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We present a detailed theoretical study of the stress dependence of properties of the
electron-hole liquid, both at zero and fmite temperatures, in (111)-stressed Ge and
(100)-stressed Si. These properties include the ground-state equilibrium density, pair en-

ergy, electron and hole Fermi energies, sign of the electron-hole drop charge, lumines-

cence linewidth, and liquid compressibility. The results are compared at T=0 to the cal-
culations of Kirczenow and Singwi and at T=2 K to the available data. %e discuss the
possibility of a phase transition associated with the depopulation of the upper electron
valleys in Ge. %e also discuss methods of extrapolating from finite to infinite stress.
The importance of the nonparabolicity of the valence bands is emphasized throughout.
%e discuss ranges of validity for a low-temperature expansion of the free energy. Results
are presented for the systematic low-temperature variation of the liquid density, Fermi
energy, and chemical potential and for the critical temperature and density. These
theoretical results are found to be in reasonably good agreement with available data. Fi-
nally, we discuss scaling relations for combinations of electron-hole —liquid properties.

I. INTRODUCTION

The first theories of the electron-hole liquid'
(EHL) in semiconductors were concerned with

predicting and understanding the properties of the
EHL for systems in which it had already been ob-

served experimentally, i.e., unstressed Ge and
Si. It is well known that the band structures of
Ge and Si simplify under infinite uniaxial
compression: for (111)-stressed Ge only a single
conduction-band minimum remains occupied,
while for (100)-stressed Si two conduction-band
minima remain occupied; in both cases the single
populated valence band becomes ellipsoidal. Be-
cause of these simplifications, the infinite-stress
limit was also considered theoretically. ' These
calculations predicted that the EHL would be un-

bound or just barely bound with respect to free ex-

citons in Ge. However, the more sophisticated cal-
culations of Vashishta et al. indicated that the
EHL should be observablc in the infinite-stress
limit. All the calculations predicted that the
electron-hole pair density mould be considerably re-
duced compared to that of unstressed crystals.
Vashishta et al. also performed a calculation for
an ideal intermediate-stress case in which the elec-
trons were treated as for infinite stress and the

holes as for zero stress; the results were intermedi-
ate between the zero- and infinite-stress theories.
In addition, the effects of finite temperature on
EHL properties and the critical point were estimat-
ed for zero and infinite stress, using an expansion
valid at low T". -'

In the meantime, several experiments' ' were
performed to study the EHL in Ge and Si stressed
along the three principal crystallographic direc-
tions. In these early experiments a stable liquid
phase was observed under moderate stresses. Al-
though the luminescence spectra shifted with
stress, they were not analyzed in enough detail to
determine the properties of the EHL. Experiments
performed on inhomogeneously stressed Ge showed
that at moderate stresses the electron-hole pair
density is reduced from its value in unstressed
Ge.' ' More recently, systematic experiments
have been performed on Ge under (111)uniaxial
stress" ' and on Si under (100) stress to study
the stress dependence of EHL properties.

Since experiments cannot be performed at infin-
ite stress or zero temperature, it is clearly desirable
to have a finite-stress, finite-temperature theory.
A first attempt to predict the systematic variation
of the ground state (T =0 K) properties of the
EHL in (111)-stressed Ge was made by Mar-
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kiewicz and Kelso. ' In that paper, the stress
dependence of the holes was taken into account but
the electrons were treated as for infinite stress, so
the results are valid only for the intermediate- to
high-stress range. Liu et al. i' 3 performed a cal-
culation for two values of the stress, for both Ge
and Si, and included a low-T expansion to estimate
the critical point. Kirczenow and Singwi have
considered the systematic stress dependence of
some EHL properties in Ge (Ref. 24) and Si (Ref.
25), restricted to T =0.

In this paper we present detailed calculations '

of the properties of the electron-hole liquid as a
function of compressive (111)stress in Ge and

(100) stress in Si, both at T =0 and finite tem-

perature. We include the full stress dependence of
the condion and valence bands in the kinetic en-

ergy, except that the split-off valence band is ig-
nored. Energy- and stress-dependent hole masses,
introduced previously, ' ' are used to describe
the nonparabolicity of the valence bands. We ini-

tially consider several models for the exchange-
correlation energy; two include separate stress and
density dependences. We compare the exchange-
correlation energies directly, as well as results for
the EHI. ground-state density and energy. Two
models are selected for further calculations and for
comparison with experiment. We believe that un-

certainty in the mathematical representation of the
correlation energies of Vashishta et al. can result
in model-dependent predictions. Consequently, one
of the models selected for our detailed calculations
uses a simple empirical correlation energy. Both
models are different from those considered by
Kirczenow and Singwi. "'

Results are presented for several properties of
the EHL at T =2 K to facilitate comparison with
experiment. In addition to the density, we discuss
the electron and hole Fermi energies, the sign of
the charge on electron-hole drops (EHD), and the
binding energy P of the EHL with respect to free
excitons. While there is overall qualitative agree-
ment between theory and experiment, some quanti-
tative differences are discussed.

It is convenient to introduce two critical values

of stress. When the stress-induced splitting of the
conduction bands E',

~~ is equal to the electron Fer-
mi energy Ez, the upper electron valleys are depo-
pulated (at T =0). Thus a critical stress o, is
determined by the condition E,'&~ ——E~. Similarly,
a critical stress os, associated with the emptying of
one valence band, is defined by the condition

h h
EsPi =E~

In agreement with Kirczenow and Singwi,
we find a rapid decrease in the electron-hole pair
density associated with the emptying of the upper
conduction bands at 0, For Ge at T =0, we dis-
cuss the possibility of two different types of EHL,
with a phase transition as a function of stress.
Our model-dependent results indicate a critical
dependence on details of the exchange-correlation

energy, such as curvature with respect to density,
which are not well known. We show by explicit
calculation that the change in the number of occu-
pied conduction bands is an important factor in
the possibility of a discontinuous change in the
equilibrium density at o„' thus the unambiguously
more gradual density change predicted for Si is un-

derstood.
We predict significant changes in all EHL prop-

erties for stresses beyond os. Since no further
changes take place in the number of occupied
bands, the high-stress variation of EHL properties
arises solely from the residual nonparabolicity of
the valence band, which remains important even

after the bands are well split in energy. Because
these variations continue well past Oh, we discuss
procedures for extrapolating finite-stress data to
the infinite-stress limit.

For finite temperatures, both low-T and high-T
limits are considered. At sufficiently low tempera-
tures we find that the usual expansion for the ki-

netic energy of a degenerate Fermi system is valid,

except at stresses very near cr, and crh. we discuss
the systematic low-T variation of EHL properties,
using derivatives of the ground-state free energy
versus density. Near the critical point, however,
we find that the expansion is no longer valid at
any stress. Thus we calculate the kinetic energy
exactly at all finite temperatures. Our theoretical
results are compared with available data. In addi-

tion, we consider scaling relations of certain com-
binations of EHL properties as the band structure

changes with stress.
The paper is divided into several sections. The

calculation of the free energy of electrons and
holes at arbitrary stress and temperature is
described in Sec. II. Results for ground-state EHL
properties are presented in Sec. III. Finally, results
for finite temperatures are presented in Sec. IV.

II. FORMALISM: THE FREE ENERGY
AT ARBITRARY STRESS AND

TEMPERATURE

The free energy I' of a neutral plasma of elec-
trons and holes is a function of the number of
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electron-hole pairs S, volume V, and the lattice
temperature T The free energy has kinetic and
exchange-correlation energy contributions, which
are treated separately.

A. Kinetic energy

where the second term is the grand potential,
0=—PV, and P is the pressure. The Fermi ener-

gy EF is determined by the relation

and depends on temperature. The density of states
contains information about the band structure. It
is convenient to write

(2)

D(E)= s ms(~(E) E'~
f3

where mzi~(E) is a local density-of-states mass:

3

4 2~E'"

(3a)

(3b)

The integration is performed over solid angle on
the k-space surface with energy E. mzi depends
on energy if the band is nonparabolic, as is the
case for the valence bands in Ge or Si at finite
stress. Results for (111)-stressed Ge and (100}-
stressed Si are given in Figs. 1(c) and 2(a) of Ref.
28. These results were fit to simple analytic
functions over several ranges of reduced energyE':E/o, matching the fu—nctions and their first
derivatives between ranges. The conduction band
is assumed to be parabolic, with the same density-
of-states mass at all stresses.

In Ge and Si the conduction and valence bands
are split by the stress, with only the band(s) lowest
in energy remaining populated at high stress. For
a set of vi+vi bands, with vi bands split by an en-
ergy E,~i below the other vi bands, Eq. (3a) be-
comes

D(E)= [
' '(E)E' '

fi

+vpmi (E)(E—E,pi)'i ], (4)

The kinetic energy term is just the free energy
for a gas of free Fermi particles. For carriers in a
band with a density of states D (E),

I' =XEF—PV

=NET J—J D(u)du (1+e F
) 'dE,

where
m i(E) and mi(E) are the local density-of-

states masses and E is measured from the bottom
of the band for set 1. It is understood that
mi(E) =0 for E (E,&i. We use the same Fermi
level for both subsets, indicating that all the car-
riers are in thermal equilibrium with each other.
This corresponds to the equilibrium limit of
Kirczenow and Singwi.

The procedure for calculating the kinetic energy
was as follows: (1}a hole Fermi energy Ei"; was
chosen; (2} the density n =N/V—was computed us-
ing Eq. (2) for holes; (3}the electron Fermi energy
EP was obtained by inverting Eq. (2) for electrons;
(4) Fz;„Fk;„+——Fk;„was computed using Eq. (1).
We usually wanted to find a minimum in the total
pair free energy f(n) =F/N or the disappearance
of a minimum in the chemical potential f(n}—=f
+ndf/dn Thes. e minima were often very shallow:
To determine the equilibrium density at T =0 to
within 1% it was necessary to calculate f(n} to a
precision of 1 part in 10 . Of course, the band-
structure parameters are not known this well, but
it was desirable to reduce the mathematical uncer-
tainties.

At finite temperature the kinetic energy was
computed exactly, rather than using the T expan-
sion employed by other authors i (see discussion
in Sec. IV B). We note that the integrals in Eqs.
(1) and (2) become (modified) Fermi-Dirac integrals
for the electrons (holes) and must be evaluated nu-
merically.

B. Exchange-correlation energy

A detailed first-principles calculation of the ex-
change-correlation energy, including the effects of
finite stress and temperature, would be mathema-
tically formidable and has not been attempted.
First, as in many other calculations, ' ' we
suppose that the exchange-correlation energy is in-
dependent of T and use results for T =0. This is
reasonable as long as kT is much less than the
plasmon energy fico&, ' where co& one /m*. —— .
For such an excitation m~ is an optically averaged
mass given by mp/m* =mp/m +mp/m h ~ %e
shall see in Sec. IV 8 that this condition is fulfilled
for all temperatures of interest here. In addition, it
has been observed ' that the exchange-correlation
energy is nearly independent of such band-
structure features as mass, anisotropy, and degen-
eracy, as long as both the exchange and correlation
energies are calculated using the same details. The
separate dependences of the exchange and correla-
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tion energies on the band structure can be substan-
tial but tend to cancel in the sum. This cancella-
tion has been exploited in some T =0 calcula-
tions. ' ' ' In addition, Vashishta has suggest-
ed that the correlation energy should depend only
weakly on the hole mass. %'e investigate both the
cancellation and the hole mass dependence here.

%e initially considered six models for the
exchange-correlation energy, summarized in Table
I. In several models the electrons and holes are in-

dependently treated as for zero or infinite stress.
In this case the exchange energy per electron-hole
pair is given by

32
4'

where v, is the number of electron valleys and

p =m, /m~ is the electron or hole anisotropy
parameter. Values for P(p, ) and f(p~ ) are listed in
Table II, along with other parameters used in the
calculations.

The scheme used for models 1 and 2 (Ref. 21)
(infinite-stress electrons, zero-stress holes) most
closely represents an intermediate stress ' near cr„
although it does not correspond exactly to any
value of stress. The model 1 correlation energy
uses the results of a detailed numerical calcula-
tion ' in a fully self-consistent (FSC) approxima-
tion ' ' including multiple scattering and band an-

isotropy. The results were fit to a polynomial in
the interparticle spacing r, for higher densities and
matched to a Wigner form for lower densities.
In model 2, this detailed calculation is replaced by
a simple empirical correlation energy, taken to be a
sum of Wigner-type contributions from the elec-
trons and holes '.

C C

n ''3+a/m n '~'+a/mI,

(6)

where m is the electron optical mass and m~ is a
hole mass, here the infinite-stress optical mass.
The constants a and c are chosen to match the
value and first derivative of Eq. (6) to the model 1

correlation energy at the equilibrium density for
infinite-stress electrons and zero-stress holes in the
kinetic energy. Values for a, c, and the masses are
given in Table II.

In models 3 (Ref. 21) and 4 the hole mass in Eq.
(6) varies with both density and stress. In model
3 m& is the optical mass while in mode1 4 it is the
integrated density-of-states mass, in both cases
averaged over two hole bands. Models 5 and 6
are FSC results for extreme cases (zero and infin-
ite stress, respectively) in which both the exchange
and correlation energies are calculated using the
same band-structure details. These models are
similar to those considered by Kirczenow and
Sing wi.

Variations among the exchange-correlation ener-

gies may be investigated by considering ratios of
different models. Models 1, 2, 5, and 6, in which
the density dependence is independent of stress, are
compared in Fig. 1 for Si. Model 2 was selected as
the normalization model because it uses a simpler
form for the correlation energy. The FSC models
exhibit small oscillations (artifacts of the fitting
polynomials) relative to model 2. While these os-
cillations do not occur in the individual exchange-
correlation energies, it is nevertheless clear that the
curvature may not be well represented in the FSC
models. This will be important for the calculation

TABLE I. Electron and hole treatments in the exchange-correlation energy models.

Model Type
Exchange energy

Electrons Holes
Correlation energy

Electrons Holes

FSC infinite stress
%'igner infinite stress

zero stress
zero stress

signer infinite stress zero stress

signer infinite stress zero stress

FSC
FSC

zero stress zero stress
infinite stress infinite stress

infinite stress
infinite stress

infinite stress

infinite stress

zero stress
infinite stress

zero stress
infinite-stress
optical mass

stress-dependent
optical mass

stress-dependent
density-of-states mass

zero stress
mfimte stress
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TABLE II. Parameters used in the calculations.

Parameter Si

Electrons
met /mo

me~ /mo
md, /mo
m~/mo

P(p, )

v, (zero stress)

v, (infinite stress)
—E,'&~ /o

Holes

(((ps ) (zero stress)
—Egpi«

Holes: infinite stress

mh, /mo

my /mo
mdh/mo

m»/mo
4(pa)

Miscellaneous
K

a (model 2)
e (model 2)

0.08152
1.588
0.2193
0.1192
0.8401

I ((111) stress)
1.05

0.710
0.362

(111) stress
0.1302
0.04037
0.088 11
0.07474
0,9698

15.36
0.1917
4.461

0.1905
0.9163
0.3216
0.2588
0.9490
6
2 ((100) stress)
0.86

0.746
0.272

(100) stress
0.2561
0.1989
0.2354
0.2337
0.9986

11.40
0.2128
8.552

'B. W. Levinger and D. R. Frankl, J. Phys. Chem. Solids +0, 281 (1961).
"J.C. Hensel, H. Hasegaea, and M. Nakayama, Phys. Rev. 138, A225 (1965).
'm~ ——(m, ml)'~3 for electrons or holes.
"m, '= —(2m, '+m~ ') for electrons or holes.
'M. Combescot and P. Nozicres, J. Phys. C 5, 2369 (1972).
Units: meVmm /kgf. For (111)stress (Ge), E;~~/o=4:"„/—9C 44For (100) stress (Si),
—E,'„~/0 ==„/(Ci~ —Ci2). Values for "„are from I. Balslcv, Phys. Rev. 143, 636 (1966).
Values for the C 's for Ge are from M. E. Fine, J. Appl. Phys. 26, 862 (1965) (T=1.7 K).
Values for the C's for Si are from H. J. McSkimin, J. Appl. Phys. 24, 988 (1953) (T=78 K
values multiplied by 1.002 to extrapolate to low temperature).
RV. F. Brinkman and T. M. Rice, Phys. Rcv. B 7, 1508 (1973).
"Units: meVmm~/kgf. For (111)stress (Ge), —E,"~~/o =d/v 3C~. For (100) stress (Si),

E p] /0 =2b /{Ci ~
—Ci2 ). Values for d {Ge) and b (Si) are from J. C. Hensel and K.

Suzuki, Phys. Rev. 8 P, 4219 (1974) and from J. C. Hensel and G. Feher, Phys. Rev. 129,
1041 (1963), respectively. Values for the C 's are as in Ref. f.
'Calculated from Ge and Si valence-band structures: see S. M. Kelso, Phys. Rev. B 25, 1116
(1982).
'R. A. Faulkner, Phys. Rev. 184, 713 (1969).
"Model 2 is described in the text. If n has units 10' cm and the masses are multiples of
the free-electron mass, then a is dimensionless and c is in meV.

of the critical point and is discussed further, along
with the dashed curve, in Sec. IV B.

III. RESULTS: GROUND-STATE PROPERTIES

In this section we present results for the
ground-state properties of the electron-hole liquid

in (111)-stressed Ge and (100)-stressed Si. We
compare results for the six models with each other
and with other calculations, discuss a possible
phase transition associated with the emptying of
the upper electron valleys in Ge, compare the re-
sults at T =2 K with the available data, and give
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FIG. 3. Ground-state electron-hole pair energy vs
stress for the EHI. in (111)-stressed Ge. The dashed
line is the infinite-stress exciton binding energy.

The ground-state energy per pair, fo, is shown
for Ge in Fig. 3; results for Si are again qualita-
tively similar. A rather sudden change in slope oc-
curs at cr, T. he EHI. is bound with respect to free
excitons if

~ fo ~

is greater than the exciton bind-

ing energy E„F.or infinite stress E, is the exci-
tonic Rydberg, which is 2.65 meV for Ge and
12.85 meV for Si. A dashed line is shown in the
figure. Our calculations predict an unbound liquid
state for models 3 and 4 above —o =23 and 13
kgf/mm, respectively, in Ge and for model 4
above —o =44 kgf/mm in Si. At low stresses the
exciton structure is complicated due to the
valence-band degeneracy and the conduction-band
anisotropy. Experimental values for the binding

energy of the lowest zero-stress exciton state are
4.15 meV for Ge {Ref.45) and 14.7 meV for Si
(Ref. 46). Independent of the details of the varia-

tion of E, at intermediate stress, which has been

neither measured nor calculated, the binding ener-

gy P of the hquid with respect to free excitons is
expected to decrease rather rapidly with stress at
low stresses. This effect has been observed both in
Ge (Ref. '47) and in Si (Refs. 20 and 48).

For further calculations we will not consider so
many models. We note that a bound liquid state
has been observed in both Ge and Si at high
stresses where models 3 and/or 4 do not predict
b1nd1ng. In addition~ s1nce the hole mass varia-
tions in models 3 and 4 were omitted from the ex-

change energy, these models probably overestimate
the eff x:t of the hole mass on the exchange-
correlation energy. Among the FSC-based models,
we select model 1 as an average. The Wigner-
based model 2 provides a useful complement since
the correlation energies agree in value and slope at
one point but have different curvatures. Thus
models 1 and 2 will be compared in detail.

Numerical results for several ground-state prop-
erties of the EHI. are listixl in Table III for select-
ed stress values for models 1 and 2. In addition
the model 5 zero-stress and model 6 infinite-stress
results are listed, along with experimental values
for zero stress. ' The first stress is slightly greater
than —o;, so that the upper electron valleys are
depopulated. Similarly, the second stress is slightly
greater than —crI„so that only one valence band is
populated. The final stress is a few times —ot,
and illustrates that further changes occur before
the high-stress limit is attained.

8. Possible phase transition in Ge near u,

We noted in the preceding section that a rapid
change in the equilibrium density occurs just below
the critical stress o;. Our detailed calculations for
models 1, 5, and 6 in Ge showed that the pair
free energy has two minima in a very narrow range
of stresses (bo'&0. 1 kgf/mm ) around cr, . At
T =0, the true ground state of the system is associ-
ated with the minimum having the lowest energy
fo. As the stress changes the relative energies of
the two minima change. Thus the calculations
predict a discontinuous decrease in no (i.e., a phase
transition) as the stress increases. This is indicated
in Fig. 2(a) by dashed lines. The possibility of
such a discontinuous change in density was noted
independently by Kirczenow and Singwi but
seems less clear for the equilibrium limit in their
calculations.

The prediction of a double minimum in the free
energy for Ge is not model independent: models
2 —4 predict a rapid but continuous change in no
[see Fig. 2(b)]. Andryushin et al.49 used a model
in which the valence-band changes were ignored
and which employed a Combescot-Nozieres form
of the correlation energy; they found no phase
separation. On the other hand, Kastal'skii's
Hartree-Fock calculation (no correlation energy)
does predict a double minimum. Corresponding
calculations for (100)-stressed Si {Refs. 25, 27,
and 49) predict that the double minimum does not
occur for that system.

We examined the free energy curves for Ge in
some detail and found that the height of the
energy barrier between the two minima was
very small, less than -0.004 meV or 0.05 K.
%hether two minima occur, as in model 1, or only
one minimum, as in model 2, depends very sensi-
tively on the details of f„(n) in the range
n =(0.6—1.5) &10' cm . The ratio of the
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und-state ro erties of the EHL in stressed Ge and Si.TABLE III. Selected numerical results for the ground-s a e prope

Material,
Stress direction (kgf/mm )

50
Model (10'~ cm 3)

fG—
(meV)

Ee
(meV)

E,"
(meV)

ET(no)
(cm~/dyne)

Ge, (111)

Si, (100)

Zc10

20

Infinite

Zc10

Infinite

Expt. '
5
1

2
1

2
1

2
1

2
1

2
6

Expt. '
5

1

2
1

2
1

2
1

2
1

2
6

2.3+0.1

2.21
2.70
2.24
0.642
0.659
0.435
0.492
0.200
0.259
0.098
0.112
0.109

33+1
32.3
31.8
29.3
13.6
13.1
9.04
8.18
6.22
5.41
4.74
4.20
4.46

6.1+0.2
- 5.88

6.14
6.03
4.06
4.06
3.66
3.65
322
3.15
2.96
2.82
3.07

23
21.97
22.52
22.42
17.42
17.42
1S.47
15.54
14.60
14.78
14,09
14.35
14.71

2.53+0.02
2.40
2.75
2.43
2.66
2.71
2.05
2.23
1.22
1.45
0.76
0.83
0.81

7.8+0. 1

7.50
7.43
7.03
8.75
S.S5
6.68
6.25
5.20
4.74
4.34
4.01
4.17

3.90+0.02
3.73
4.27
3.77
2.16
2.19
2.32
2.45
2.19
2.49
1.92
2.10
2.06

14.4+0. 1

13.79
13.64
12.91
9.32
9.14

10.25
9.74
9.94
9.17
9.46
8.73
9.08

(2.3+0.6)g 10
3.12y10-'
2.31'10-'
2.87y10-'
1.80' 10-'
1.38y10-'
3.75' 10-'
2.42y10-'
9.05 X 10-'
5.98' 10-'
1.25 y10-'
1.09X10-'
1.39' 10-'

(3.4+2) X 10-'
5.96y, 10-'
6.69y10-'
6.47 y10-'
1.58&& 10-4
1.7S)& 10
2.88y, 10-4
3.98' 10-'
4.22 y10-'
5.63' 10-'
5.50y10-4
6.40X 10-'
5.99X10-'

s are corn iled from J. C. ense,s are
' . . H l T G. Phillips and G. A. Thomas, Solid State

ics c 1tc y adcmic Ncw York, 1977), Vol. 32, p. 88.Physics edited by H. Ehrenreich, F, Seitz, and D. Turnbull (Academic, New or,Phys&cs, e 1te

exchange-correlation energies for models 1 and 2
varies between 1.000 and only 1.005 in this range.
It is difficult to distinguish between the mathemat-
ical representations on a first-principles basis.

For ( 100)-stressed Si, the density decrease asso-

ciated with the depopulation of the upper electron

valleys is smaller and more gradual than for Ge.
The change in the number of populated conduction
bands is smaller in Si. To investigate the effect of
the relative change in the number of occupied con-
duction bands, a series of artificial models was

constructed, similar to model 1 for Ge, with the
number vz of upper electron valleys a parameter.
The ground-state equilibrium densities for several

models with v2 ranging from 1 to 9 are shown in

Fig. 4; %2=3 corresponds to Gc, while van=2 corre-
sponds (qualitatively) to Si. It is clear that a large
relative change in the conduction-band degeneracy,
which is accompanied by a rapid variation in the

I
I

Ge-type bands
T=0

&ill& Stress

A
E

Q

l 1 I

I 2 4
-o (kgf/mm )

FIG 4. E uilibrium density vs stress for Ge-hkequ' '

..e s. Thebands with one lower and vq upper electron va eys. e
model 1 exchange-correlation energy is used.
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electron kinetic energy, tends to favor the forma-
tion of a double minimum.

It would be very interesting if nature provided a
real system with a large change in a band degen-

eracy. In the alloy Gel „Si„,with x =0.15—0.20,
the four Ge-like (111)conduction-band minima
and the six Si-like (100) minima are degenerate. '

With the application of (111)uniaxial stress the

( 100) valleys would remain degenerate while the
(111)valleys would become stress split. Thus the
number of EHL-occupied conduction bands would

change from 10 to 7 to 1 for increasing (111)
stress. Other indirect semiconductor alloys in
which the (111)-and (100)-associated minima
become degenerate include the III-V pseudobinaries

Ini, Ga„P (x =0.77) (Ref. 52) and Al„Gai „Sb
(x =0.56) (Ref. 53). Although the EHL has not

yet been observed in the latter materials, an experi-
mental study of such a system would provide valu-

able insight into the nature of this proposed phase
transition.

Ge

(111)Strsss
T*2t|,'

0.2—

20

FIG. 5. Equilibrium density vs stress for Ge at T=2
K. The curves are the results for models 1 and 2. The
data points are taken from Refs. 18 (), 16 (V), 17 (k),
14 {+ ), and 19 (8).

C. Comparison with experiment: The approach
to the infinite-stress limit

Because experiments are typically performed
with the sample immersed in pumped liquid heli-

um, the calculations have been redone for T =2 K
using the procedure described in Sec. II. At T =2
K the equilibrium density is still given very accu-
rately by the free-energy minimum.

We consider first the results for ( 111)-stressed
Ge. Figure 5 shows the theoretical equilibrium
density along with several sets of data. Note that
model 1 predicts a discontinuous density change at
o, even at T =2 K, but we find that the energy
barrier between thc minima 1s cvcn lour than at
T =0. The experimental dcns1tics werc obtained
by fitting luminescence spectra from the EHL in
uniaxially stressed Ge (Refs. 16—18) or from the
strain-confined EHL (Ref. 14) or by fitting plasma
resonance line shapes for uniaxially stressed sam-
ples. '9 In all cases the line-shape analyses mere
performed using the appropriate energy- and
stress-dependent hole masses. ' Overall, theory
and. experiment are in reasonable agreement. The
density decrease associated with the emptying of
the upper electron valleys is not as pronounced in
the data as in the theory. However, a decrease of a
factor of 2 in density has been observed within a
very narrow stress range, less than half a kgf/mm,
by Zarate and Timusk. '

While the data of Zarate and Timusk agree very
nicely with model 2, the data of Feldman et al. 's

and of Chou and Wong' decrease more rapidly at
higher stresses than the predictions of either
model. Although care was taken to assure stress
uniformity in the experiments, we note that residu-
al nonuniformity will result in broader spectra and
higher deduced densities. Thus, if the stress cali-
brations are accurate and if comparable line-shape
analyses are performed, the narrower spectrum and
lower density should be more nearly correct.

The EHL work function P has been measured
spectroscopically from EHL and exciton lumines-
cence spectra at two stresses. Furneaux et al. ' '

found /=1 meV at —o =6 kgf/mm . A theoreti-
cal upper limit to P is obtained using the infinite-
stress E,; we find 1' & 1.15 meV for both models.
In addition, Feldman et al. ' measured

/ =0.65+0.07 meV at —o = 13 kgf/mm, com-
pared to 0.82 meV for model 1 and 0.77 meV for
model 2. The agreement is quite satisfactory.

The electron and hole Fermi energies, Ez and
E~, are shown in Fig. 6. The dashed lines are the
conduction- and valence-band splittings, E,'~i and

Epp] The critical stresses, determined by the rela-
tions E~——E

~ are

—o; =2.5 kgf/mm2
2 Ge T=2 K, (111)stress—o's =6 kgf/mm

(7)
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FIG. 6. Electron and hole Fermi energies E~ and E~
vs stress for Ge at T =2 K. The dot-dashed curves are
model 1, while the solid curves are model 2. The
dashed lines indicate the energy splitting E,~~ between

upper and lower bands for electrons and for holes. The
data points for EF' (solid symbols) and E~ (open sym-

bols) are from Ref. 18 (circles) and Ref. 17 (triangles).

for both models. At low stresses, the electron Fer-
mi energy is forced to increase as the upper elec-

tron valleys begin to depopulate; the hole Fermi
energy decreases gradually as the density decreases.
The changes in the electron kinetic energy become
increasingly important near o.„and the density
and both Fermi energies decrease rapidly. Above
o.„EFdecreases smoothly, tracking the density,
since there are no further changes in the
conduction-band structure. The changes in the
hole Fermi energy between o., and oI, reflect ihe
changes in the population of the

~
Mz i

= —,

valence band and in the hole mass. Above o~ the
decrease in E~ and n is due to the decrease in the
density-of-states hole mass.

Several of the general features of the theoretical
curves in Fig. 6 are observed experimentally. The
data of Thomas and Pokrovskii' and of Chou and
Kong' are shown as circles and triangles, respec-
tively, where the solid (open) symbols indicate Ef
(EF). The electron Fermi energy increases at low

stresses, as predicted. However, the sharp decrease
in both Fermi energies which should denote o; is
not observed. Both theoretically and experimental-

ly Ez g Ez below o., and above o.I„while the re-
verse is true between o; and o.

I, . The decrease in
the experimental Fermi. energies relative to theory
at higher stresses parallels the densities in Fig. S.

The Fermi energies can be used to predict the
electric charge on electron-hole drops. An EHD
can become charged if the electron and hole chemi-

cal potentials differ. Because the electron and hole
contributions to the exchange-correlation energy
are nearly equal, ' the sign of the chemical poten-
tial difference is given by the difference in Fermi
energies. If EF & Eg then holes are less tightly
bound to the EHD than electrons; holes evaporate,
leaving the drop negatively charged. From Fig. 6
we find that EHD should be negatively charged in
the stress ranges below o, and above oI„approxi-
mately, and positively charged in the intermediate
range. These predictions are in agreement with the
detailed calculations of Kalia and Vashishtass for
three ideal cases. Pokrovskii and Svistunova
found experimentally that EHD are negatively

charged in unstressed Ge, become positively
charged around —0 =2 kgf/mm, and remain pos-
itively charged at least up to —o =9 kgf/mm .
The last result is difficult to interpret since the
luminescence spectra obtained by the same au-

thors indicate that E~ has become larger than

E~. Further experiments at higher stresses would

help resolve this discrepancy. The experimental re-

sults for lower stresses, however, are in excellent

agfccmcnt with thc plcdlctlons.
%e turn now to a comparison with experimental

results for (100)-stressed Si. Figure 7 shows

curves for models 1 and 2 of the full width at half
maximum linewidth &E of luminescence spectra
computed for the T =2 K equilibrium densities.

The procedure for calculating luminescence spectra
at finite stress has been discussed previously. 2s We
show calculations of hE to facilitate comparison
with raw data independent of fitting procedures.

Si

gt00) Stress
T=PK

E
w tO
«a

y

FIG. 7. Luminescence linewidth vs stress for the EHL in

(100)-stressed Si at T =2 K. The curves are the results

for models 1 and 2. The data points are taken from
Refs. 58 ($), 59 (~), 60 (k), 61 (V), 62 (W), and 20
(o).
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The theoretical curves show a rapid decrease in the
luminescence linewidth associated with the empty-
ing of the upper electron valleys and a much
smaller decrease associated with the emptying of
the

~
Mz

~

= —, hole band. The figure also shows

several sets of experimental points. ' With
the exception of the points from Wagner and
Sauer the data are in excellent agreement with
each other. This is notable because the spectra
have been analyzed using different procedures, in
some cases ' incorrect ones, resulting in dif-
ferent deduced densities for the same value of
stress.

Although the experimental linewidth decreases
with stress, the details of the decrease differ
markedly from theory. In particular, the sharp de-
crease associated with the critical stress cr, is not
observed experimentally. We note that there
should be no ambiguity associated with the
conduction-band deformation potential, since
several measurements are in good agreement.
However, the discrepancy between experiment and
theory occurs in a stress range where the equilibri-
um limit used in the calculation may not corre-
spond to experimental conditions: Intervalley
scattering is inhibited because E,'~~ is too small to
allow the participation of TA phonons. 0 If the
experiment samples non-equilibrium-limit condi-
tions then the average observed density and
linewidth will be larger than for the equilibrium
limit. ~~ More efficient intervalley thermalization
takes place above -25 kgflmm (Ref. 60). This
provides a qualitative understanding for the differ-
ence between theory and experiment in the inter-
mediate stress range.

The luminescence spectra obtained by Gourley
and Wolfe were analyzed using energy- and stress-
dependent hole masses. 2 Their deduced equilibri-
um densities are shown in Fig. 8 along with our
T =2 K calculations. The density variations fol-
low the linewidths of Fig. 7. However, the break
in the experimental densities at 0, is due to the
electron density of states used in the hne-shape fit,
since there is no corresponding feature in the
linewidths. At high stresses the experimental
values are significantly smaller than theory. A
similar but less pronounced difference was also
found for Ge in Fig. 5. We note that the results of
Kirczenow and Singwi for the model employing
a self-consistent particle-hole (SPH) approxima-
tion show better agreement with experiment at
high stress. However, this agreement may be for-
tuitous: The SPH calculation, which was done for

20 ~0 y 0

Si

(100) Stress

T =2K

E

O

10-

0 ~

I 1 l

20

-o (kgf/rnm )
2

I )

40

FIG. 8. Equilibrium density vs stress for Si at T =2
K. The curves are the results for models 1 and 2, and
the data points are from Ref. 20.

zero stress, is expected ' to be inferior to an FSC
calculation because it (SPH) treats only part of the
problem self-consistently. The importance of the
discrepancy between theory and experiment should
not be underestimated, since infinite-stress theories
should be better than zero-stress theories due to the
simplifications in the band structure.

To assess differences in band structures, we in-
vestigated the effect of a uniform change in both
electron and hole masses on the EHL equilibrium
density. We suppose that the masses change in
the kinetic energy and that the exchange-correla-
tion energies are unchanged. For a mass decrease
of 10%, we find that the equilibrium densities de-
crease rather uniformly for all stresses by nearly
25% in model 1 and by -35% in model 2. The
Fermi energies and the luminescence linewidth
have a smaller decrease, -8%. On the other
hand, in extracting the density by fitting a
luminescence spectrum, a given spectrum would be
assigned a density about 15% larger. The net ef-
fect of these changes in Fig. 8 would be to bring
both theoretical curves and the data nearly into
coincidence at high stresses. Thus a reduction of
the electron and hole masses by —10% at high
compressive stress could remove some of the
current discrepancies between theory and experi-
ment.

Let us examine several possibilities for changes
in one or both masses. First, our calculation of the
hole masses ignored the effects of the split-off
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valence band and fourth-order (k ) terms which
have been discussed by Hasegawa. %'e find that
including the split-off valence band results in only
a small change in the density-of-states hole mass at
the stresses attained in experiments: -1.7% for
—o =165 kgf/mm along (100) in Si and for
—a=20 kgf/mm along (111) in Ge. In addi-

tion, this mechanism increases rather than de-

creases the hole mass. The fourth-order terms
become less important at high stresses. Second,
the reduction in the average band gaps with stress
should be accompanied by a decrease in the carrier
masses. These decreases may be simply estimated

using the k.p result m '-Eg ' and a typical
value 10 meV/kbar= 1 meVmm /kgf for the
change in Eg with stress. The relevant gaps are
direct gaps, i.e., EO-0.9 eV and E&-2.3 eV in Ge
(Ref. 66) and EO-4.2 eV and E2-4.5 eV in Si
(Ref. 67). At the highest stresses attained in exper-
iments, the masses would decrease by -1—2% in
Ge and -4% in Si. A third possibility is the re-
normalization of the carrier masses within the
EHL by many-body effects. It has been found
both theoretically ' and experimentally ' ' that
for unstressed Ge the masses within the EHL in-
crease by -10%%uo relative to the bulk masses.
However, the stress dependence of this mass renor-
malization is not known. We conclude that de-
creases in the carrier masses by as much as 10% at
high stresses cannot be reliably predicted by these
considerations.

The electron and hole Fermi energies for Si are
shown in Fig. 9, where the solid circles indicate E~
and the open circles EF. We find the following
theoretical values for the critical stresses:

—a', =10 kgf/mm
Si, T=2 K, (100) stress.—op -37 kgf/mm

(8)

The qualitative theoretical behavior of Ez and EF
can be understood for Si in the same way as for
Ge. %e note that the dashed line which indicates
E p] crosses the experimental points near their
maximum, as in Fig. 6 for Ge. This deviation
from theory may be associated with non-equilib-
rium-limit experimental conditions in this stress
range. In spite of the quantitatiue differences be-
tween theory and experiment, we note that EF & E~
at all stresses. Thus EHD should be negatively
charged at all stresses in Si, in contrast to the situ-
ation for Ge. There are no experimental results
concerning the charge on EHD in Si.

00
15 — 0

000
0

0 0
0

0

si

$100$ stress
T= 2K

E

~
F

20
2-a (kgf/mm )

40

FIG. 9. Electron and hole Fermi energies vs stress
for Si at T =2 K. Notation for the curves is similar to
Fig. 6, while the data points for EF' (~) and E~ (0 ) are
from Ref. 20.

Two experimental measurements of the EHL
binding energy are available for stressed Si. Ku-
lakovskii et al. found /=2+0. 2 meV at a stress
—a =48 kgf/mme. We find theoretical upper lim-

its of 2.40 meV for model 1 and 2.50 meV for
model 2. In addition, %olfe and Gourley mea-

sured /= 1.5+0.5 meV at a stress —a =90
kgf/mm2, compared to 1.84 meV for model 1 and

2.01 meV for model 2. The agreement between

theory and experiment is satisfactory: as expected,

P decreases at higher stresses.
We consider finally the infinite-stress limit of

the EHL in Ge and Si. Since infinite stress is im-

possible to attain experimentally, it is necessary to
understand what constitutes a stress "high enough"

that the valence-band nonparabolicity is negligible

or to have a method for extrapolating to infinite

stress. Our calculations show that the properties

of the EHL are still changing at stresses much

greater than o.~. The T =2 K equilibrium densi-

ties for Ge and Si are replotted as a function of
1/o. in Figs. 10 and 11, respectively, where the ar-

rows indicate o». Data points from the sources for
Figs. 5 (Refs. 14, 16—19}and 8 (Ref. 20} are also

shown. In Ge, at —o =20 kgf/mm, the largest

experimental stress to date, the theoretical densities

are still twice their infinite-stress values. To obtain
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ferent extrapolation procedure used by Thomas and
Pokrovskii' was inappropriate because it was
based on only a few data points, all obtained at
rather low stresses. While the data of Zarate and
Timusk' agree well with model 2, their densities
are larger than those obtained by Chou ef aI. ' '
and should be treated with caution. Therefore, it
is not possible to make a reliable extrapolation to
infinite stress based on current data for Ge. For
Si, it is evident from Fig. 11 that such a linear ex-
trapolation procedure should be reasonable for
stresses above -40 kgf/mm . The data of Gour-
ley and Wolfe extend well into this range. Our
extrapolation yields an infinite-stress density
n =2.8&(10' cm (T=1.4 K in the experiments).

O. f

-f/0. (kgf/mm

0.2 IV. RESULTS: FINITE TEMPERATURE

FIG. 10. Equilibrium density vs 1/o for Ge at T=2
K. The curves are the results for models 1 and 2, and
the data points are the same as in Fig. 5. The arrow in-
dicates the critical stress oI, .

densities within 20% of the infinite-stress value,
stresses in the range —o )70 kgf/mm would be
required for Ge and —o'& 150 kgf/mm for Si.

Data for somewhat lower stresses can be used,
however, to extrapolate to infinite stress. For ex-

ample, Fig. 10 shows that a linear extrapolation
(on an n vs I/Ir semilog plot) would be appropriate
for stresses greater than -15 kgf/mme. A dif-

-g (kgf/mm~)

200 f00 50
I I I I l I

Sl

(t00) Stress
T =2K

In this section we are interested in the variation
of EHL properties with temperature. First wc
consider the systematic variations at low tempera-
tures, which involve derivatives of ground-state
properties. Then we consider the critical point of
the electron-hole liquid-gas system. Finally, we
comment briefly on scaling relations for EHL
parameters.

A. Low-temperature variations; compressibihty

The usual procedure for studying the properties
of the EHL at low temperatures is a perturbation
treatment. At sufficiently low temperatures, EHL
properties vary as T, like any other degenerate
Fermi system. The systematic low-temperature
variations depend on derivatives of ground-state
properties. In this section we consider four quanti-
ties: the isothermal compressibility E~ and quanti-
ties which describe the low-temperature variations
of the equilibrium density (5„),chemical potential
(5&), and total Fermi energy (5E).

The following definition of the isothermal
compressibility is valid for any density and tem-
perature:

D.04
I I I l I I I I

0 0.02
-f/cr(kgf/mm )

FIG. 11. As Fig. 10, for Si. The data points are
from Ref. 20.

=2n 2f '(n, T) +n Sf"(n, T),

where the prime denotes differentiation with
respect to density at constant temperature and
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P =n2Bf/Bn. For the ground state

KT(np) =(no fG') (10)

I I I I I I I I I I I I I I

where fG' ——f"(no,O) is the curvature of the free en-

ergy. The ground-state compressibilities for
models 1 and 2 are shown as a function of stress
for Ge and Si in Figs. 12 and 13, respectively. The
overall increase in ET(no) with stress is primarily
due to the decrease in no. At densities just above
those where the upper conduction and valence
bands empty, the free energy is relatively flat, re-

sulting in peaks in the compressibility. The peaks
occur just below the critical stresses o., and O.q,
and their size depends on how drastic the carrier
redistribution is. Because the predicted increase in

ET(no) just below o, is so large for both Ge and

Si, experimental measurements in this range of
stresses would be particularly interesting. Two
measurements of the compressibility have been ob-

tained in stressed Ge. We have found, for
T =1.9 K and cr=—5 5kgf./mm, that
ET-0.067+0.017 cm /dyn (n =0.47X10' cm ),
compared to a theoretical value of 0.041 cm2/dyn
for model 1. In addition, Ohyama et al. obtained
II.'T -0.023+0.002 cm2/dyn for T =0 and a simi-
lar but unspecified stress. Because the latter au-
thors did not take into account the compression of
the liquid by the strain well, however, we believe
that their result could underestimate the true value

by as much as a factor of 3. In view of the com-
plexity of the measurements, the agreement is fair-
ly good.

I I I I I I

4l

CP

IO Si
T= 0

&100& Stress

I I I I I I I I I I I I I I Il
3 10 30 100

-o- (kgf/mm~)

FIG. 13. As Fig. 12, for (100) stress in Si.

The parameters 6„,5„, and 6E are defined from
the following relations'.

n (T)=no[1 —5„(kT) ], 5„ in meV

IM(T)=p(0) —5„(kT), 5& in meV

EF(T)=EF(0)[1—5E(kT)'], 5E in meV

(1 la)

(1 lb)

(1 lc)

fk;„(n, T)= fk;„(n,O}

, [y, (n)+—ys(n)]T

where

(12a)

Because of the complications due to the band split-
ting and nonparabolicity, we outline the derivation
of these quantities. At low temperatures the kinet-
ic energy can be written

I0

7p', D(EF(0))
y(n}= k

3 N
(12b)

4I
C

N
E

O
C

I-
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IO

30 100I 10
-cr (kgf/rrim )

FIG. 12. Isothermal compressibility of the EHL
ground state as a function of (111)stress in Ge, for
models 1 and 2.

applies for electrons or holes. The low-tempera-
ture expansion is valid if

0&kT/Ep(T) «1
and

0&kT/[EF(T) —E,pI] «1 .

For the special case EF E,~I, then, ——Eq. (12a) is in-
valid. For other cases, these conditions may be
fulfilled by restricting the expansion to sufficiently
low temperatures. The quantity y, which is related
to the heat capacity, is a monotonically decreasing
function of density except in a narrow range where
the occupation of the upper v2 bands is small (but
nonzero). Thus anomalies occur just below o, and
0.

~ in quantities which depend on y.
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If the equilibrium density at the temperature T
is written n (T)=no+En, then it is easy to show
that

f'(nil+En, T)=0
= bnf"(no, 0)

——,[1'l«o)+}'i«o)lT' (I»

to first order in hn Th. us 5„may be written

niiftr(IIo)
tr'«o)+rI «o)l .

2k2

The results for 5„are shown in Figs. 14(a) and
15(a). The discontinuities at o, and ITs are due to
a discontinuity in y' for E~(0)=E,~I. For most
stresses y,

'
and yjj, are negative. Thus, as is fami-

liar from unstressed Ge and Si, the EHL expands
vAth temperature. Just below& 0; and O.I„how&ever,
5„becomes negative, implying initial thermal con-
traction. Although the range of conditions for the

I [ I I I I I III

thermal contraction is restricted, its observation
mould be very interesting.

The quantity 5& describes the variation in the
chemical potential with temperature. At a low-
temperature equilibrium density the chemical po-
tential can be written tu(T) =f(no+A, n, T), since f
is a minimum, and expanded to first order in hn.
Thus

Results for Ge and Si are shown in Figs. 14(b) and
15(b), respectively. The enhancement just below o,
and os shows the behavior of y, (n) and ys(II),
respectively, at the associated densities. The
broader o,-related structures in Si, as compared to
Ge, reflect the more gradual emptying of the upper
electron valleys.

The quantity 5z describes the variation in the
total Fermi cncrgy Ep =Ep+Ey %9th tempera-
ture. There are actually two distinct contributions
for each Fermi energy':

EP(T) =EP(0)+HEI + bE2 .

The first is due to the change in equihbrium densi-
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D'(Eg(0) ) D'(Ep(0) )

D(Eg(0)) D(Ep(0))

Ep(0)+Ep(0)
(17c)

In Eq. (17b) the primes denote derivatives with

respect to n, while in Eq. (17c) the derivatives are
with respect to E. For most stresses 5@ is dom-

inated by 5@i. Just below o, and Os, however, 5@i
becomes more important, because of the rapid
change in the density of states at the Fermi level.

The results shown in Figs. 14(c) and 15(c) are simi-

lar to the curves for 5„. It is easy to verify that
the expressions for 5„,5&, and 5E simplify for un-

stressed Ge and Si to the usual expressions. '

Numerical results for Xr(no) and the 5 quanti-
ties are listed in Tables III and IV, respectively,
where both tables list the same models and stresses.
In comparing models, it is useful to remember that
these quantities depend on derivatives of the free

energy (or a related quantity) and sometimes on

high powers of the equilibrium density. Close
agreement requires very detailed similarities be-

tween the models.

Measurements of the quantities discussed in this
section are sparse. Zero-stress values are listed in

the table and are in reasonable agreement with

theory. Feldman et al. '5 found 5„=6.7+2.0
meV at 13 kgf/mm in Ge, to be compared to
theoretical values of 5.1 and 3.4 meV for models
1 and 2, respectively. Kulakovskii et al. found

5, =0.21+0.3 meV for Si at an unspecified
stress, probably in the range 50—80 kgf/mm .
The corresponding theoretical values are -0.18
and -0.24 meV for models 1 and 2, respective-

ly. No experimental values for 5„or 5@ have been

published for either stressed Ge or stressed Si.

B. The critical point

ThermodynamicaHy, the definition of the critical
point can be written

Bp Bp,
BPl & Qpg

Thus the critical point corresponds to the inflec-

(18)

ty with temperature, while the second is an explicit
temperature dependence at constant density. Thus

5E =4i+5E2
where we flndi7

Ep (0)+Ep (0)
5@i=S„no

EF(0)+Ep(0)

tion point in the chemical potential versus density.

By performing the calculation for a plasma of elec-
trons and holes, we assume that other species such
as excitons, trions, and biexcitons are not impor-
tant near the critical point. This scheme was first
used by Combescot and has been followed in other
calculations of the critical point at zero and infin-

ite stress.
In order to obtain meaningful results for model

1, it was necessary to modify the correlation ener-

gies. The anomalies illustrated in Fig. 1 are great-

ly magnified in the second and third derivatives

which determine the critical point. To circumvent
this mathematical problem we fitted the original
model 1 correlation energies to a simple %'igner
form, consisting of a single term in Eq. (6), over an
intermediate density range corresponding to r, =2
to 3, and then extended the calculation to higher
and lower densities as needed. This procedure is
reasonable since the correlation energy is expected
to have a Wigner-type density dependence for
r, ~ 2.ss The modified model 1 exchange-correla-
tion energy is shown as a dashed curve in Fig. 1.

Results for the critical temperature T, and criti-
cal density n, in Ge are shown in Figs. 16 and 17,
respectively, while the results for Si are shown in
Pigs. 18 and 19. The results for models 1 and 2
are quite similar, considering the sensitivity of the
calculation to details such as curvature of the
correlation energy. We flnd gradual decreases in

both T, and n, with stress, with a more rapid
change associated with the depopulation of the

upper electron valleys and a leveling off at high
stresses. The reduction in T, follows from the
reduction in the liquid binding energy P, while the
decrease in n, approximately parallels the decrease

th go d-stt d ty 0 pt the
mediate vicinity of 0, .

Numerical results for the critical point at select-

ed values of the stress are given in Table IV, where

they are compared to other calculations. %'e show

the results of a T calculation for model 5 at zero
stress and model 6 at infinite stress. These models
are practically identical to those used by Vashishta,
Das, and Singwi but the results differ substantial-

ly. This is due to an error in the calculation of
Ref. 7 and those results have now been revised, in

agreement with the values in the table. ' We

show for comparison the results of Reinecke
et al.' calculated using their noninteracting fluc-

tuation model, which also uses a T expansion.
The values for T, obtained in this model are lower

than those obtained using the plasma model, while
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TABLE IV. Selected numerical results for properties of the EHL in stressed Ge and Si at finite temperature.

Material, —0
Stress direction (kgf/mm2) Model

5„
(meV 2)

5„
(meV ')

5E
(meV )

Tc
(K.)

n,
(1O" cm-')

Ge, (111) Zero

20

Infinite

Expt.
5

Flue.
1

2
1

2
1

2
1

2
1

2
6

Flue.

0.9—1 4'
1.24

0.98
1.15
2.91
2.25
3.90
2.67
5.65
4.19
5.94
5.41
6.84

22+0.9'
1.69

1.47
1.67
2.41
2.37
2.75
2.57
3.53
3.07
4.53
4.14
4.23

0.71+0.14
0.92

0.73
0.85
1.91
1.52
2.47
1.76
3.61
2.66
4.52
4.07
5.05

7 of-h

8.18j

6.73"
6.95
7.96
5.05
5.92
4.59
5.39
-3.95
4.53
3.61
3.99
3.72'

2.91"

05 1 of-h

0.50'

0.66"
0.28
0.31
0.065
0.087
0.042
0.062
0.018
0.028
0.010
0.014
0.0173

0.032"

Si, (100) Zero

12

Infinite

0.117
0.110
0.136
0.152
0.169
0.222
0.193
0.246
0.231
0.258
0.246

Expt. 0.55+0.020' 0.3—1.7' '
S O. 104 O.SOS

Flue.
1 0.513
2 0.542
1 0.599
2 0.613
1 0.685
2 0.727
1 0.750
2 0.823
1 0.829
2 0.898
6 O.S64

Flue.

0.05+0.025' '
0.078

O.OS6

0.082
0.094
0.104
0.113
0.146
0.135
0.175
0.174
0.196
0.186

26—30 "22—24
28.6'

23 5"
27.4
26.7
23.2
22.6
20.4
20.0
19.2
18.8
18.6
1S.3
24.4'

14.2"

10-14"'
S.1'

9.6"
3.7
3.5
1.7
1.6
0.90
0.82
0.63
0.58
0.52
0.48
0.78'
1.42"

'T. K. Lo, Solid State Commun. +, 1231 (1974).
G. A. Thomas, T. G. Phillips, T. M. Rice, and J. C. Hensel, Phys. Rev. Lett. 31, 386 (1973).

'R. B. Hammond, T. C. McGill, and J. W. Mayer, Phys. Rev. 8 13, 3566 (1976).
dM. A. Vouk and E. C. Lightowlers, J. Phys. C L 3695 (1975).
A. F. Dite, V. D. Kulakovskii, and V. B. Timofeev, Zh. Eksp. Teor. Fiz. 72, 1156 (1977) [Sov. Phys. —JETP 72, 604
(1977)].
fG. A. Thomas, T. M. Rice, and J. C. Hensel, Phys. Rev. Lett. Q3, 219 (1974).
IW. Miniscalco, C.-C. Huang, and M. B. Salamon, Phys. Rev. Lett. +3, 1356 (1977).
"G. A. Thomas, J. B. Mock, and M. Capizzi, Phys. Rev. B +8, 4250 (1978).
'J. Shah, M. Combescot, and A. H. Dayem, Phys. Rev. Lett. 38, 1497 (1977).
Computed using T expansion. The values differ from those given in P. Vashishta, S. G. Das, and K. S. Singwi, Phys.

Rev. Lett. +, 911 (1974), as explained in the text.
"Computed using droplet-fluctuation model. T. L. Reinecke, M, C. Lega, and S. C. Ying, Phys. Rev. B 20, 1562 (1979).
'A. Forchel, B. Laurich, G. Moersch, W. Schmid, and T. L. Reinecke, Phys. Rev. Lett. 46, 678 (1981).

the values for n, are consistently larger. Within
the plasma model, the T expansion overestimates
both T, and n„compared to the corresponding
exact-T calculation. Other theoretical esti-
mates' ' ' of the critical point in unstressed or

infinitely stressed Ge and Si using different ap-
proximations for the exchange-correlation energy
are in remarkably good agreement with the values
in Table IV. Also, Liu and Liu have calculated
the critical point at two values of stress, using a T
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FIG. 18. EHL critical temperature vs (100) stress in

Si, for models 1 and 2.
FIG. 16. EHL critical temperature vs (111)stress in

Ge, according to models 1 and 2.

expansion for the kinetic energy. Taking this into
account, their results are in reasonable agreement
with our calculations for the same stresses.

We wish to reiterate that the low-T expansion is
only valid if 0 & kT/EF «1 and
0 & kT/(EF —E»~ ) &&1 for both electrons and
holes. We find that these conditions are violated
at the critical point for all stresses in both Ge and
Si: The ratios fall outside the ranges (0—0.25) and

(0—0.75) for models 1 and 2, respectively, in Ge
and outside the range (0—1) for both models in Si.
In view of this, we find it surprising that the
differences between T and exact-T calculations are
not larger.

With our results for T, and n, we can justify a
posteriori the use of a T =0 exchange-correlation

energy. At the critical point this requires

kT, /(Rco~) &&1, where

=[4trn e (m +In ')]i»

We find that this quantity is less than 0.1 for all
stresses for both models in Ge and Si.

Experimental measurements of the critical point
in unstressed Ge and Si are listed in Table IV.
Measurements for stressed Ge include those of
Furneaux et al. (T, =4.7—5.7 K for —cr=6
kgf/mm ) and Feldman et al. 'I (T, =3.5+0.5 K
and n, =7.7+2.0XIO' cm for —o=13
kgf/mm ). These measurements are in reasonable
agreement with the present calculations. In
(100)-stressed Si, Forchel et a/. found T, =14.0
+0.5 K and n, =l.8+0.3X10' cm I for —o
=35 kgf/mm . Kulakovskii et ol. s found T, =14
+1.5 K for an unspecified stress, probably in the
range —o =50—80 kgf/mm . Finally, Gourley
and Wolf's'7s find T, =12—22 K for —cr =90
kgf/mm and T, )20 K for —o = 163 kgf/mm .
Until the large experimental discrepancies are

03—

I I I I I I ill I I I I I I I I

I I I I I I
)

I I I I I I I
l

Si
&IOO& Stress

E

O

0,03

IO
I

CP

0

I—

I I I I I I I~0.OI
I IOO3 IO 30

-cr (kgf/mm )

FIG. 17. EHL critical density vs (111)stress in Ge,
for models 1 and 2.
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FIG. 19. EHL critical density vs (100) stress in Si,
according to models l and 2.
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resolved it is difficult to make meaningful compar-
isons with theory.

C. Scaling relations

no
=0.08—0.14, (19a)

IfG I =7.8—10.2,
C

(19b)

' j/4
T~K

=0.016—0.025 K cm . (19c)3 4

no P

We have excluded from consideration a small
range of stresses around o„where we find some-
what larger variations. The ratio n, /no, in partic-

We comment briefly on scaling relations of
properties of electron-hole liquids. An early sug-

gestion was made' that certain combinations of
EHL properties should scale from one system (i.e.,
band structure) to another. More recently, Rein-
ecke and Ying have proposed on the basis of
theoretical arguments a revised set of scaling quan-
tities. They assume that the conduction and va-

lence bands are parabolic and that the exchange-
correlation energy can be written f,„„,-nt', using
the same value of p for different systems. In this
model the proposed scaling quantities are n, Inn,

~ fG ~

lkT„and AT, In~~(ttlp)' &, where p is an
optical average of the electron and hole masses. In
addition, they propose that p =0.25.

The validity of these ideas can easily be tested

by computing the above quantities as a function of
stress for Ge and Si, using models 1 and 2. We
find the following ranges of values:

ular, changes rapidly in the vincinity of o„as can
be seen by comparing Figs. 5 and 8 with Figs. 17
and 19. The values obtained for these quantities
using the fluctuation model are different from
the present values obtained using the plasma model
for the critical point. The experimental values

given in Tables III and IV for unstressed Ge, for
which there is good agreement among different ex-

periments, seem to favor the fluctuation model.
However, the variations with stress, exchange-
correlation energy model, and material from Eq.
(19) are expected to persist. We find, for example,
that the extreme values for the scaling quantities
are not necessarily obtained at zero or infinite
stress. We conclude that the "universal" scaling
quantities, originally proposed for model systems,
have somewhat more variation when considered in
detail as functions of stress. This undoubtedly oc-
curs because the simple form for the free energy
used in Ref. 78 is not applicable at finite stresses.
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