.5)

€(k,) is the energy associated with electron’s mo-
tion along the magnetic field direction. C, and

|

fiw are, respectively, a coupling constant and a
phonon energy, which depend on the type of pho-
non. It is noted that expression (2.3) is strictly
valid for the vicinity of w~w, and is obtained
under the high quantum and weak coupling limit.
In fact, for a strong coupling case we have to solve
the self-energy (the memory function) self-
consistently, from which we can obtain the width
and the shift.>° The expressions, (2.2) and (2.3),
are the basic equations for a further study of cy-
clotron resonance width. In the following sections,
we study the current relaxation rate I'(k), which
contains both gain and loss contributions correct-
ly,>® and derive the expressions for the resonance
width y of the power absorption line. The cyclo-
tron resonance width ¥ is herein determined
through the following defining equations for a
width:
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FIG. 1. Current relaxation rate. Resonance frequency is taken to be Q,=1.0X 10*%. T is the total current relaxation
rate, I'* are the phonon emission ( + ) and absorption (—) parts, and I'® is the total current relaxation rate in the elas-

tic scattering approximation. (', I'%, and T'¥ are in the units of m*S}/24.)

II. CURRENT RELAXATION RATE I'(k)

P(mmax+7R)=%P(wmax) ’
AND CR WIDTH y

P(omax—vL)= ’;_P(wmax) ’ 2.6)

Y=Yr+7L > The current relaxation rate I'(k) can be evaluat-
where @,y corresponds to the maximum power ed from (2.3) by inserting the appropriate coupling
absorption. For a symmetric line, of course, constant C,. We consider the case of acoustic

YR=YL- phonon scattering via deformation potential cou-



pling, taking into account the inelasticity of the
scattering process. Then C, takes the form®

C,=iD(#g /2p,So V)2, (3.1)

where D is the deformation potential constant, p,,
the mass density of the bulk, and S, the sound
speed. The presence of #iw in the 8 function

makes it difficult for us to obtain the analytical ex-
J

Kie 7k} m*s3 0= #q? m*S?
T | 2m* 2 | %7 | 2me
Y 53

25 QUANTUM-LIMIT CYCLOTRON RESONANCE LINEWIDTH DUE. .. 7757

pression. Some approximation methods have been
introduced to study the effect of the inelasticity of
the acoustic phonon scattering by making some as-
sumptions on %3.5’6 However to obtain the ex-
act information about this effect, we evaluate the
current relaxation rate I'(k) without making any
approximation on fiw .
Let us introduce dimensionless variables:

/

m‘S%
2

fig;

2m*

l, Q=

*g2
— ]/kBT) . (3.2)

The current relaxation rate I'(k), Eq. (2.3), can then be expressed by

IK)=T*(K)+T'"(K), (3.3)
TH(K)=+ ';)% J7 0. [” d0.[exp(— 01 /0] {1—expl 52801 + QD] 2} !
xQ1(Q1+07)'/%8(Q —2KQ, +2(@1 +07)'7) (3.4)
A,.=D’m*38, /(4nHi'p,,) . 3.5)
[
eeission (orpion past of the cutment slanation 0= 2.2 a7, 39)

rate. It is apparent that ['*(K) are positive and
that

r'*(K)=T*-K), (3.6)
so that we need only consider positive values of K.
Let us consider I'*(K). To perform the Q, in-
tegral, we seek the solutions for Q, of the argu-
ment of the 8 function:
2KQ, -0/ =201 +0)"” 3.7
The right-hand side of (3.7) is positive so solu-
tions exist only if

0<Q,<2K for K>0, (3.8)

and the solutions of (3.7) for Q, are given by

which contribute to the Q, integration only if
|1Q:—2K | >2 (3.10)

is satisfied. From (3.8) and (3.10), Q, must be in
the range

0<0,<2(K-1), (3.11)
which imposes the restriction on K:
K>1. (3.12)

Keeping in mind the above restriction and the in-
tegral region for Q,, after the Q, integration, we
obtain I'*(K) as

exp{ —Q[(Q, —2K)*—41/4Q0} Q% Q, — 2K)*[(Q, —2K)*—4]* for K>1.

0 for 0<K <1
''K)=1 A4, AK—1)
d

sz Jo O T eolAo0, 3R]

(3.13)

From the similar argument given above, I' "(K) is given by



7758 AKIRA SUZUKI AND DENNIS DUNN 25

e A [ e exp( —Q2(Q, +2K*—41/40y) ) e

TR~ =G50 | Jmwtoni-or 9 T—explpguig, ] &Gt 2K+ 2K0 4]
® —Q7(Q, —2K)*—4]/4Q

+ dg, SRI=QQ:—2KY A AD] yey gy, 2k —ap

2AK+1)

It should be noted that for 0<K <1, i.e.,

0 <k, <m*Sy/#, the phonon emission process is
prohibited and only the phonon absorption process
takes place. In terms of these variables and assum-
ing a nondegenerate semiconductor (i.e., a
Boltzmann distribution for f(), the power absorp-
tion is, apart from a constant, given by

P(w)<Re[o, _(w)]

e ~PEr (k)
1/2 dk
h f (w—wg)?+T(K)?

(3.15)

n(p) is the free-carrier density.

To perform the Q,-integration analytically in
(3.13) and (3.14) is difficult. However, in certain
limiting cases we can determine the form of the
temperature and magnetic field dependence of
I'(K) and hence of y. For numerical evaluations
see Sec. IV.

A. High- and low-temperature limits

1. B<<(BN)'<<«1,
viz., (3m*S3hiwe)"? <<kyT << iy

In this high-temperature limit, we can extract
the temperature and the magnetic field dependence
of T'(K) as

DK =B~ (K /9™ , (3.16)
where f is a complicated temperature-independent

function of K /Q4’*. For large values of K /Q}*,
we can approximate f (K /Q3’*) as

9(1)/4
F(K/QY*=f, ra (3.17)
and so we obtain I'(K) as
Qo
(K) = fo—b 3.18
L(K)=f, K’ (3.18)

where f is a constant. From (2.6), (3.15), and
(3.18), we obtain a CR linewidth y with the follow-

1—exp[BQ,(Q, —2K)]

for K>0. (3.14)

l
ing temperature and magnetic field dependence:

ya T Y20, . (3.19)

Letting w=w, and using (3.18) in (3.15), we obtain
a peak value P™*(w,) with the dependence

P™(0) o« T~ 12005 'n(T) . (3.20)

Under the high-quantum and high-temperature
limits, the temperature and the magnetic field
dependence of our results, (3.19) and (3.20), ap-
pears to be in good agreement with the experimen-
tal evidence on germanium. See also Ref. 4.

2. (Bﬂo)‘ <<B<<],
viz, ym*S§ <<kpT << (3m*SHw,)'"?

In this low-temperature limit, we obtain the tem-
perature and the magnetic field dependence of
I'(K) as

I(K)=B"13205%(KB'?), (3.21)

where g is a complicated function of KB'/2. A
very rough estimate of the function g may be given
by

g(KBI/Z)ng(KBI/Z)S[(K2ﬁ+ 1)1/2_KB1/2]6 ,
(3.22)

where g, is a constant. This gives the temperature
and the magnetic field dependence of the CR
linewidth y as

y < T*30g? (3.23)
and of the peak value P™ (w,) as
P™X(g0) o« T~ %3020 (T) . (3.24)

Experiments in the high quantum and low-
temperature limiting case are much more difficult
than the high-temperature limiting case because
they require a significantly higher magnetic field
and lower temperatures. Unfortunately we are
unaware of any experimental results in this limit-
ing case. It is interesting to note that Meyer’s
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theory gives for ¥ a linear dependence on wy and
no temperature dependf:nce.10

IV. NUMERICAL ANALYSIS AND DISCUSSIONS

A. Current relaxation rate I'(K)

The temperature and magnetic field dependence
of the cyclotron resonance line shape and linewidth
are determined by formulas (2.6) and (3.15), mak-
ing use of the expressions (3.13) and (3.14) for
I'(K). The temperature dependence arises both
from the temperature dependence of I'(K) and
from the Boltzmann factor exp(—BK?). In the ap-
proximation we are using, the power absorption as
a function of  has a symmetrical line shape (cen-
tered on wq) because I'(K) is independent of o.
The experimental results are, however, usually ex-
pressed as a function of w,, with fixed ®. In this
case our theory gives a slightly asymmetric line,*
because I'(K) does depend on w,,.

We firstly consider the current relaxation rate
T'(K), and its constitutents I'*(K), which arise
from the emission and absorption of phonons. The
Boltzmann factor exp(—BK?) in Eq. (3.15) implies
that we need to know I'*(K) only for K in the
range

0<K<3/VB. 4.1)

In the case of low temperatures the contribution
from the phonon absorption process I' " (K) is usu-
ally ignored by setting the phonon occupation
number of zero.®!10 It is therefore of interest to
directly test the validity of this assumption over
this range of K values. Figures 1(a)—1(c) show the
results of the numerical evaluation of Egs. (3.13)
and (3.14) for I'*(K) as a function of K in the
range (4.1) for an interaction constant characteris-
tic of germanium and three values of the inverse
temperature 8=10"3, 1072, 10~!. These
correspond approximately to real temperatures of
100, 10, and 1K.

We see from these results that the phonon ab-
sorption process is important in all these cases
which cover the usual experimental temperature
ranges. It is therefore certainly not valid to set the
phonon occupation N g to zero.

Another approximation which is commonly em-
ployed in cyclotron resonance theory is to assume
I'(K) is a constant (= %y) and hence that the line
shape is Lorentzian. The results show that this
also is invalid: T'(K) varies significantly over the

required range of K values, particularly at low

temperatures.

B. Cyclotron resonance linewidth y

We consider the magnetic field B and hence o,
and Q to be fixed and investigate the power ab-
sorption as a function of  (or Q). In this case the
line is symmetric (see Fig. 2) and the width y is
given by the equation:

o —Bk? w —BK?
fo dk eﬁzl"(K)2=%f dk e ,
(y/2)*+T(K) 0 I(K)
4.2)

where I'(K) is given by Eqgs. (3.13)—(3.14). For a
very narrow line ¥ << @ the difference in plotting
the line shape as a function of Q, with fixed Q is
negligible. We solve Eq. (4.2) numerically for ¢
and hence obtain the temperature and magnetic
field (i.e., resonance frequency) dependence.

1. Temperature dependence

Figure 3(a) shows the temperature dependence of
the cyclotron resonance linewidth at two different

R=1072
0Q,=10X10*

Relative Absorption

L s L L

Q Q
FIG. 2. Typical power absorption line shape.
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FIG. 3. (a) Temperature (8~') dependence of the
linewidth (7). (Linewidth y is in the units of m*S3 /2%.)
(b) Resonance frequency (o) dependence of the
linewidth (7). (Linewidth y is in the units of m*S3/2%.)

values of Q, (0.8 10% 1.6 10* corresponding to
®g in an infrared region. (We have used the same
data as in Sec. IVA.) It is seen from Fig. 3(a) that
in the high-temperature region the width increases

with temperature but at a much slower rate than
the normally expected linear growth!® and varies
approximately as T'/2. A T'/? dependence of the
cyclotron resonance linewidth in a high-
temperature region agrees with the recent experi-
mental evidence.” In the low-temperature region,
the width grows very rapidly and varies as 7>,
To this date the authors were unaware of quantum
limit cyclotron resonance experiments in a low-
temperature region. We hope these theoretical re-
sults will stimulate experimental work in this tem-
perature region (T <15 K for Ge).

2. Magnetic field (resonance frequency) dependence

The dependence of the cyclotron resonance
linewidth ¥ on the resonance frequency Q, can be
evaluated numerically as in Sec. IVA 1. For dif-
ferent values of a fixed inverse temperature 8
(=10—",25-1,50"1, 100~1,500~",1000~", 3000~")
which corresponds approximately to a real tem-
perature T (=1, 2.5, 5, 10, 50, 100, 300 K), we
plot the frequency Q, dependence of the cyclotron
resonance width y. It is seen from Fig. 3(b) that
near an inverse temperature S~ Qg /2, which cor-
responds to a real temperature given by

1

kB T~( —m"‘Sozﬁwo)m ’

2

the width is almost independent of magnetic field.
In the case we are considering, Ge, this corre-
sponds to a temperature of about 10 K. For

kT > (%m *S2#w,)!/2, the width increases as Qg
whereas for kpT < ( %m*S%hwo)l/ 2, the width de-
creases like Q5 2. From a least-squares linear re-
gression method, we have found that the resonance
frequency dependence of the cyclotron resonance
width is given by Qg " for B=10""1, Q5%° for
B=50"", Q5% for B=100"", Q3° for B=1000"",
040 for B=3000"".

C. Peak value of power absorption

The temperature and resonance frequency depen-
dence of the peak value of the power absorption is
obtained by setting @ =w, in Eq. (3.15). The peak
absorption is then given as a function of the reso-
nance frequency ) and the inverse temperature .
It is seen from Fig. 4(a) that in the high tempera-
ture region the dependence of the peak value of the
power absorption on temperature behaves like
T3 whereas in the low-temperature region like
T—55, It is interesting to note that, as seen in
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FIG. 4. (a) Temperature (8~!) dependence of the
peak value of the power absorption. (b) Resonance fre-
quency (o) dependence of the peak value of the power
absorption.

Figs. 3(a) and 4(a), the width gets narrower and the
peak value grows significantly as the temperature
decreases. This characteristic behavior for a non-
degenerate semiconductor agrees with experiments

by Fukai et al.!! (although their experiment does
not satisfy the quantum condition).

The resonance frequency dependence of the peak
value of the power absorption [Fig. 4(b)] is found
to be almost inversely proportional to the reso-
nance frequency-dependent linewidth y() as
would be expected for a Lorentzian line shape.
This dependence in the high-temperature region
also agrees with experiment.’

V. CONCLUDING:- REMARKS

The basis of the cyclotron resonance absorption
process is an electronic transition from the (N,k,)
Landau state to the (N +1,k,) state. In the high
quantum limit, fiwg>> kg T, the major contribution
arises from the N=0 to N=1 transitions. These
transitions by themselves would, of course, yield a
line of zero width.

The actual width (in the absence of impurity or
defect scattering) arises from the interaction of the
electrons with lattice vibrations. An electron in
state (N,k,) can absorb or emit a phonon of wave-
vector q providing energy conservation can be sat-
isfied, to yield a new state (N',k,+q,). Only the
intra-Landau-level scattering, N'=N, appreciably
affects the linewidth. So the four processes which
significantly affect the linewidth are the emission
and absorption of a phonon in both the lowest and
first excited Landau levels. These processes are
shown graphically in Fig. 5.

The theory of Suzuki et al.* includes those four
processes. We have, starting from the expression
Suzuki et al.* which should be valid for narrow
resonance lines, numerically determined the real
part of the ac conductivity as a function of the
phonon frequency w, the magnetic frequency w,,
and the temperature 7. We have used an
electron-phonon interaction applicable to the defor-
mation potential interaction in Ge.

The main conclusions can be summarized as fol-
lows:

(i) In the high-temperature region,

(3m*S¥iwg)' 2 << kT <<fig ,

the linewidth y varies with temperature and mag-
netic frequency as

YT 20, . (5.1)
In the low-temperature region,

-;—m *S2 «<kpT << ( %m“S(z)ficoo)l/2 ,

y<T%%05?, (5.2)

and in the extreme low-temperature region,
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.
’

(c)

FIG. 5. Phonon emission (a) and (b) and absorption
(c) and (d) in the lowest and the first excited Landau
levels. The electron states are represented by—, the
phonons by -, and the photons by ---. Time increases
from left to right.

kpT << -;-m *S3, the linewidth dependence is

2m*S}
T kgT

y < T?wqy %exp (5.3)

Numerical results for this extreme low-temperature
region, T'<<0.1 K for Ge, have not been included
because in practice this region would be deter-
mined by impurity scattering.

(ii) Over the whole temperature range of interest
the phonon absorption process, which is propor-
tional to the phonon occupation number N ¢, pro-
duces a significant proportion of the linewidth.
Thus the frequently used approximation of setting
N3 to zero at low temperatures is not valid.

(iii) The current relaxation rate I'(k,) varies so
much with k, that it is not practicable to replace it
by a constant.

(iv) The inelastic nature of the electron-phonon
interaction is important for all but the highest tem-
peratures.

Although these conclusions follow directly from
the numerical results, it is instructive to consider
the scattering processes in more detail and to deter-
mine those values of the electron wave vector k,
and of the components of the phonon wave vector
q,,9. which significantly affect the linewidth. We
call such values the “typical’ values.

In the extreme low temperature region,
kpT << %m*S%, such a typical process is specified
by

#k, #q?

— 2 kg T, ——
2m* " BT opmx

and only the phonon absorption produces the
linewidth.
In the low-temperature region,

1 1
sm*Sh<<kpT <<(3m*S§iwy)?

~m*S3, q,~0 (5.4)

the typical scattering process has

#k #q? #q2  (kgT)?

—z—szT, *——‘—I%szT, —‘q—i‘zl—B—‘“Z— .

2m* 2m 2m Tm*Sg
(5.5)

For high temperatures,
(3m*S3tiwg)/? << kpT <<Hay
the typical values of the parameters k, and g, are
given by
#k? #q?

ot ~kpT, ——F ~fiwg, (5.6)



and there are two typical g, regions:
#q}  fwozm*S}
wm* = kT (5.7)
(g, —2k, ) Fiwgym*S}
2m* = k B T

Now consider the elastic approximation to the
scattering process. This involves the neglect of the
phonon energy ﬁwa in the energy conservation and
is valid only if the “typical” phonon energy is
small compared to the incident electron energy
#2k2/2m*. Using the above list of typical values,
we see that the elastic approximation is valid only
in the high temperature region where the typical
phonon energy is (hwo%m*s(z))l/ 2,

The approximation of neglecting the phonon oc-
cupation number N 5 is valid only if, in the typi-
cal process, fiw g >>kpT. In the above three tem-
perature ranges the typical phonon eneriges are
fio 5 z(%m*S(Z,fw)o)'/ 2 (high temperatures),
fiw g ~koT (low temperatures), and fio  ~ %m *S3
(extreme low temperatures). In the high- and low-
temperature regions—this typically covers the
range 0.5—300 K in high magnetic field cyclotron
resonance in Ge—the criterion is certainly not
valid and it is only in the extreme low-temperature
region, less than say 0.05 K for Ge, that the typi-
cal phonon occupation number becomes very small.
However in this region the phonon emission pro-
cess is forbidden—energy conservation cannot be
satisfied for #°k2/2m* < +m*S3—and so the
linewidth, although very small, is due almost en-
tirely to the phonon absorption process.

The typical values listed above do not depend on
the electron-phonon interaction constant C,: They
are equally valid for the piezoelectric interaction as
for the deformation potential interaction. However
the linewidth does depend on the specific form of
the interaction. If the deformation potential, Eq.
(3.1), is used together with the typical values
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(5.4)—(5.7) then the results (5.1)—(5.3) for the
linewidth follow.

Consider, for example, the high-temperature re-
gion. In this region we have shown that the elastic
approximation is valid and so the relaxation rate
I'(k) is to a good approximation given by Eq. (1.1):

2 %2
rik =1L "M kT |k, |~
T pmSo #i

This shows in particular that the relaxation process
Sfor a given electron wave vector k increases linearly
with temperature. It should not however be con-
cluded from this that the linewidth y has this tem-
perature dependence. As a temperature is in-
creased so is the mean electron energy and hence
so is the mean wave vector k,. The linewidth is
approximately given by 2I'(k) with k, equal to the
mean electron wave vector (m*kyT /#*)!/2. That
is, ¥ is approximately given by

7

m¥*

172

2 *2
1 D" m (kD2 (5.8)

z;pmS(z) #*

Y Wy

and so varies linearly with magnetic field but is
proportional to the square root of the temperature.

This square root dependence on the temperature
has been predicted previously by Suzuki et al.* and
also by Arora and Spector'? and seems to explain
the experimental results.®

The same procedure can be used to derive the
corresponding results for the coupling to piezoelec-
tric phonons. If we use the isotropic model of
Mahan'® then we have

{T (high temperatures)

T*°wg? (low temperatures)
2m*S3

T kgT

‘}/m

T3wq %exp

(extreme low temperatures).
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