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The electronic Raman scattering efficiency for interband transitions between valence-
band states of p-type silicon is calculated taking into account the detailed band structure.
In contrast to the isotropic model, the real spectrum reflects the band anisotropy: the
spectrum extends from zero to rather large scattering frequency with a long tail; there ap-
pears a peak at about 500—600 cm~!. The result is compared with the experiment of

Jouanne and is found to be in fair agreement.

I. INTRODUCTION

The inelastic scattering of light (Raman scatter-
ing) in solids can arise through a number of pro-
cesses including scattering by elementary excita-
tions such as plasmons, phonons, and magnons. A
process which has received relatively little attention
is scattering by interband electronic transitions.!
Several years ago this effect was investigated
theoretically>~7 for semiconductors and semimet-
als. However, detailed calculations taking into ac-
count the actual complexity of the energy-band
structure of real solids have not, to our knowledge,
been carried out.

Only a few experiments have been done on inter-
band electronic Raman scattering, and they, for the
most part, concern intervalence-band scattering in
p-type silicon.”8~!! These experiments have been
carried out on rather heavily doped samples in
which the continuum of intervalence-band electron-
ic excitations overlaps the Raman-active phonon
energy. As a result of this overlap, interference ef-
fects appear in the Raman spectrum which cause
the latter to become more complicated than is
predicted by the simple theory.>—°

In order to gain a full understanding of the
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Here a,a’ refer to one-particle electronic states,
=(I,s,K) (, s, and X are the band index, spin in-
dex, crystal momentum, respectively) with energy
E, and wave function u,= | @); n’ is the number
of scattered photons, which we can take to be zero
(spontaneous Raman process); 7, is the classical
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intervalence-band electronic Raman scattering in
p-type silicon, it is important to have available the
theoretical Raman spectrum associated with
intervalence-band transitions when interference ef-
fects are absent. This problem may be referred to
as the “zero-order” approximation to the more
complicated interference problem and enters into
the formulation of the latter.>!> In this paper, we
present a detailed theoretical calculation of the
spectrum of the intervalence-band electronic Ra-
man scattering in p-type silicon and compare the
results with available experimental data.

II. LIGHT SCATTERING CROSS SECTION
FROM BLOCH ELECTRONS

We consider a light scattering process g—q’,
where ¢ =(¢€,0,q) (€, o, and {q are the polariza-
tion, frequency, wave vector, respectively); here and
henceforth unprimed and primed quantities refer
to incident and scattered light, respectively. In the
case of the scattering of light by noninteracting
Bloch electrons, the differential cross section per
unit frequency shift Q= —w’ per unit solid angle
o' is given by

_'fa‘ )faﬁs(ﬁQ+Ea"‘Ea') . (1)

|

electron radius; f,=f(E,) is the Fermi distribu-
tion function; S and R are scattering amplitudes
due, respectively, to the 42 term and the B - A
term in the electron-light interaction (see Fig. 1)
and are given by

Saalq',q)=(€" €)' | 1_gla), )
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FIG. 1. Light scattering processes from Bloch elec-
trons. An incident photon q is scattered into g¢’. Here
a,a’,a" refer to electronic states. (a): from the 42
term, giving amplitude S; (b) and (c): from the second-
order perturbation of the P - A term in the electron-light
interaction, giving two terms in the amplitude R.
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where m is the free-electron mass, azﬁ: q’

is the wave-vector shift, [I=1I1-€, [I'=11 - €’,

(| 03 | @) with O =1,IL 1T is the abbreviation of
(@04 )= [ dre T Tul(rOu,(r),

@)

and 1T is the momentum operator including the
spin-orbit contribution,

— - i
n=7p oXVV+4+—-pX7T,
p+4mc2 2p

the last term of which is negligibly small and dis-
carded.

The calculation in our case hence reduces to the
computation of S and R. Now, since the photon
wave vectors g,q’ usually are small (~10* cm™!
for w ~2.5 eV) compared to the Brillouin-zone size
(~108 cm™Y), we can assume “vertical transitions,”
i.e., set 4, q'=0 in (4), and hence in (2) and (3).
Then we only need to evaluate S and R for states
a,a’,a’ with the same crystal momentum k.
Therefore if one writes n =(,s) then
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We note that the amplitude S is nonvanishing only
for intraband transitions (n’'=n), while R can have
intra- (n'=n) as well as interband (n's4n) contribu-
tions. In this paper we are mainly concerned with
the interband excitations.

A simplified analysis assuming isotropic para-
bolic energy bands would give an interband spec-
trum which has zero temperature cutoffs at both
the low- and high-frequency shifts,

#Q,, =[1—(m;/my)Er
and
iy =[(my, /m;)—1]Ef ,

in view of the excitation process shown in Fig.

2(a), where m; and m,, are the light- and heavy-
hole masses, respectively, and Ey is the Fermi ener-
gy.!* The spectrum is schematically shown in Fig.
2(b). However, as is well known, silicon has highly
anisotropic valence bands, and in order to obtain
quantitative results a knowledge of the detailed
band structure over the whole Brillouin zone is
necessary.

III. INTERBAND RAMAN EFFICIENCY
FOR p SILICON

In order to obtain the band structure, we adopt
Cardona and Pollak’s full-zone k - P scheme.!® In
the one-electron Schrédinger equation for a state
| n K),

1o i e |1k
7 P +V+4m2c2(aXVV)p |nk)

=E,|nk),

substitution of the Bloch function |nk)=e'* T
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FIG. 2. (a) Isotropic parabolic energy bands with the
Fermi energy Er in the valence bands. Incident light ©
excites from the light-hole band (light) to the conduction
band (cond) an electron, which, by emitting a scattered
photon o', deexcites to the heavy-hole band (heavy),
leaving a net transition light—heavy. (b) These
intervalence-band transitions give a Raman spectrum
with cutoffs at 2, and Q,, (schematic).

X U, 7 gives an equation for the cell-periodic part
U,z

ﬁ—> -
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Here H,, is the Hamiltonian for k=0 and H,, is
the spin-orbit interaction
# -
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whose second term, linear in E is much smaller
than the k-independent first term, and is neglected.
Since the Bloch functions at k=0 (U, _,) form a
complete set of periodic functions, it is possible to
expand U, ¢ at any value of K (not only for small
k) in terms of U, —o if enough basis states are
taken. Without spin-orbit 1nteract10n, Cardona
and Pollak take four valence states, I‘l and I"25 ,
and eleven conduction states, 'y, s, 'y, T4,
I'}s, and 'y, where ! (lower) and u (upper) distin-

LIGHT-HOLE r-0.5

E(eV) —

SPLIT-OFF
~=-=- WITH SPIN-ORBIT
—— NO SPIN-ORBIT
FIG. 3. Silicon valence-band edge calculated by Car-
dona and Pollak’s full-zone k - p method (Ref. 12) with
and without spin-orbit coupling. The Fermi energy
Er=0.1 eV corresponds to an acceptor concentration
p~10%° cm—3,

guish two different states with the same symmetry.
We then need as parameters eight eigenvalues of
H,, corresponding to the above states and ten in-
dependent matrix elements (' | B | T'’) of momen-
tum P between these states. Diagonalization of a
15X 15 matrix at any point K in the Brillouin zone
gives the eigenvalues E, > of Eq. (8) and the eigen-
vectors C, ¢ which are the expansion coefficients
of U ]5 in terms of U, p_o (U,v =X, U, w0

The 1nclusion of the spin-orbit interaction
presents no difficulty. We are confronted with ad-
ditional parameters of the form (I" | H, | I), of
which only two are significant: (I'y5|Hy, | Tys)
and (Tys | Hg | Tys). One then needs to diagonal-
ize complex 30X 30 matrices to obtain correspond-
ing energies and wave functions.

Using the parameters for silicon given by Cardo-
na and Pollak,'® we calculated the energy bands
and eigenfunctions. We show in Fig. 3 the
valence-band edge of silicon with and without
spin-orbit coupling as well as the Fermi level
Er~100 meV corresponding to an acceptor con-
centration p ~ 10 cm~3. First we see that the up-
permost band (heavy-hole band) is rather flat in
the [110] direction. Hence the region where inter-
band transitions are possible is relatively extended,
from k ~0.045(2 7/a) to k ~0.19Q27 /a). We can
expect that this rather large k range should give
the Raman spectrum a long tail (up to 1 eV~ 8000
cm™~!). Second, in the [100] and [111] directions
(not shown in this figure), the heavy-hole and the
light-hole bands are degenerate (without spin-orbit).
Therefore the transition between these two bands
gives contributions near zero-frequency shift in the
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Raman spectra. The third thing that we can say is
that the spin-orbit interaction mainly perturbs the
states near I" and gives small splittings of the
light- and heavy-hole bands in the [100] and [111]
directions. The principal effect of including the
spin-orbit interaction would be to give low-
frequency-shift contributions to the Raman scatter-
ing arising from transitions between the split light-
and heavy-hole bands. Since our primary interest
in this paper is the frequency-shift region above
400 cm ™!, we neglect the spin-orbit interaction. In
a subsequent paper we shall consider the low-
frequency-shift region in detail and include the
spin-orbit interaction.

We thus calculated without spin-orbit coupling'®
the Raman amplitude (7) as a function of k be-
tween two valence states n and n’, taking all 15
states as intermediate states n"’. Since there are
three valence states, there are three combinations
(n,n’), of which at T =0 two are realized depend-
ing on the Fermi level Ep. The momentum matrix
elements appearing in (7) can be given in terms of
(C|P|T') as

(nk |P|n'K)=K8p+(U,7 | B | Up)

=K+ S (U, 2ol Bl Up o)

m,m’ B
(m)k ~(m’)
anTc’ C, 7 -

An example of the Raman amplitude is shown in
Fig. 4 for n =A, and n'=A;, for incident light
#iw=2.54 eV (488 nm) polarized along y and scat-
tered light polarized along x. Note that this Ra-
man tensor R ¥ (x,p) is fairly dependent on k in
the region we are interested in, k =0—0.4(27/a).
Integration of this Raman tensor in k space [see
Eq. (5)] gives the Raman efficiency (cross section
divided by crystal volume). The zone integration
was carried out by using Gilat’s extrapolation
method.!’

Figure 5 shows the calculated Raman spectra at
T =0 for incident light #iw=2.54 eV (488 nm) po-
larized along x or y, for two concentrations
p=1.13x10% cm~3 (Ep=92 meV) and
p=1.60X10% cm~? (Ep =114 meV). First note
that the intensity in the parallel configuration (x,x)
is much smaller than in the perpendicular configu-
ration (x,y). This can be explained as follows. The
Raman operator R (e',e), e,e’' =x,y,z tragsfonns
like a tensor of rank two. At I point (k =0)
valence states are three eigenfunctions of H, be-
longing to I'ys (X, Y, and Z). The nonvanishing
matrix elements of R (x,x) are

FIG. 4. Raman amplitude R (dimensionless) as a
function of k||[100] between two valence bands As and
A,, for incident light #iw =2.54 eV polarized along x and
scattered light polarized along y.

(X |R(x,x)| X)=(Y|R(x,x)|Y)

=(Z|R(x,x)|Z) . 9)
As for R (x,y), there are two elements,

(X |R(x,9)| Y)~(Y | R(x,p) | X) .

Now for k-0, if one denotes the direction cosines
of k as (a,b,c), then one of the valence states

Z=aX+bY +cZ

is lower in energy than almost-degenerate two oth-
er states,

X=a'X+b'Y+c'Z,
Y=a"X+b"Y+c"Z,

~ 1.5F
"o (x.y) '
‘T"’ ’_y\ p=L13x 1020¢m3
o N p=160x 1020 m™3
~ L.OF S
> S\, A=488nm
[ =4 ‘\
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FIG. 5. Calculated interband electronic Raman spec-
tra at T =0, for concentrations p =1.13X10% cm—3
(solid curves) and p =1.60X 10%° cm 3 (dashed curve).
Here (x,x) or (x,y) indicates (incident polarization, scat-
tered polarization). Incident light energy is #iw=2.54 eV
(A=488 nm).
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where (a,b,c), (a’,b’,c'), and (a",b",c"’) are mutu-
ally perpendicular. The matrix elements of R (x,x)
between X and ¥ almost vanish:

(X|R(x,x)| Y)=a'a"(X | R (x,x) | X)
+b'b"(Y|R(x,x)| Y)
+c'c¢"(Z |R(x,x) | Z)=0,

because of (9) and similarly (X or ¥|R (x,x) | Z)
~0, while R (x,y) has nonzero elements for any of
two states (except for some symmetry directions).
For example,

(X |R(x,p)| Y)=a’b"(X | R(x,p) | X)
+a"b'(Y|R(x,p) | X) .

In the perpendicular configuration (x,y), one can
clearly see, as expected, the spectra extend from
zero to the large-frequency region with a long tail.
The spectra have singularities (shoulders) as well as
a broad peak at about 560 cm~!. The peak shifts
toward high frequencies when one increases the
concentration. These features can be interpreted
by the following phase space arguments (see Fig.
6). The transition n—n' is possible in the k space
only where the condition E, ¢ < Er <E,. 3 is satis-
fied. If the matrix elements are assumed constant,
the cross section do(€)/d() is proportional to the
area of the surface

fion(K)=E, 7 —E, 7 =HQ

contained in the above region. The shoulders are
due to the anisotropic forms of the valence bands.
If one increases the concentration, the Fermi sur-
faces E, » =Ey displace outward and the surfaces
@y (K)=Q with larger Q will be included in the
region E,  <Ep <E,.¢ hence the displacement of
the peak toward high Q. This analysis combined
with experimental information about peaks and
shoulders by changing the concentrations might
give insight into the valence-band structure away
from the I" point.

Finally, Fig. 7 shows the Raman intensity at the
peak for a given concentration as a function of
incident-light energy. One can clearly see the reso-
nance behavior: The intensity increases as the
incident-light energy approaches the energy gap 3.3
eV. This behavior is well approximated® by the
inverse-energy rule (E, —#iw) ™!, obtained by taking
into account only the one-dimensional critical
point Ej at 3.3 eV,

T T T
Wyzlk) =Q

a Eax= EF
——~{b Egu=Er Eg=92meV

¢ Eqx=EfF

ky (2mw/a)

0.00 N ¥ 1 ]

0.00 0.05 © 0.10 0.15
ky(2m/a)

FIG. 6. Phase-space analysis. Inset: Isotropic band
model of Fig. 2(a). The (001) section of surfaces of con-
stant energy difference wy(K)=0 (where fiwp=E, 7
—Ej7) for various  (solid curves) as well as two Fermi
surfaces E;p=Ey (I indicates light hole) and E,>=Ey (h
indicates heavy hole) (dashed curves) are shown. The
interband transition /—h is possible in the hatched re-
gion where E; < Er <E,7. If the Raman matrix ele-
ments are assumed constant, the cross section at ),
do(Q)/dQ, is proportional to the area of the surface
on(K)=Q, and one obtains the spectrum of Fig. 2(b).
Main figure: In real silicon, essentially the same argu-
ments hold. Here one has three Fermi surfaces (dashed
curves), (a) E,p =E, (b) E;3=Ep, and (c) E;» =Er as
well as three sets of surfaces w4;( E)——*Q, on(k)=Q,
and @gy( E)=Q, of which only the first set is shown in
this figure (solid curves with Q values in cm~!). The in-
terband transitions 3—4 are possible only for those
parts of surfaces w,3(k)={Q that are included by two
Fermi surfaces b and ¢ where the condition
E;v <Er<E gy is satisfied. This gives the long-tailed
spectra as shown in Fig. 5.

IV. COMPARISON WITH EXPERIMENT
AND DISCUSSION

Figure 8 shows Jouanne’s experimental Raman
spectrum'® of silicon doped with boron '°B with a
concentration p =1.13X10° cm—3 at T=2 K as
well as our calculated electronic Raman spectrum
corresponding to the same concentration at 7 =0
K. Since it is difficult to obtain experimentally the
absolute intensity, we fitted the value at Q=1150
cm~! (see below). The experimental spectrum has
various phonon contributions: The peak near



7624 M. A. KANEHISA, R. F. WALLIS, AND M. BALKANSKI 25

A(nm)
\700 600 500 400
ST T T T T
_IL
‘NU)
o
< 10f
Q
c
L
K]
]
® osf
o
£
o
©
ookt 11110
2 3
hw(eV)

FIG. 7. Resonance spectrum. Solid curve: calculat-
ed result for the Raman peak intensity at T=0 as a
function of incident light energy #w for a given concen-
tration p =1.13X 10%° cm~* with Er=92 meV. Dashed
curve: contribution only from the one-dimensional
singularity Eo would give the (E; —#w)~" behavior.
Closed circles: Experimental results (Ref. 15) (T'=2 K)
at Q=200 cm~'. The value at #iw=1.92 eV (A=647
nm) was fitted to the calculated absolute value.

Q=520 cm ™! is due to the zone-center optical
phonons and the peak at 642 cm ™! is the 1°B local-
ized mode, both interfering with the electronic con-
tinuum.3~!! The band at 950 cm ™! is the contri-
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FIG. 8. Solid curve: calculated electronic Raman
spectrum at T =0 in (x,y) configuration. Dashed curve:
experimental Raman spectrum (Ref. 15) for '°B-doped
silicon at T =2 K; [111] incidence, back scattering, po-
larization not analyzed. Both spectra for a concentra-
tion p =1.13x 10 cm~3 (Er=92 meV), and incident
light #w=2.54 eV (A=488 nm). Absolute experimental
value was obtained by comparing the value at Q=1150
cm™! (indicated by an arrow) with theory. Various pho-
non contributions are indicated.

bution of two zone-edge TO phonons.!® There is
also a two-phonon background,'® extending up to
Q=2w10=1040 cm~!, whose contribution is seen
at the antiresonance frequency Q ~460 cm™!,
where otherwise the intensity should vanish. The
spectrum for Q> 1040 cm ™! is purely electronic
and in fact the agreement with theory is satisfac-
tory.

Apart from the interference region, whose de-
tailed analysis has appeared elsewhere,? there is a
large discrepancy at low frequencies (£ <400
cm™!). The experimental spectrum near Q=0
contains stray laser light (up to 80 cm~! according
to Ref. 18). The intraband transitions might con-
tribute to quasielastic scattering but this extends
only to @ ~Qur ~200 cm™! (Q indicates wave-
vector transfer as before, and vy is the Fermi velo-
city), and further these single-particle excitations
are heavily screened by a factor (Q /gg)*~( ;:;)4
(g1F is the Thomas-Fermi screening wave vector).!
Hence it is somewhat difficult to explain this rath-
er large intensity at low frequencies. The spin-
orbit interaction would give rise to two effects.
First, the threshold of the intervalence-band transi-
tions is displaced by a frequency corresponding to
heavy-light splitting at the Fermi level of the
highest valence band in [100] and [111] directions
(see Fig. 3), which is typically of order of 250
cm~!. The second effect is the contribution from
spin-density fluctuations in the intraband transi-
tions,! which are not screened, and might explain
the behavior for Q <Qur. Detailed analysis of this
low-frequency region will be the subject of future
investigations.

In view of the strong screening effects on intra-
band scattering, one may ask whether screening
has significant effects on interband scattering.
This question has been addressed by Mills et al.*
who find that the effect of electron-electron in-
teractions is small when the carrier concentration
is large (> 10" holes/cm?), as is assumed in the
present paper.

In Fig. 7, our resonance curve is compared with-
experiment.'® Observed Raman intensities at
Q=200 cm™! are plotted as a function of incident
laser energy (closed circles) by fitting the value at
#iw=1.92 eV (A=647 nm). Experimental reso-
nance behavior is well explained by our theory.

Finally we note that the calculated electronic in-
tensity furnishes a reference to obtain absolute
phonon intensities. For instance, from the spec-
trum of Fig. 8, we get the total 2 TO efficiency
1.22%x107> cm~! sr~ 1.
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