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Brillouin instability in n-type piezoelectric semiconductors
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The paper aims at the detailed analytical investigation of Brillouin instability in a mag-

netoactive n-type cubic piezoelectric semiconducting crystal belonging to class 43m under

a geometrical configuration which can also be employed in analyzing the phenomenon

under either Voigt or Faraday orientation. The electric vector Eo of the spatially uniform

pump electromagnetic wave (applied along the y axis) is normal to the magnetostatic field

80 (along the z axis) as well as to the plane of propagation (x-z plane) of the internally

generated low-frequency transverse-acoustic wave (I,k) and the scattered electromagnetic
wave (col, k l). The propagation vectors k, k l (antiphrallel to each other) are in the x-z
plane making an angle 8 with the x axis. The dispersion relation has been obtained by
using a hydrodynamic model of the homogeneous, piezoelectric, one-component (electron)

semiconductor plasma, and the critical value of the pump electric field (necessary to
achieve physically reasonable growth of an unstable wave) and the growth rate of the un-

stable Brillouin mode well above the critical field have been obtained for isotropic (80——0)
and magnetoactive (Bo~) plasmas. We have applied our analysis to a specific semicon-

ductor, n-InSb at 77 K duly irradiated by a pulsed 10.6-pm COq laser for numerical es-
timation. Qualitative agreement between the analytical results and the numerical analysis
has been noticed. The laser wave intensities used here are in the range of 10~ to 10'
Wm ~ which is assumed to be less than the damage threshold of the InSb crystal. The
phase velocity of the growing unstable mode is found to be constant over the whole range
of system parameters and equal to the acoustic velocity in the crystal. The magnitude of
the critical field decreases with increasing magnetostatic field and decreasing 8. The
growth rate increases and attains a maximum value at a certain value of the pump inten-

sity, magnetostatic field, and 8, and if these are raised further, growth rate starts decreas-
ing. The magnitude of the growth rate is found to be -10 sec ' at laser intensities of
the order of 10' Wm . When the analysis is extended to Voigt and Faraday configura-
tions, the results are not very encouraging.

I. INTRODUCTION

Motivated by the intense interest in the field of
stimulated Brillouin scattering (SBS), in the present
paper, we have reported the results of the analyti-
cal investigations of Brillouin instability in a mag-
netoactive piezoelectric semiconductor plasma
under a general configuration and discussed the
possibilities of obtaining maximum growth of the
unstable Brillouin mode in the crystal.

Qualitatively, the dielectric constant of a scatter-
ing medium depends on some primary excitations
in the medium (e.g., molecular vibrations, acousti-
cal and optical phonons) and lead to the coupling
of an incident light wave with these excitations. In
a semiconductor plasma, the presence of a time
varying electric field produces time varying elec-
trostrictive strain in the medium and thus drives
an acoustic wave in it; consequently, the

phenomenon of SBS occurs due to the interaction
of an electromagnetic wave with the generated
acoustic wave in the medium. The resultant wave
may be scattered at various angles but the scatter-
ing maximizes in a backward direction with a
characteristic frequency downshift of the acoustic
frequency. ' Accounts of the theory of SBS was
given initially by Kroll and Tang and was re-
viewed by Starunov and Fabelinskii4 and Fabelin-
skii. s Sen6 has given a simplified analytical treat-
ment of the SBS phenomena and has analyzed the
possibility of Brillouin instability in an n-type
transversely magnetoactive piezoelectric semicon-
ductor under a collision-dominated regime neglect-
ing the Doppler shift in the microwave acoustic-
frequency range. However, at high elix:tric field
amplitudes of the pump wave (Eo-106 to
10 V m '), the Doppler shift in the acoustic fre-
quency no longer remains negligible and its effect
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must be incorporated in order to get oneself closer
to the physical situation. Asam et al. observed
SBS in Ge using a pulsed CO2 laser. Ultrasonic
waves in the microwave range duly generated by
SBS have been used by Winterling et al. to inves-

tigate the ultrasonic absorption in quartz at 29
GHz. Sussman and Ridley have reported the
Brillouin scattering measurements of amplified
acoustic fiux in oxygen-doped n-GaAs by irradiat-
ing the crystal with a cw 1.06-pm Nd —yttrium
aluminum garnet (YAG) laser beam. Recently, an
experimental observation of SBS in microwave in-

teraction with a plasma has been made by Hue
et al. '

It appears from the available literature that no
systematic attempt has been made so far to explore
the most appropriate conditions to get maximum
amplified acoustic flux in the solid medium using
minimum external power. The present authors ad-

dress themselves to such an attempt by choosing a
general configuration of the pump wave, propaga-
tion vector, and the magnetostatic field which cov-
ers the two important geometries, viz. , the Faraday
and the Voigt ones as well. We have considered a
one-component (electron) cubic piezoelectric semi-

conducting crystal belonging to class 43m subjected
to a large transverse magnetostatic field Bo in a
direction (along z axis) perpendicular to the electric
vector Eo (along they axis) of the spatially uni-

form pump (coo, k00) which is propagating in the
x-z plane. The scattered electromagnetic and the
transverse acoustic waves represented by (coi, k i)
and (co, k), respectively, are also propagating in the
x-z plane making an angle 8 with the x axis.
These thrix: waves satisfy the energy and momen-

tum conservation relations yielding ~& ——coo—~ and

k&
——ko —k. The investigation can easily be ap-

plied individually for Faraday as well as Voigt
configurations simply by making 8=90 and 0',
respectively.

The analysis is based on the coupled-mode

theory, "which was employed earlier by Sen for a
simplified treatment of SBS. The incorporation of
the finite contributions of the perturbed electron
fluid velocity associated with the scattered elec-
tromagnetic inode and the effect of Doppler shift
on the acoustic frequency adds a new dimension to
the analysis presented here.

Nonetheless, the present investigation has been
made under the following assumptions: (1) The
electric field amplitude of the pump employed in

the present investigation has been taken to be less

than the damage threshold of the crystal con-

sidered. The power density corresponding to the
value of the electric field amplitude employed is
found to be, quite reasonably, in the range which is
normally employed to study the nonlinear optical
effects in semiconductors duly irradiated by pulsed
laser beams. (2) We have neglected the effects of
nonlinear material parameters which play signifi-
cant roles in strongly piezoelectric semiconductors
like I.iNb03 (Ref. 12) by restricting our analysis to
moderately piezoelectric semiconductors, ' viz. ,
III-V binary compounds. (3) The semiconductors
have an isotropic and nondegenerate conduction
band. (4) The band nonparabolicity which contri-
butes about 3% over the parabolic band structure
has been neglected. ' ' (5) Free-carrier absorption
is considered to be negligible (Sec. I of Ref. 6). (6)
Dipole approximation is applicable to the pump
wave, i.e., the wave vector ko is very small in corn-
parison with k and ki. (7) We have neglected the
thermal effects, because for highly doped semicon-
ductors one can have co& » k ve~ (co& and uo being
the electron plasma frequency and electron thermal
velocity, respectively).

Thus, our analysis can be employed effectively
in the investigation of SBS in n-type heavily doped
III-V semiconductors (such as n-lnSb, n-GaAs,
etc.) with electron concentrations such that the
electron plasma frequencies are large enough and

nearly equal to the pump frequency. We have as-
sumed the first-order fluctuations (like Ei, v i, J i,
ni, etc.) varying as exp[i(cot —k r)] and

exp[i(coit —ki r)] for slow and first components,
respectively. The dispersion relations have been
solved for complex co ( =co„+iso;) with real posi-
tive values of k throughout the present analysis.
The propagating mode will be called unstable,
growing one only when co; is less than 0;

~
co;

~

represents the growth rate of the unstable mode.
We have made thorough numerical estimations of
the entities like the conditions for the onset of in-

stability and growth rate of the unstable Brillouin
mode at fields well above the critical pump ampli-
tude necessary to incite the instability in n-InSb at
77 K,

The dispersion relation for the scattered modes
in a magnetoactive plasma for an arbitrary value
of 8 has been formulated in Sec. II. In Sec. III,
we have analyzed the results for an isotropic medi-
um (Bo——0) and the derived expression for the
growth rate of the unstable Brillouin mode has
been numerically estimated. Section IV deals with
the critical examination of the phenomenon in the
magnetoactive medium when the magnetostatic
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field is such that v &
~
co,

~

& to~ (v and to, are the
phenomenological elo:tron-collision frequency and
electron-cyclotron frequency, respectively). The
analytical results obtained under a number of ap-
proximations (of course, physically sound) for the
growth rate of the unstable mode has been com-

pared with the numerical results obtained by solv-

ing the general dispersion relation (which is quartic
in complex to) with the help of a computer over a
wide range of magnetostatic field, pump ampli-
tude, and the angle 8. The qualitative agreement
between the two approaches has also been shown in
the same section. Dispersion relations have further
been derived for Voigt and Faraday geometries and
analytical expressions for the growth rate and criti-
cal value of the pump electric field amplitude have
been obtained for both the cases in Se:.V. Section
VI is devoted to the important conclusions which
can be drawn from the investigations reported in
this paper.

acoustic vibration in a piezoelectric crystal, the
electric and elastic properties of the lattice are cou-
pled and under such circumstance, one must con-
sider the polarization and the electric field accom-
panying the acoustic vibration. The piezoelectric
properties of the material being described by the
elements e'Jk of its piezoelix:tric tensor. ' It is well

known that the cubic crystals of class 43m have

only one piezoelectric constant, ' viz. , e~4 and con-
sequently, the equation of motion of the lattice in-

corporating the electrostrictive force [given by Eq.
(2.1)] and remembering that u„=O can be written
following Tucker and Rampton' and Hayes and
Loudon' as

(2.2a)

and

II. THEORETICAL FORMULATIONS gx&
+

gzgx
I

ga
Bz 2 Bz

We consider the hydrodynamic model of a
homogeneous one-component (electron) piezoelec-
tric semiconductor plasma under the geometrical
configuration discussed in Sec. I. The time vary-

ing electric field amplitude Ep of the pump wave
produces an electrostrictive strain in the medium
which is accompanied by an acoustic wave. This
acoustic wave then modulates the optical dielectric
constant causing an energy exchange between the
electromagnetic waves whose frequencies differ by
a small amount equal to the acoustic frequency to

where co « top and consequently, from the fre-
quency matching condition (Np=co+Ni), one gets
toi-top. The net electrostrictive force acting on a
unit volume is'

F= VE
2

(2.1)

where y represents the change in optical dielectric
constant and is around 10 "Fm

We assume that the acoustic wave generated
internally is a pure shear wave propagating in the
x-z plane with its vibration direction parallel to the

y axis. Thus, the acoustic displacement vector u
can have oniy two components u„and u, . As
mentioned in Sec. I, we have chosen a cubic
piezoelectric III-V binary semiconducting crystal
belonging to class 43m. When one is concerned
with the study of propagation of a low-frequency

Bvp
(Ep+vpXBp) —vvp ~

dt m
(2.3)

-+

dt m
+ ( vp' V )v i =— (Ei + v i XBp)—vv i:

(2.4)

Bn~

at
+(vp'V)it i+tip( V vi)=0,

and the wave equation

(2.5)

2BJi 1 8Ei
V'X V'XE~= —po c Bt

+I p1'
at2

(2.6)

Equations (2.3) and (2.4) are the zero and first-
order momentum transfer equations in which vo
and v ~ are the oscillatory electron fluid velocities
due to the electric field amplitudes of the pump
and scattered waves, respectively. Equation (2.5) is
the continuity equation in which no and n ~ are the

(2.2b)

where p is the density of the crystal, c44 is the ap-
propriate elastic stiffness constant, and ei4 is the
piezoelectric stress constant. The other basic equa-
tions used in the present analysis are
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unperturbed and perturbed electron densities,
respectively. IMO is the absolute permeability, J1
represents the perturbed current density,
c, [=(epeltup) '~z] is the velocity of light inside
the crystal having a dielectric constant e1, eo is the
permittivity of free space, and —e and m are the
electron charge and effective mass, respectively.

Physically, the high-frequency pump wave gen-
erates the low-frequency acoustic wave in the
medium and they give rise to the high- and low-

frequency components of the carrier density fluc-
tuations (denoted by n lf and n l, and perturbed
electron fiuid velocities (vlf and vl, ) oscillating at
frequencies col ( =cop —co) and co of the scattered
electromagnetic and acoustic waves, respectively.

To obtain the slow component n l, of the per-
turbed electron density, we make use of Eqs. (2.2)
and the piezoelectric-effect incorporated Poisson
equation given by

and

eED toe
Vox =—

2 2 t
co, +{iNp+v)

ezp (l cop+ v)
VPy =—

m Nc+(iNll+v)

(2.10a)

(2.10b)

Similarly, the components of v l ( = v lf +v»} are
derived from Eq. (2.4) and given by

e NqE lx+ Nc~ ly
Ulx= 2

'

2m q=s,f Nc+Nq
(2.11a}

where 5=cop —Nz, co&
——npe /me, and

co, =—e8p/m. In deriving Eq. (2.9), we have res-
tricted ourselves to the range co~-cop and followed
the usual procedure. ' The two components of the
zero-order oscillatory electron fluid velocity, viz. ,
Upx and Up& are obtained from Eq. (2.3) as

V' E1———nle el4 c) u„Bu,"+
X2 C)Z2

and consequently, one finds

(2.7) e c
Uly ——— g —

2 2 Elx
q g f N~+Nq

I

2 2 2 e14e14 2
co —k cs- k

pE'

(co —k c, )

'

az.,„aE„
+

Bx c)z

(2.8)
and

E1y
Nq COq(Nc +Nq )

(2.11b)

where c, =(c44/p)'~ and is the transverse acoustic
velocity in the crystal and e l4 el4 y——Ep/2—,
E'=6'OE'g. In obtaining the above equation, we have
neglected c) u, /BzBx and c) u, /c)xBz in comparison
with 8 u, /Bx and c) u /Bz, respectively, in Eqs.
(2.2) which makes the analysis much simpler
without any significant loss of generality.

The fast component n lf can be expressed in
terms of n l, by using Eqs. (2.3)—(2.5) and (2.7) as

e 1
Ulz= — g Els ~7' f COq

(2.11c)

where co, =i(co k„Up, )+v—and

Nf —i (co l k„up„)+—v The pertu. rbed electron
current density is given by

J l —— en p( v lf + v—l ) ev p(n lf+ n—ls ) .

(2.12)

4ikx COc V Oy

cop(v +5 )
(2.9) One finds the components of J l along the three

axes by using Eqs. (2.8) to (2.12) as

Ng COf k&Vox+ 2 2 2 e14e14
P 2 2+ 2 2 + 2 2 2 CO —k Cg — k E1

N, +N, N, +Nf 2(co' —k'c,') pe

2 1 1 iE'k2voyX
2 2 2 e 14e 14k+ ~~ 2 2+ 2 2 E1y+ 2 2 2
—k ~S

CO~ +COg N~ +Q)f 2(co —k c, ) pe
(2.13a)
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iekzuo+ 2 2 2 e,4e', 4k
N k—c&—

2(co —k c, ) p6'

1 1—N+N E +
N +N N +Nf

L

2 2 4 t
1 1 N~ COc 1 ekzuOyX 2 2 2 8148 14lC E1s ~

Ns Nf co g(coq+ Ng) Nf(Ng+cof) 2(co —k ct ) . pe

(2.13b)

X= 1 4ikz u—otN, 5/[coo(v2+52)] .

Using the wave equation (2.6) and substituting the components of J 1 from Eqs. (2.13) therein, one can get
the general dispersion relation as

Q~] Q]2 Q]3

Q2) Q22 Q23 =0 ~

Q3~ 0 Q33

(2.14)

2 t 2 ~ 2
P os 18 14Fokz 'N1Ntu„=—k, —

2
—

2 22 +
p(N —k c, ) cl

Ng Nf22+22
N~+Nz N&+Nf

2
kzuOzCO1X 2 2 2 814814k

co —k cg—
2C 1 (co —k 2C,') p6

lN ~N&Nz

C]

1+
N +N N&+Nf

kzUO„N1X
c213

—k k, — 2 2 2 co —k c, —
2cl(N —k cc ) p6

t
kzuozcolX 2 2 2 8148 14k

C221 ———
2 2 N —k Cc-

2C 1
(N2 —k'8, ) pe

~ 2
EN&N&N ~ 1

2 2+ 2 2
c+Ns Nc+Nf

N~ lN&N~
Q22

———k„—k, —
C) C)

2 2
N~

COg Nf COS(CO +N~z) COf(N~+COf )

t
NlkzUOtX

Q23 ———
2 2 N —k Cg-

2c21(N2 —k2c, ) pe

2 2 t 2 ~ 2PB'Nle AOkz 'N1Nt
c233

———k,—,—,2, +, (1/N +1/Nf) .
C 1 p(CO —k Ct ) C 1

The linear representation of the dispersion relation is

C122(1211C133 Cll31231) C112(C121C233 1223C231) (2.1S)
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From the knowledge of the different physical parameters for the semiconductors like n-GaAs and n-InSb,
one can notice that a» p~ a~2 but a2~ is comparable to uzi for the 6nite values of both k„and k, . Thus,
a &2 can be neglected and the dispersion relation reduces to a simpler form

Q ) )633=a )3Q3)

The substitution of the values of u ~~, a ~3, a3&, F33 yields the following dispersion relation after some
mathematical simplification:

(2.16)

2 ~ 2
2 2 22 2 Nl /N1NP

(a) —k c, ) —kx—
C) CI

Ns Nf
2 2+ 2 2

N, +N, N, +Nf

2 ~ 2
N~ IN~Np—k, —
C) C)

1

Ns Nf

i-(a) —k c, )

2
I403 le14EOk» N~ lN jNp—k-g 2

C)

I
PoY&e iPok kxoo ~~X z e~4e ~4k

+ 2N —kCt
P 2C) p6

2 ~ 2
I,NINpx —k — + +

k» U coox)Xk»

2C )

I

2 2 e&4eI4k
co —k cg—

pE

2 & 2 2 & 2
POY~le1@ok» ROYle14 okx kxoox~lx g 2 2 e&4e&4k

+ ro —k cg—
P P pE

(2.17)

Equation (2.17) can be used to investigate the possibiHty of Brillouin instability in a dense (m~ -coo), isotro-

pic as well as magnetoactive (co, -ro&), cubic piezoelectric semiconductor plasma over a wide range of sys-

tem parameters with N ~ v, N =v, and N p v, provided that the other assumptions mentioned in Sec. I are
correct.

In an isotropic plasma with Bo=0, the dispersion relation (2.17) reduces to the following form:

C) CIV
I

2 ~ 2

+-PoYie &4Eo q q ~i ~ip

P
=0. (3, 1)

The above equation describes Brillouin instability in a two-dimensional case with both k, and k, being ftn-

ite.
It can be observed from the above equation that the acoustic and the electromagnetic modes (obtainable

by equating to zero the first and the second factor, respectively, in the left-hand side) are coupled via the

nonlinear force due to electrostriction in the piezoelectric semiconductor. The presence of the high-

frequency pump with Eo+0 is a precondition for the couphng (as is evident from the same equation). Since

we have assumed spatially uniform pump with ko gg k, one can easily take k„, k, ~~ aP/c, for 0 &8 g 90'
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iI4olci voe i48o
2

PNp

oiu. U'sing this approximation, after algebraic simplifications, Eq. (3.1) yields

2 lN
(oi —kc, ) k- —(k„'+k,')+

CiV 0jg
(3.2)

To explore the possibility of instability, we solve
the dispersion relation for complex co( =co„+ico;)
with real positive values of the wave number k
such that N, =kct. Equating the imaginary parts,
one can have

@07'Canoe 14c 1 VkEO 2k& kg
I 2 2

Ng=— 2 2 4
2,NpPCt 4 NoNpk+ ~4

(3.3)

Equation (3.3) yields co; &0 because the factor
within the square brackets is always positive. This
relation gives a zero threshold value of the pump
electric field amplitude and for a real semiconduc-
tor as shown below, the results are not very en-

courag1ng.
The numerical calculations of growth rate

I
co;

I

of the unstable Brillouin mode for n-InSb at 77 K
duly irradiated by a pulsed 10.6-pm C02 laser
(cou-1.78X10' sec ') is made with
% =2&10 m ', v=3.5X10" sec ', and

Np
——1.775)& 10' sec '. The other physical con-

stants are: I=0.0138mo, e&4 ——0.054 Cm
p=5.8X10 kg m, e~ ——17.8, and remembering
that the ratio between transverse and longitudinal
sound velocities varies from 0 to 1/V 2, we have
taken c,= 1/V 2 X4X 10 m sec '. Using these
VRlucs ill Eq. (3.3), oilc obtallls

I
co;

I
-8.26X10 (Eo) which yields a very low

value of the growth rate even at a moderately high
value of Eu. Practically, one can say that no
growing unstable Brillouin mode would be ob-
served in isotropic crystal at pump intensity less
than that which can cause damage to the crystal
under the configuration when the pump amplitude
is normal to the direction of propagation of the
scattered wave, .i.e., when Eo is perpendicular to k.
This result is different from that obtained by Sen

I

who found a moderate growth of the unstable
mode in the same crystal with Eo being parallel to
k and Bo——0.

IV. MAGNETOACTIVE PLASMA

The general dispersion relation (2.17) derived in
Sec. II has been solved under a number of physi-
cally sound approximations in Sec. IV @and an
expression for the growth rate has been obtained in
order to study the qualitative nature of the
phenomenon of Brillouin instability in a magnet-
lzcd crystal. Tllc 1'csults of thc colllplltcl' Rllalysis
of the relation (2.17}is presented in Sec. IV B
describing more accurately and elaborately the
dependence of growth rate of the unstable mode on
the different physical parameters. An effort has
been made to establish a clarity between the two
approaches 1n Sec. IV C.

A. Analytical approach

We have considered the range of 8 inbetween 0'
and 90' (e.g., from 5' to 85'). The cases at 8=0'
and 90' have been discussed in Sec. V. %e take
oip -a) i -a)0 Rnd o » v& kmuox, oi; v «

I otic I
and

I
oi,

I
&coo. They result into the following simplif-

ications:

Ns Nf Np

2 2+ 2 2 2 2Nc+Ns Nc+Nf NO Nc

( I/co, + 1/cof ) -1/co, ,

k„coo/(coo oP, )« k, /(v i—k„uox) . —

Using these mathematical approximations, the
dispersion relation (2.17) can be reduced to

r

(oil —k c, } —k +z 2 2 2
C i (COO —iO& )

k2+ Pl NoN

c l (v—1k» Uu~ )

2 r 2
PoTNoe' 14kz &o

2
NoNp—k +-z 2 2 2

C i(COO —CO~)

(4.1)
I 2 2

k„uo„cooei4e iP' 4 4 ioiuo)i k„
2 k~+ kz —

2 ~

2c ip6 c i (v ik» uo»)—
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Equation (4.1) shows that the acoustic mode and the scattered electromagnetic mode are coupled via the
pump electric field. Moreover, at finite value of the pump amplitude, the coupling is possible in both
piezoelectric as well as the semiconductors exhibiting the properties of electrostriction remembering that
814—814—)Eo/2. It call fllrtllci bc noticed fl'olll a I'ougll numerical cstllliRtloll fol Rlly Plczoclcctflc scB11-

conductor that the piezoelectric coupling is Qluch stronger than the electrostrictive coupling.

We now proceed to investigate the possibility of Brillouin instability, We separate the real and imaginary
parts on the two sides of Eq. (4.1); the imaginary parts yield the expression for ca; as

8 1 (v +km Uox ) PoXcaoe IJBEo krone 148IP 4 4 caocai kxoox
2 2 2 2 I

QP) = k'+k,'+, (4.2
2copvkclkz p 28 1pe . 81(v +k Uoz )

In obtaining the above equation, only the numeri-

cally dominant terms have been taken into account.
At m, =0, the results agree with those predi*cted in
Sec. III. It is apparent from the above expression
that at Eo=0, ca; =0, whlcll lllcans tllat, tllc liista-
bility is having a zero threshold. However, as long
as the magnetostatic field remains considerably
low, one achieves a negligible growth of the scat-
tered modes. A nuIDcrical estimation sho&s that
the second term mthin the square brackets in Eq.
(4.2) becomes dominant as compared to the first
one only when ~ca,

~

~10' sec '. As is men-

tioned earlier in this section that the phenomenon
has been studied at

~
c0,

~
p& v, we neglect the first

term and thus obtain an expression for ca; as

e Ig8 )4N~ V8'k~EO k~ UO~5

4k, kc, mePcap(coo co, ) (v—+45 )

2 3
cooaipkx "Ih

x k, +k, +
8 I(V +DUO*

(4.3}

(k~+k, )+coocazk„oo„/[8 1(v +k„&o„)]

is positive which is valid for the values of
Eog2X10 Vm '. Thus eve see that the condi-

where we have substituted the value of X from Sec.
II. Remembering that u, is having a negative
value (as it is defined by —88o/m), the growth of
the unstable mode can be possible only when

k, oo„5

(v +45 )

r

tion of obtaining a significant growth rate is
dependent on electric field amplitude of the pump
vgave and it should have a value such that the
above condition is satisfied. We denote this elec-
tric field amphtude above which one can expect a
considerable growth of the unstable mode by E„
(the subscript cr stands for critical} and its value is
given by

m(coo —c0, )(v +45 )

4ek„/ c0, /5

It is a&orth mentioning at this juncture that the
factor (coo—co, ) should be replaced by

I [(icao+—v) +co, jj, if one wants to study the
phenoDlena at QPO N~.

At low values of Eo (-5X 105 Vm '), the fac-
tor 1+k„uo„5/(v +45 ) remains positive and the
condition of instability is then determined by

X S
C)

ol

mc 1 v (coo coq)—
8

i co& [ cooc0&kz

It should be noted here that all these conditions
have been derived for

~
c0,

~
& coo range of magne-

tostatic field, i.e., (coo—co~) was assumed to be posi-
tive. We have not made any attempt to find out
the conditions of instability above this range be-

cause the cyclotron absorption and Landau damp-
Illg IBRy bccollic 11nporta11t 111 sucll R hlgll I'ange of
applied magnetostatic field and the present analysis
does not take into account these effects.

For this purpose, we have solved Eq. (2.17) with no further approximation except that 8, ~~ 8148;4/pe.
We have written Eq. (2.17) in the form



BRILLOUIN INSTABILITY IN n-TYPE PIEZOELECTRIC. . .

2 2 2
'

k kgoogX coocopk g
cg" —2k, k, —

2 +i
2C f a)sC

+~' 4k'c2ik„'k,'+ ", (k'+k„'+k,')—
2C i

Vol'e i4Eoo(k~+ k* ) kz k~g0~Q)O$814EOX lQ)PQ)pk 2+ 2
2P6'C i sC

I 2 3 & 2 2 2 I

2 z «PoYei4oEo kxooxctX 4 4 q 2 Pol'oioei4Eo"x z x oz t IsoY Xi4Eo
+k2c,&~o(ks+k4) —

&
—2k c, k„k +

P 2c) P 2ci P

icooNpkik ci
COsC i

(4.6)

The above equation 1s quartic 1n N and has been
solved for a real positive value of
k (=2)&107 m '). The solutions for complex
oi ( =oi„+iso;) with oi; &0 have been considered as
solutions representing the unstable Brillouin mode
propagating with a phase velocity u~( =co„/k) and
a growth rate

~
co; ~. The analysis is made for

8=15' to 75', ~oi,
~

=5XIO' to 1.7&(10' sec
and E0 ——10 to 1.5&10 Vm '. The crystal con-
sidered for this purpose is n-InSb at 77 K duly ir-

I

radiated by a pulsed 10.6 pm CO2 laser. The ma-
terial parameters chosen are already mentioned in
Sec. III.

The results are plotted in Fig. 1 —3. Figure 1

shows the variation of the growth rate
~
co;

~
with

electric field amplitude of the pump Eo. The max-
imum value of

~
m;

~

occurs at Eo- l. 1

X10 Vm ', 8=60', and ~co,
~

=1.5X10' sec
A further increase in Eo reduces the growth rate of
the unstable mode. However, we have limited our-

4,O
1.5

-1,4

3,5

3.0

06
tO

2.5

3

'g 10

- 1.0

E
f9~

-Qa
Lil

2.0 04

1.5

5 10 15

E,(10 Vm ')

FIG, 1. Dependence of growth rate
~
co;

~

of the un-
stable Brillouin mode on the pump electric field ampli-
tude Eo at 8=60' and

~
ru,

~
=1.5 X 10'~ sec

I

15
2,5 t I I I

5 7 9 11 13
Iu I I1CI sec ')

&IG. 2. Dependence of growth rate
~

coI
~

on the
magnetostatic field (in terms of

~
co,

~
) at 8=30' and

pump field Eo ——5X 10 V m ' (represented by curve I);
Variation of the critical pump amplitude E„with

~
co,

~

at 8=30' (represented by curve II).
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1+2

1.0-

- 13

-9
tf

le

7~
LZ

large and may be even higher than the damage
threshold of the crystal. Thus, Fig. 3 indicates
that 8 should be around 60' in order to achieve a
large growth of the unstable mode without causing
any damage to the crystal. It is worth mentioning
here that the value of 8 at which one can get max-
imum growth rate is dependent on the values of Eo
and

I co, I
chosen for the geometry.

%hile watching the nature of dependence of the
phase velocity u~( =co, /k) of the unstable Brillouin

mode on the different system parameters like the
electric field amplitude of the pump, magnetostatic
field, and the angle 8, we have noticed that it
remains fairly constant over the whole range of
these parameters and its magnitude is exactly equal
to the acoustic velocity inside the crystal (viz. ,
U~ =c,-2.83X10 m sec ' in n-InSb crystal).

O 1O 2O 3O 4O 5O 6O 7O SO 90'
e (deg )

FIG. 3. Dependence of growth rate
I

coq
I

on the an-

gle 8 at Eo——9X106Vm ' and Ico, I
=1.1X10'"see

(curve 0; variation of E„with 8 at I co,
I
= l. 1 X 10'~

sec ' (curve II).

selves to a highest value of Eo of the order of
1.5X107 Vm ', as there is a possibility of damage
to the crystal if a very high-intensity laser beam
with Eo g 1.5)(10 Vm ' is applied. The nature
of dependence of

I
co;

I
as well as E„on magnetic

field are plotted in Fig. 2 where curve I shows the
variation of growth rate with applied magnetostat-
ic field (in terms of

I
co,

I
) and curve II represents

the variation of E„with
I
co,

I
. Curve I indicates

that the growth rate of the unstable Brillouin mode
increases rapidly with increase in

I co, I up to a
value of

I
co,

I
-1.5X10' sec '. A further rise in

I
co, I

causes a sharp fall in
I
co;

I
. Curve II is

plotted for a fixed value of 8 ( =30' in this case).
One can notice that E„decreases as

I
coo

I
is in-

creased. Figure 3 deals with the relation between

I
co; I

and 8 (curve I) and E„and 8 (curve II).
From the nature of curve I, one can conclude that
the role of 8 in obtaimng considerable growth of
the unstable mode is critical for the reason that at
lower values of 8 (i.e., 8 & 60'),

I col I
increases with

the increase in 0 with the maxima being obtainable
at 8-60' but after that

I
co; I

decreases very rapid-
ly with increasing 8 and for 8-90',

I co;
I

becomes
almost vanishingly small. From curve II, we can
infer that the critical pump field becomes higher at
larger value of 8 and for 8-90', it is appreciably

C. Compaxison between the intro approaches

Here, we have addressed ourselves to the ques-
tion of estabhshing a relationship between the re-

sults discussed in the above two subsections. Let
us first take the case of the behavior of the critical

pump amplitude E„below which the unstable
IIlodc docs Ilot cxhlbIt Rlly slglllfIcRIlt growtll.
From Eq. (4.4) we notice that E„decreases as

I
~. I

I»n«cased when
I
.

I
&o A look a

curve II of Fig. 2 agrees well with this behavior
for

I co,
I

&coo. If considered the nature of depen-
dence of E„on 8, the same equation (4A) mani-

fests that E„will be higher at higher values of 8
as k„decreases with increase in 8 and E„rises
very sharply as 8 tends to 90' and theoretically, E„
tends to infinity as 8 approaches 90'. If we com-
pare this result with curve II of Fig. 3, we again
achieve a fairly good agreement between the two

approaches. Now we examine the agreement in re-
lation to the growth rate

I co; I. From Eq. (4.3)
one can notice that the analytical expression for

I
co;

I
is too complicated to handle for obtaining a

simple relation between
I

co;
I

and any of the
parameters like Eo, I

co, I, and 8. Of course, to
find out the possibilities of existence of maximas
of

I ~; I
with r~p~«o Eo, I ~, I, Rnd 8, wc have

derived 8
I
co;

I
/dEo c)

I co;
I

/I)
I
co, I, and

l)
I
co;

I
/B8 by assigning constant values to the

remaining variables (e.g., I
co,

I
and 8 in the first

case)»d cqllatcd fllcII1 1Ild1vldllRlly to zcl'o. Tllc
value of E, obtain~ from aI~, I/aEo=o
corresponds to the maximum growth rate. Like-
wise, the expressions can be obtained to find out
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the maximas of
I
co;

I
corresponding to

I
co,

I
and

8. Figure 1 as well as curve I in Fig. 2 and 3 exhi-
bit the same nature of dependence. However, the
qualitative agreement between the two approaches
obtained is not exact in these cases.

V. VOIGT AND FARADAY GEOMETRIES

axis. This mode is of no importance under the
present context as we are solely concerned with the
scattering of the electromagnetic wave due to the
internally generated acoustic wave in the medium.
However, Eq. (5.2) yields

Np kUp~X
(co —k c, ) 1+

(~2 —~p2) 2o

The general dispersion relation represented by
Eq. (2.17) no longer remains valid for these two
cases. Thus, under these geometrical configura-
tions, one must address oneself to the relation
(2.15) and proceed as follows: A simple look at
Eq. (2.15}shows that the coefficient a 31 becomes
zero when either k„or k, is equal to zero. Conse-

quently, Eq. (2.15) reduces to

)'ei4Eok k uoxei4ei4X
+

p6' 2' op6

iku p„e14e 14copco,X+ 2 2 22c ipe(co& —cop)

where k stands for k„. Here, we have assumed
that

(5.3)

33( 22 11 12 21 }

A. Voigt geometry (k, =0, k,~)
(5.1) a)s a)f

2 2+ 2 2 2a)c +a)s a)g +f coq +a)f

Equation (5.1) leads to

a33 ——0

or

a22a )) —a )2a2i ——0 .

a33 —0 gives

2 2a) ~ a) ~a)z
k~+ 2

—i
2 (I/cog+ I/cof )=0,

C) C)

(5.2)

which merely represents the dispersion relation for
a single electromignetic mode propagating along x

Equation (5.3) shows that the acoustic and the
electromagnetic modes are coupled via (i} electros-
triction and (ii) the piezoelectric property of the
medium; the presence of the finite amplitude pump
wave is obviously the precondition for such a cou-

pling and the consequent instability. The coupling
has already been discussed earlier in connection
with the general configuration. Equation (5.3) is
now analyzed to obtain the expressions for (a) the
threshold electric field required for the onset of in-

stability and (b) the growth rate of the unstable
mode well above the threshold. Separating the real
and imaginary parts in Eq. (5.3} and solving for
a);, we get

I ~1 I
v=

kup„e, 4e', 4cop I
co,

I
X

2
a)p kU~L

4cipe
I
(cop-co, )

I
1+ 2 2 + kcg

I
~o—~, I

(5.4)

The subscript V stands for the parameters under
Voigt configuration. From the above expression,
one can notice that the finite growth is achievable
only when the magnetostatic field is present. As
long as the factor kuo„X/2cop (in the denominator)
remains less than one corresponding to a value of
Ep-10 to 10 Vm ' and

I
co,

I

—1.5 X 10' sec ', the value of
I
co;

I
is

found to be -8.91X10 sec ' which is smaller
than that obtained under the general configuration
(-10 sec ').

B. Faraday geometry (k,+0, k„=0)

Under this geometry, the dispersion relation is
given by a33 —0 in Eq. (5.1) yielding

2 2
icop Porcoie 14k c 1@0

co —k ct ) coi+
Cg)s P

(5.5)

It can be observed from this equation that the two
modes are coupled via electrostriction only. How-
ever, the strong coupling at moderate electric field
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amplitude of the pump is achievable only in
piezoelectric semiconductors remembering that
e i4 et——4 yE—ol2 and e i4 && yEol2 even for a
very large value of Eo. The expression for the
growth rate is found from Eq. (5.5) as

l os~ i4k'c iEo
I~ IF=

2Pkc, mp
(5.6)

The analytical investigations of Brillouin insta-
bility under various geometrical configurations of
the electric field, magnetostatic field, and the wave

vectors of the scattered modes have been dealt with
in the present paper and one can arrive at the fol-
lowing conclusions: (1) From the comparison of
results in Sec. III, IV, and V, we conclude that the
magnetostatic field plays a very significant role.
Brillouin instability with a significant growth of
the unstable mode can be observable only in the
magnetized piezoelectric semiconductor plasmas.
Under Faraday geometry (Sec. V B), the terms aris-

ing due to magnetostatic field disappear and conse-

quently, instability with almost no growth of the
Brillouin mode can be observed, which is also the

where the suffix I' stands for Faraday geometry.
The above equation indicates that the threshold

value of Eo is zero. Quite interestingly, one can
notice froin Eq. (5.5) that the magnetic field has
no effect on the dispersion relation. Thus, the re-
sults will be similar to those obtained in Sec. III
(with k„=0). The numerical analysis made for n-

InSb yields Ico; IF-7.43&&10 Eo. This leads to
the conclusion that under Faraday configuration,
practically, Brillouin instability with significant
growth is not achievable.

VI. CONCLUSIONS

case with an isotropic plasma (Sec. III). (2) Under
the general configuration, one can achieve a very
large growth of the unstable mode which pro-
pagates with a phase velocity equal to the trans-
verse acoustic velocity in the crystal. In order to
get the best result, one must have to choose an ap-
propriate value of 8 for a certain value of the

pump amplitude as well as the magnetic field. The
role of magnetic field is to enhance the growth as
well as to reduce the value of E„It.must be not-
ed that for low values of Eo (Eo & 10 V m '), the
growth rate obtained by using Eq. (4.3) is
—10 sec '. {3}For the n-type cubic piezoelectric
semiconductors under Voigt geometry, we find
better growth of the unstable mode than under
Faraday geometry. But the best geometry is found
to be the general one with 0'&8&90'. {4}The
electric field amplitude Eo considered in the
present investigation can be expressed in terms of
the pump intensity Io by using the relation

Io ——coeoei
I
Eo I /2', si being the refractive index

of the crystal (=3.9 for InSb) and co is the veloci-

ty of light in vacuum. The results reported in this

paper are made for Eo in the range of 10 to
1.5)& 10 V m '; the corresponding range of Ip us-

ing the above relation becomes 6.06)& 10 to
1.36)& 10' Wm, which can be used without
causing appreciable damage to the crystal.
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