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Electronic collective modes of a system of large numbers of equally spaced, parallel

two-dimensional electron layers are discussed within a self-consistent-field approach.
Plasmon dispersion relations for the finite system as well as for the infinite periodic sys-

tem are obtained. It is shown that the optical-plasmon frequency of the periodic system

goes into the known two- or three-dimensional limit, respectively, depending on whether

qa ))1 or qa (&1, where q is the wave number in the two-dimensional plane and a is the

layer spacing. Effect of a uniform static external magnetic field oriented normal to the
two-dimensional layers, on the collective-mode spectrum, is discussed with the use of the
self-consistent-field and hydrodynamic approximations. It is shown that magneto-

plasmons, helicon, and Alfven waves can all exist in such a periodic system under suitable

conditions. The theory is generalized to a system where the alternate layers are electrons

and holes. The relevance of these results to semiconductor superlattice systems (both

types I and II) is pointed out.

I. INTRODUCTION

The development of molecular beam epitaxy
(MBE) in the last few years has made it possible to
produce high-quality artificial superlattices made
from two different semiconductor materials (e.g.,
InAs-GaSb, GaAs-A1As, Ge-GaAs, etc.) with simi-

lar lattice structure and matching lattice parame-
ters. In the direction of superlattice growth (taken
to be the z direction), one has rrt atomic mono-

layers of material A deposited in an atomically
sharp way on n atomic monolayers of material B
to form a new superlattice unit cell of size (m+n)
lattice spacings "a" in the z direction. A macro-
scopic sample of such A-B superlattice is a new

bulk material and has properties intermediate be-
tween materials A and 8.

The physics of such semiconductor superlattices
have been extensively studied' in the last few years.
Two types of superlattices have so far been studied
in great detail. One of these (referred to as type I)
is the GaAs-A1„6a~ „As system where the band

gap of GaAs is contained entirely within the band

gap of Al„Gai As giving rise to band-gap
discontinuities in both the conduction and valence
bands of the resultant superlattice system. This
band-gap discontinuity at the interface of the two

materials gives rise to potential wells in the con-
duction band of GaAs layers separated by potential
barriers in the Al„Ga& „As layers. Selective dop-
ing of the AlsGai, As layers by the modulation-

doping technique produces ionized donors in these
layers. The electrons released by these donors drop
into the potential wells on the GaAs side. The
one-dimensional potential well quantizes the elec-
tronic motion along the superlattice direction, and
the GaAs conduction band splits into a series of
subbands, each of which represents "free"
effective-inass-type electronic motion in the plane
perpendicular to the superlattice direction. If the
electron density is not too high so that only the
lowest subband is occupied by electrons, then such
a multilayer, superlattice system at low tempera-
tures is a periodic system of two-dimensional elec-
tron gas (2DEG). Much attention has recently
been focused on these modulation-doped GaAs-
Al Gai As superlattice systems because of the
possibility of achieving very high mobility due to
the spatial separation of the ionized donor impuri-
ties (in the Al, Gai As layers) and the mobile
carriers (in the GaAs layers).

The other type of superlattice system (referred to
as type II) is typified by an InAs-GaSb systems
where the band match-up is such that the
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conduction-band minimum of InAs is below the
valence-band maximum of GaSb. Thus in the
InAs-GaSb heterojunction, a spatial separation of
electrons and holes takes place due to a transfer of
charge (-10' cm ) from GaSb to InAs due to
the unusual lineup of bulk energy bands. Thin
(layer thickness (170 A) type II superlattices of
InAs-GaSb are found to be semiconductors exhibit-
ing spatial separation and confinement of electrons
(in InAs) and holes (in GaSb) which are thermally
excited. However, superlattices of thickness

0

greater then 170 A behave as semimetals, contain-
ing spatially separated electrons (in InAs) and holes
(in GaSb} even at zero temperature. For our pur-
pose it is sufficient to consider the type-II superlat-
tice as a one-dimensional periodic arrangement of
two-dimensionally confined electrons and holes
which are spatially spearated from each other.

Various aspects of the physics of these semicon-
ductor superlattices. have beem clarified in' the last
few years. ' Thus, subband formation and cyclo-
tron resonance of the two-dimensional carriers
have been investigated by the far-infrared absorp-
tion spectroscopy and resonant-light-scattering
technique. Much attention has also been
focused ' on the transport and magnetotransport
behavior of these systems as well as on the possible
laser operation' of the quantum wells. One aspect
of the physics of these systems that is of particular
interest to us is the electronic collective-excitation
spectrum of a periodic array of equally spaced
charge layers. The collective mode or the plasmon
of a single charge layer is known" to have a fre-

quency co& proportional to square root q' of the
wave number q in the long wavelength limit. On
the other hand, three-dimensional plasma frequen-

cy has the well-known' constant value indepen-

dent of wave number in the long wavelength limit.
The superlattice, being a periodic system of 2DEG,
falls intermediate between two- and three-
dimensional systems. When the separation between

the adjacent layers is very large, we expect negligi-
ble coupling between them, giving rise to two-

dimensional behavior. However, for vanishing

separation between adjacent layers, the system is
effectively three-dimensional. Since the layer
thickness of a superlattice can be controlled by
MBE technique, such a system provides a way of
studying transition from two-dimensional to three-
dimensional behavior in the collective-mode spec-
trum as the layer thickness is reduced. The situa-
tion under an external magnetic field along the
direction of superlattice growth (i.e., perpendicular

to the two-dimensional layers) is also interesting
because the "three-dimensional" case of small
separation should allow for extra modes that can
propagate along the magnetic field dirix:tion in ad-
dition to the familiar magnetoplasmon modes.

In this paper we study the collective-excitation
spectrum of such superlattices in the simplest pos-
sible model. Our model is that of a periodic ar-
rangement in z direction of a large number of
two-dimensional charge layers which occupy the xy
plane. We consider the layers to be infinitely thin.
To allow for both types-I and -II superlattices, we
consider both the cases of the layers all having the
same charge carriers (electrons) or alternate layers
of different charge carriers (electrons and holes).
We consider situations both in the presence and in
the absence of external magnetic fields. Our basic
formalism is that of self-consistent-field (SCF)
technique. We obtain the dynamical-response
function for the superlattice from which the
collective-mode spectrum is calculated. In the case
of nonzero magnetic field, we find it more con-
venient to obtain the collective-mode spectrum
from a hydrodynamical formulation rather than
working with the complete magnetoconductivity
tensor calculated in the SCF formalism.

There have been a number of theoretical studies
pertaining to the collective-excitation spectrum of
2DEG. Stern originally obtained" the dispersion
relation of two-dimensional plasmons within a SCF
approximation, showing that the plasma frequency
vanishes in the long wavelength (q~0} limit as
q', where q is the wave number. There have
been a number of theoretical papers' ' following
Stern's work where the plasma dispersion for the
realistic two-dimensional system, as occurring, for
example, in space-charge layers on semiconductor
surfaces, have been derived taking into account
physical effects arising from the fact that in any
real system the 2DEG is submerged in a three-
dimensional environment. There have also been
papers' ' dealing with the collective modes of a
single 2DEG in the presence of a perpendicular
magnetic field. Experimentally, plasmons and
magnetoplasmons have been observed' in 2DEG
occurring in an n-type inversion layer on silicon
surface as well as in electrons bound on helium
surface. Theis has reviewed the subject of collec-
tive modes in inversion layers (which serve as pro-
totype 2DEG systems) in a recent paper.

Quite independent of these developments in ac-
tual two-dimensional systems, Fetter used ' a hy-
drodynamical approach to treat the problem of
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electrodynamics of periodic array of electron

layers. Part af our work could be considered as
the SCF analag of Fetter's hydrodynamic treat-
ment of electrodynamics in a periodic array. Re-
sults that we obtain are similar to those obtained

by Fetter, since hydrodynamic theory gives results
equivalent to SCF approach if the compressibility
or the hydrodynamic pressure term is empirically
chosen. Fetter, however, treated only the case of
zero magnetic field. Our hydrodynamic treatment
of collective modes in the presence of an external
magnetic field is a generalization of his work. 2' In
the context of transition-metal dichalcogenides,
Visscher and Falicov treated the problem of static
response of a periadic array of electron layers
within a SCF approach in the absence of any exter-
nal magnetic field. They do not touch upon the
subject of dynamic response and collective modes
of such a layered system, which form the principal
content of our work. Neither Fetter ' nor Visscher
and Falicov considered the electron-hole case as
we have done in this paper. After our work was
completed, we learned that Bloss has done a simi-
lar study of collective modes of a periodic array of
2DEG by generalizing earlier work of Das Sarma
and Madhukar on spatially separated two-
component two-dimensional plasma in solids.
Where the two works overlap his conclusions are
similar to ours.

The plan of the present paper is the following:
In Sec. II we describe the SCF treatment of a su-

perlattice in the absence of any external magnetic
field. In Sec. III we consider the SCF response for
the nonzero magnetic field situation following the
work of Greene et al. for the 3DEG and of Chiu
and Quinn' for the 2DEG. In Sec. IV we intro-
duce a hydrodynamical model following Fetter '

and explicitly obtain magnetoplasmons and the
other possible mades in the presence of an external
magnetic field. In Sec. V we consider the
electron-hole system relevant for the type-II super-
lattices. We conclude in Sec. VI, pointing out
some possible future improvements of our theory,
discussing experimental significance of some of our
findings, and canna:ting our work with prior work
on the subject.

II. SELF-CONSISTENT RESPONSE
FOR ZERO MAGNETIC FIELD

sible. We consider a periodic array of charged
layers of two-dimensional electron density n, per
unit area. We consider the layers to occupy the xy
plane and the separation between adjacent layers in
the z direction is taken to be a length "a" which is
the periad of the superlattice. The motion of elec-
trons in the xy plane is assumed to be completely
free. For the actual superlattice this last approxi-
mation is quite valid within an effective-mass ap-
proximation.

The single-particle wave function for an electron
in this model superlattice is given by (suppressing
spin variables)

In Eq. (1},I is the layer index and k is a two-
dimensional wave vector describing the planar
motion in the (xy) plane. A is the two-dimensional
area of each layer (needed only for normalization
of the plane wave) and all vix:tars with lower case
letters (e.g., r, k} denote two-dimensional vectors
in the xy plane. The envelope function g(z —la)
denotes the confinement of the electrons in the lth
layer which is positioned at z =la with
1=0,+1,+2, etc. In our approximation we choose

( g(z —la)
~

i=5(z —la) . (2)

Thus we are assuming each layer to be strictly
two dimensional with no overlap between adjacent
layers. This approximation is made mainly for the
sake of convenience, allowing us to do most of our
calculation analytically. It is expected to be
reasonably good for low electron densities when

only the lowest two-dimensional subband in each
quantum well is occupied by electrons.

The noninteracting single-particle energy is given
by (with m as the mass for planar motion}

k2
Ek t=E(k)= +Eo, (3)

where Eo is the quantization energy for the sub-
band motion which is the same for all the layers.
With no loss of generality we put Eo Oand-—
neglect it from further considerations. The Hamil-
tonian for the superlattice can now be written as

H =Ho+H;„, ,

where

Our model for the superlattice system as dis-
cussed in the Introduction is the simplest one pos- and

0 —QEk tCk tCk t,
k, l
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ht = 2~ X g vl~l2I3I4(q)
k, k ', q l)l21314

k I k'I k' I

Xck (6)

where uq(z) is the Fourier transform in the xy
plane of the three-dimensional Coulomb interaction
u(r, z). Since the lattice dielectric constants of the
two materials forming the superlattice are very
similar, we neglect any image potential term in the
interaction to write

2

u(r, z) =
(„2+ 2)1/2 (8)

where a. is the background dielectric constant of
the system. The matrix element given by Eq. (7) is
very simply obtained for our model wave functions
of Eq. (2), giving

ul&l21314( 1 )=A '5l&l3'51214vq(z) I s=(l& —12)a ~

(9)

where 5I I, etc., are Kronecker delta functions.
1 3

Using the known form of the Fourier transform of
the two-dimensional Coulomb potential,

The operator Cz l(C & I) annihilates (creates) an

electron with 2D momentum haik in layer I. The
interaction ul I I,l,(q) is the matrix element of the

Coulomb interaction u(r, z) between wave func-
tions of different layers given by Eq. (1). It is
given by

vl I I I ( q) = (il4 I vq«) I i3~4)

where a =(k, l ) is a composite index defining the
noninteracting single-particle state of Eq. (1), and

f is the occupation factor which is unity or zero,
depending on whether or not the state

l
a) is oc-

cupied. %e work strictly at zero temperature. In
the presence of an external perturbing potential u'"

due to a point charge placed at the origin, the den-

sity matrix will be modified to

p=po+p . (14)

The perturbation p' is to be determined from the
equation of motion for the density matrix

Bt fi
[p,H+—u],

where

~CX+ U111 (16)

In Eq. (16) u'", the potential induced in the sytem
due to the external perturbation, is to be obtained
self-consistently. We make the Hartree SCF ap-
proximation to Eq. (15) (which has been implicit in
our definition of p) in which the full Hamiltonian
H of Eq. (4) is replaced by the noninteracting part
Ho given by Eq. (5). This would give us the so-
called' random-phase-approximation (RPA)
response function.

Replacing H by Hu in Eq. . (15) and introducing
a frequency co through the Fourier transform in

time,

p(aI)= I dtp(t)e'"',

we can easily solve Eq. (15) in linear approxirna
tion, giving

f
pan ~ E .E na

uq(z)=2me exp( —q lz l
)/qa

in Eq. (9) gives
2m'e —q I

I
&

—f2 la
2

"I I I I (q)= I, I I I
Kg

='8I)I3'81214 VI(q)
l I=I) —l2 ~

where

(10)

(19)

where u =&a
I

v la') and E =Ek I. To ob—tain
u« ——v~~ +u~~, we follow the prescription leading
to Eq. (11), remembering that u'" is the potential
due to a test charge of strength e placed at the ori-
gin. A straightforward calculation gives

v'"
~ = (a

l

u'"
l

a') = ( k, l
l

u'"
l
k ', I')

=sit Vl(q =
l

k —k '
l
),

2

V( )
2'
vqA

Following the SCF prescription of Ehrenreich
and Cohen, we now introduce a single-particle
density matrix defined as

(12)
and

u'" =(k, i
l

u'"l k', i')

=5~ q, +-5II +An(, (q, co)VI l, (q) .
I)

(20)

Vl(q) in Eqs. (19) and (20) has been defined in Eq.
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(12). The function ni(q, co) in Eq. (20) is the
Fourier transform of the induced electron density

ni( r, t) on the 1th plane. It is given by

where

vi(q, io)=(l, k+q
~

v ~/, k) . (22)

k 1 k-
ni(q, t0) =A 'vi(q, c0) g

(21)

I

Using Eqs. (19)—(22) in Eq. (16) we get the follow-
ing:

Ai, —A -, , i,
vi(q, to)=Vi(q)+g vi, (q, co) g Vi i, (q) .

k, l& k —q, 1&
I J

(23)

vi'"(q, to) = vi(q, t0) —II(q, N)

X g Vi i(q}vi(q, to) . (24)

By writing vi(q, co) =vi'"(q, co)+vi"(q, to) where
vi"(q, to) is given by Eq. (20), we can obtain a true
response equation in which the induced density
fluctuation ni(q, c0) is given in terms of the exter-
nal potential vi'"(q, co). In Eq. (24) II(q, to) is the
polarizability" of a 2DEG and is defined to be

11(q,) =a g Ek (
—E- (

—%co
(25)

II(q, t0) is independent of the layer index l for the
obvious reason that the occupancies (f &

's) and the
energies (Eg's) are independent of layer index l.

Collective modes of the system are given by the
solutions of Eq. (24) for zero external potential.
Putting vi'"=0 in Eq. (24) we get

"l(q oi) 11(q ) g VI —I'(q)vi'(q, t0)=0
1'

In matrix notation Eq. (26) can be rewritten as

u —rrvU=O.

(26)

(27)

For a self-sustaining solutation we must have

/1 —IIV
f
=0.

Clearly e= 1 —IIV is the general dielectric matrix
for the superlattice, and collective modes are given

by the vanishing of the determinant of e

(28}

Equation (23) is the basic dynamical self-consistent
linear-response equation for the total potential of
the system. Since our interest is to obtain the
collective-mode spectrum it is more convenient to
write down the self-consistent equation for the
external potential using Eq. (19) in Eq. (23),

I &ii IIVi —iI =o -~ (29)

(30)

In writing Eq. (29) we use the facts that II(q, co) is
a scalar function independent of layer index l, and
V depends on l, l' only through the difference l l'—
[cf. Eq. (26)].

For a system with a finite number N of layers
(which is not a superlattice), Eq. (29) defines an
N)&N determinantal equation with N normal
modes which are the collective excitations of an N
component, spatially separated two-dimensional
plasma. This is the N-component generalization of
the earlier work' ' ' on the collective modes of a
two-component, two-dimensional plasma.

Since we are interested in a true superlattice
(N~ ao ), we would not pursue the N-component
problem in any great detail here. However, we
make two comments about the nature of the long
wavelength, collective modes implied by Eq. (29)
for an N-layer system in the strong coupling
(qa «1) limit: (i) The highest energy mode (the
so-called optical plasmon or OP) of Eq. (29) would

go as O(q'~ ) in the long wavelength (q-+0} limit,
with the coefficient of the q

'~ term proportional
to (Nn, )'~ . This is just like a regular (2D)
plasmon of a single-layer 2DEG, but with an
enhancement of the coefficient by a factor of N'~ .
(ii} All the other (N 1) modes wo—uld be "acous-
tic" in nature in the long wavelength limit going
linear as O(q). These modes would, however, be
damped in general. ' In the opposite limit of
weak coupling situation (qa » 1), one recovers N
independent plasmons of single layer 2DEG each
going as O(n, ' q'~ ) in the long wavelength limit.
The long wavelength behavior of Eq. (29) for a fi-
nite N layer system can be easily extracted explicit-
ly by using the known" long wavelength form for
the polarizability of a 2DEG:

r

Pls
II(q, co)=

Nl Q7
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The function V has been defined in Eq. (12) and is
given by

2

VH'(q)= Vi i'-(q)= e el —'I2me — I—I

aqua
(31)

By replacing the zero on the right-hand side of Eq.
(32) with Ut'"(q, co},we get the induced density fluc-
tuation on the lth layer in terms of the external po-
tential.

Rewriting Eq. (32}gives the following condition
for the self-sustaining collective mode in a super-

lattice:

t (q )nt (q to) =0
I'

(33)

However, a superlattice is completely periodic in z
direction wIth periodicity a. Thus, we can use the
following ansatz as a solution for Eq. {33):

ik la
ni(q, co)=no(q, to)e ' (34)

where the solution is assumed to be of the form
its,e * in z direction with z =la, where l =0, +1,+2,

etc., are the possible discrete z values allowed in
the superlattice structure. The "wave number" k,
that labels the inductxl density fluctuation in the
periodic system is restricted within the first Bril-
louin zone of the superlattice, i.e., 0 & k, & 2n. /a.

With Eq. (34) in Eq. (33), we obtain

-ik (I—1')a
1 —II(q, ~)g V, , (q)e ' =0.

l'

Substituting for Vi t (q) from Eq. (31) in Eq. (35}
gives

2s'e —q I I—I'~a —ik (i—P)a
1 = 11(q,to) e

Kqa

The sum over l' in Eq. (36) goes over all positive
and negative integers including zero. Introducing

%e now consider the periodic superlattice sys-
tem and obtain the collective modes from Eq. (26).
It is more convenient to work with the induced
density fluctuation nt(qc0, ) which is given by Eq.
(21). Using Eq. (21) in Eq. (26) and using the de-

finitio for II{q,co) from Eq. (25} gives

Ani(q, co)II(q, co} ' —A g Vt i (q)ni (q, co) =0 .
I'

the function S(q,k, ) define by

S= g exp[ —q ~
l —l'

~

a —ik, (l —1')a j,

allows us to write Eq. (36) as

1= II(q, to)S(q, k, ) .
xqA

(38)

1 2~e'II( )
slnhqa

I~qA
'

coshqa —cosk, a

The solution of Eq. (40) for a given k, can be ob-

tained in a straightforward fashion since II(q, co) is
exactly known. " We note that Eq. (40) defines a
denumerably infinite set of collective modes de-

fined by k, which is a continuous variable in the
first Brillouin zone (0&k, &2tr/a). Thus Eq. (40)
is the N~ ao generalization of the matrix equation
(29) deflning the N modes of an N layer syste-m.

We consider the strong (qa « 1) and the weak

(qa && I) coupling limits of Eq. (40) explicitly in

the following.

&. Strong coupling case (qa « I )

We flrst consider the k,~ situation. Taking

qa -+0 111111tof Eq. (40} gives

1 = II(q, to)
vqA I —costa

(41)

By using Eq. (30) for the long wavelength polariza-
bility II(q, to), we obtain the following collective-
excitation frequency in the long wavelength limit
(q~0):

I/2
2&plse

co= (1—cosk, a) '~ ~aq .
KEPIS

(42)

Thus, all the modes for nonzero k, in the strong
coupling case are "acoustic" plasmons proportional

We should point out that periodicity ensures that S
is independent of layer index l. The sum S can in
fact'be evaluated exactly to give

sinhqa

coshqa —cosk, a

The collective-excitation spectrum is thus given by
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to wave number q in the long wavelength limit.
For k, =0, Eq. (40) has the following solution in

the qa ~0 limit:
' 1/2

ense
+O(q ) . (43)

2. Weak coupling case (qa » I )

By taking the qa ~ eo limit in Eq. (40) we obtain
the following for all values of k, :

'
11(q,~).

KqA
(44)

But Eq. (44) is just the condition for a regular
two-dimensional plasmon going as
co=(2m nse /ccm )'~ q'~ in the long wavelength
limit. Thus in the weak coupling situation each
layer independently supports its own two-dimen-
sional plasmon as we expect on intuitive grounds.

Before concluding this section, we write down
the general dynamical response equation for an ar-
bitrary external potential within RPA. This is ob-
tained by generalizing Eq. (32) to get:

ni(q, co) —II(q, co) g V! !(q)n! (q, co)
l'

=A 'II(q, co)u!'"(q,co), (45)

The coefficient of the O(q ) term in Eq. (43) can
be evaluated by retaining the next-order [of
O(q /co~)] term in the expansion of II(q, co) in Eq.
(30). The coefficient is found to be (—„)uf/co»,

where vf is the Fermi velocity of the 2DEG and

co» =(4~n, e /tcma )'~ is the leading-order term in
Eq. (43). Thus the k, =0 mode in the strong cou-
pling case is just like a three-dimensional plasmon
with plasma frequency co„=(4nntie /icm)' of the
same form as that of bulk plasmons where

nq ——nq/a is the "effective" three-dimensional elec-
tron density of the superlattice. The dispersion of
this mode as defined by Eq. (43) is also of the
three-dimensional form, with the only difference
that the coefficient of the O(q ) term is (—„)uf/co»
rather than (—„)vf/co» as in the bulk case. ' The
mode defined by Eq. (43) is the "optical plasmon"
or the highest frequency mode of the superlattice
carrying the maximum spectral weight at long
wavelengths.

charge density distribution ep'"(r, z, t), then we can
write

u!(q, co) =v(q, co;z =la )

27Te + 00

ze —q Jz' —la [

Kq

Xp'"(q, co;z') . (46)

In Eq. (46), p'"(q, co;z') is the Fourier transform of
p'"(r, t;z') in the xy plane and in time, and we have
used Poisson's equation to obtain Eq. (46). Equa-
tions (45) and (46) together with Eqs. (25) and (31)
defining II(q, co) and V! !(q), respectively, give us
the complete Hartree self-consistent-field response
of the superlattice. We can solve for nt(q, co) by
inverting Eq. (45) to get

2

ni(q, co) = (M )0 II(q, co)
27Te

KqA

+ ce
dz'e e lx —la

I pex(q co z )

(47)

The matrix M is given by

2 2

Mi!'—51!' e
— —'

I 11(
—qa )

l —l'

qA
(48)

III. SELF-CONSISTENT RESPONSE
FOR NONZERO MAGNETIC FIELD

%e consider a static external magnetic field Bp
oriented along z direction perpendicular to the elec-
tron layers. One-electron wave functions are no
longer plane waves in the xy plane because the
electronic motion is now quantized in Landau lev-
els. By choosing a particular gauge (so-called I.an-
dau gauge) for the vector potential Ap—= (0 Bpx 0)
corresponding to the external magnetic field Bp
(remembering that Bp——V XAp), we obtain for the
one-electron wave functions of the superlattice

Equations (47) and (48) are appropriate for an N
layer system rather than a superlattice. For a com-
pletely periodic superlattice, one can go back to
Eqs. (45) and (46) and solve for ni(q, co).using the
technique employed for obtaining the collective
modes.

where ni(q, co) is the induced electron density fluc-
tuation due to an external potential u!'"(q,co). If we
take the external potential to be arising from some

ct!„» i(r,z)= e " u„(x+l, k»)g(z —la),J'

(49)
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&„k I =E„=(n+I/2)Iruo, +Eo, (50)

where I.~ is the normalization length in y direction.
In Eq. (49), u, (x+1,ks) is the simple harmonic os-
cillator wave function with a displaced center,
l, =(cIII'/eBo)' is the Landau radius, and n is the
Landau quantum number. We assume that the
magnetic field does not affect the motion of the
electrons in z direction. The one-electron energy
levels corresponding to wave functions in Eq. (49)
are given by

where S is given by Eq. (39). Using Eqs. (39) and
(52) II1 Eq. (53) gIvcs thc followiIlg 111agnctophisnia

modes for the superlattice:

2%5 82

N =N+ (54
sinhqu

coshgQ —cosk Q

In the strong (qa «1) and weak (qa »1) coupling
limits, we get the following long wavelength

(q —+0) magnetoplasma modes for the superlat tice.

with n =0,1,2, etc., denoting the quantized Landau
levels in xy plane and oI, =eBII/nic is the cyclotron
frcqllcIicy.

Strong coupling (qa « l ) case

A. Density response

We can now follow the self-consistent-field

response formalism of Sec. II by introducing the
single-particle density matrix with respect to the
Landau basis set of Eqs. (49) and (50). Calculating
the density density r-esponse function, we get an
equation which is formally the same as Eq. (45),
but with a modified polarizability function

(&0)II '
(q, co) in the presence of the external magnetic

field, defined by

' 1/2
4TPfg e

OP~ +
KP?lQ

for k,+0, (55)

2. Weak coupling (qa »I ) case

(80) + 00

11 '(q,oI)=, g J dx u„(x+l,'q, )
2@i,

2

Xe * u, (x)

2
' 1/2

2mn, e
N= N~+ for all k, . (57)

5 If

E

(51)

1= II '(q, oI)S(q,k, ),
aqua

(53)

We can express ' the matrix elements in Eq. (51)
in terms of associated Laguerre polynomials.
However, because our main interest in this paper is
long wavelength collective behavior, we concentrate

(&0)
on the small q behavior of II '

(q,oI ):

)tsar A2

II (q —+O,oi)
Pl (CO —CO~)

The condition for the existence of self-sustaining
oscillation is obtained by applying periodicity can-
dition in the z direction as in Sec. I. We obtain
[cf. Eq. (38)] the following:

We note that in the strong coupling limit the

k, =0 mode is a bulk magnetoplasmon given by
Eq. (56), whereas in the weak coupling limit we re-

cover two-dimensional magnetoplasmons' given by
Eq. (57) for each layer. The k,+0 modes in the
strong coupling case given by Eq. (55) are the
acoustic magnetoplasmons corresponding to the
acoustic plasmons given in Eq. (42).

8. Current response

We follow the self-consistent procedure of
Greene et al. and of Chiu and Quinn' to obtain
the current response of a superlattice to a general
external electromagnetic perturbation in the pres-
ence of a static magnetic field Bo along the super-

lattice direction.
The total one-electron Hamiltonian neglecting

electron-electron interaction effects can be written

in the first quantized representation as
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I=Ho+H',

1 ~ e ~
ao= p+ —Ao2' c

H =
27tlc

p+ —Ap .A
c

+ A p+ —Ao —e@.
C

(58)

(59)

Ho, the unperturbed Hamiltonian in the presence
of the static magnetic field, has the eigenstates and
eigenenergies given by Eqs. (49) and (50), respm-
tively. H' is the perturbation due to the total elec-
tromagnetic perturbation described by A and 4
which are, respectively, the total vector and scalar
potentials of the system. The perturbing potential
H' has been expressed in linear approximation
neglecting terms of order A .

Introducing the single-particle density matrix p
as before, we can express the current density

j (ro,zo, t) induced in the superlattice as

J ( ra, zo, r) =Tr '— p+ —Ao +—A(r z t) 5(r —ro)5(z —zo)p+H. c.2' C C

In Eq. (61) Tr denotes trace and H.c. is the Hermi-
tian conjugate. Since current and charge densities
are related by the equation of continuity, we show

only the current response.
Introducing the complete set of noninteracting

states defined by Eq. (49), we can finally express
the Fourier transform of the induced current densi-

J (g, N'zo =la) on the 1th layer of the superlat-
tice as

j (q, co;i)=R(q, co;l)A(q, co;1),

In obtaining the irredudble response function R
of Eq. (62) describing response to the total poten-
tial, we have chosen a particular gauge in which
the scalar potential 4 has been set equal to zero.
This is allowed since RPA is known' to be gauge
invariant. To obtain the collective modes, we have
to determine the reducible response function to the
external potential. This can be done by writinjl
A=—A'"+A'" and expressing A'" in terms of j
through Maxwell's equations. VA'thout giving any
detail, we quote the result for the condition of gen-
eral collective modes of a superlattice in the pres-
ence of an external static magnetic field:

R(q, co;i)=
Pl e

( —1 —K).
NlC

(63)
det/5;i I.ij i

=0. — (66)

Here 1 is the unit tensor, and K is given by
The matrix L is given by

/F(q)[ '&( '/F(q)
f &p ~,

~s
ange S(k)I= R+ —.Iq

~mc k
I

(67)

With

I

where S(k) is determined in Eq. (39) with
k = (q2 —~i/c2)'~2 replacing q, and I is given by

P+ —Ao -e'q'
C

+ fq ~ I.
C

The state a=(n, k„) is the composite index for the
wave function in Eq. (49) describing the Landau
quantized motion in the xy plane.

(68)

One can express ' I and R in terms of Bessel
functions and discuss- the collective modes implied

by Eq. (66) in various limits. We leave that for a
future study, basing our discussion of various col-
lective modes of a superlattice in the presence of
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an external magnetic field on a hydrodynamic
model developed in the next section.

IV. HYDRODYNAMICAL THEORY
OF LINEAR RESPONSE

Bvt(r, t)

dt

1
V P((r, t) Ei—(r—,t)

Nl7lg

Since Fetter has given ' a detailed hydrodynamic
theory for the linear response of a superlattice in

the absence of any external magnetic field, we con-
centrate in this section on the situation where an
exter11al stat1c iilag11et1c field 8o 18 prescl1t 111 z
direction.

Hydrodynamical theory describes electronic
motion in terms of two dynamical variables, name-

ly the electron-density fluctuation, nt(r, t) on the
1th layer, and v&(r, t) =(Uh, u~~), the electron veloci-

ty on the 1th layer. The linearized equations ' of
motion are

J(q,co;z)= —n, e g vt5(z —zt }

iq la
n—,e g voe * 5(z —zt) .

I

We can formally introduce a z-Fourier transform
of J(q, co;z) through the definition,

J(q, co;q»)= f dz J(q,co;z)e

giving

J(q, co;q, )= n, e—g vt(q, co)e
I

By using Eqs. (69)—(75) and doing some algebra,
we can write down the following equations for
J,„(q,co;q, ):

l5g8 N
Et e

nt

v(X~ p

NlC

Bni(r, t)

at
+n, V vi(r, t)=0. (70)

and

2
Plg8 N~ —

lpga@+ EI e

(76}

In Eqs. (69) and (70), n, is the average electron

density per unit area introduced in Sec. I and I'I is
the hydrodynamic pressure of the electron liquid in
the Ith layer. Et and 8 are the total local self-

consistent electric field and the external magnetic
field, respectively. We choose ' the simplest form
of the pressure term:

pi =tnp ni, (71)

where p is a constant coefficient giving the
"sound" velocity of the liquid. Also, the magnetic
field is given by B=(0,0,8o) in our configuration.

The total self-consistent field E can be written as
E=E'"+E'". The induced field E" can be ex-

pressed in terms of induced density fluctuation n.
We introduce Fourier transforms in (xy} plane and

in time as before. Then, one can combine Eqs. (69)
and (71) to get a couple of algebraic equations for
the velocity field ut, and u~„. However, applying
the periodicity, we can write

2 2

(co —co~ )Jy = J»
tp cocq

QP

2
Ilgwu 63~ —iq tu

Eye
Pl

Et„(q,co)=0, (78)

QEb, e ' = +Et, (q, co)e
I I

In Egs. (76) and (77) we have written
J—:J (q, co;q, ) and all other quantities (e.g., vi Et)
are (q —co) transforms. We have also taken

q
—=(q,0) by choosing the xy axes suitably. This

particular choice of axes (with no loss of generali-

ty) facilitates further analysis considerably. If we

now assume the electric field E( r,z, t) to be arising
from some kind of charge-density distribution, we

immediately obtain

vt(q, co) = vo( q, co)e ' (72) S=—[ qE„(q,q„co)

We can now introduce current operator J(z) de
fined as +q,E,(q, q, ;co)], (79)
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+'o —jq z
E„(q,q„'co)= dz E,(q, co;z)e (80)

S is the sum defined in Eq. (39). Using Eqs. (78)
and (79) in Eqs. (76) and (77), we finally obtain the
following:

2$7lze q(CO+COz)
E+= 1—

KrrlCO(CO —COz
—P q )

sinhqa

coshqa —cosq, a
(86b)

We can now consider wave propagation ' ' im-

plied by the circularly polarized dielectric function

e+. In particular, helicon waves propagate3 ' '

under the condition

(82)

czQ2
e+(Cd) =

6)
(87)

llts8 COq

Crxz(@qziCO) =
2rrl (co —coz—

X
sinhqa

coshqa —cosq, a

Nse N~q
2

Cryz(q, qz;CO}=-
2rrl(co —cdz —P q )

sinhqci

coshqa —cosq, a

Notice 'tllat Eqs. (81) aild (82) take these siillple
forms because of our choice of axes.

In the limit of zero magnetic field, co, =ego/mc
vanishes and consequently el@~ =O. Thus~ ln the
absence of any magnetic field, we are left with
only the diagonal, isotropic conductivity,

r

&~s& q sinhqa

2rrl (col —

pique)

coshqa —cosq, a

where Q=(q +q, )'r is a three-dimensional
wave-number.

By using Eq. (86b) in Eq. (87), we conclude that
standard three-dimensional' 'i' helicon waves pro-

pagate in a semiconductor superlattice in the
strong coupling situation qa « l. In the weak

coupling situation (qci »1), such modes cannot ex-

ist.
Using Eq. (86b) one can discuss dispersion of

such helicon waves in the superlattice. Magneto-
plasmons derived in Sec. III are also obtainable
from the hydrodynamical model by looking for the
zeros of the dielectric function

e~ =1+(4rri lKco)cr~. This gives the following
condition:

sin hqa
2

Krri (co —cd' —p q ) coshqQ cosqzu—

=0 . (88)

This equation is the same as Eq. (54} of Sec. 111 if
the hydrodynamic pressure term is neglected (i.e.,
P =o} By choosing p =(—,)u~ we can make
RP& and hydrodynamic theory agree to 0 (ql) in
plasma dispersion. This long wavelength agree-
ment between hydrodynamic and RPA theories is
well known in the literature. ' ' '

V. GENERALIZATION TO ELECTRON-HOLE
SYSTEMS

This is the same result that we obatin from Sec. I
in tlM long wavelength limit.

We introduce conductivity function cr+ defined

by

cr+ ——o~+sa~ . (86a}

Dielectric functions e+ corresponding to cr+ are de-
finedM by e+ ——I+(4rri lKco}cr+ and are given by

In this section we generalize our results of Secs.
II—IV to type-II superlattice where alternate layers
of electrons and holes form the periodic array,
rather than carriers of one type only that we have
been dealing with so far. We consider electrons of
density n, per unit area and mass m, occupying all
the even layers with 1 =0,+2, +4, etc. , and holes of
density n~ per unit area and mass n~ occupy a11

the odd layers. The separation between adjacent
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layers (
~
zj z/ —1 ~

} is taken to be a as before'
The generalization of Secs. II—IV to the

electron-hole system is quite straightforward fol-
lowing the formaHsm developed in the preceding
sections, since the forms for the one-electron wave
functions and energies remain unchanged except
for the trivial mass differences in odd and even

layers. We will therefore be quite succinct in this
section, essentially quoting the important results
without giving the calculational details.

A. Situation without any external
magnetic field

Plasmons of the electron-hole superlattice are
given by 2)(2 determinantal equation (since there
are two kinds of charge carriers} instead of the
simple equation (38) for a type-I system. The
collective-excitation spectrum for the type-II sys-
tem is given by the equation,

1 — II,(q, t)oS, (q, k, ) 1 — Ils(q, m)Ss(q, k, )
scqi ~qi

2

II,(q,co)lip(q, to)S, (q, k, )St, (q, k, )=0, (89)
aqua

where II„IIs are, respectively, the electron and the
hole polarizabilities given by Eq. (25) with electron
and hole single-particle energies appearing in the
respective electron and hole functions. The sums

S, and SI, are given by

I

By using Eqs. (92b) and (93) in Eq. (89), we can
obtain the collective spectrum for the electron-hole
superlattice.

Equation (89) can be simplified (suppressing
variables) to

l =0,+2, +4. . .
exp( —q ~

l
~
a+ik, la), 1=—— (II,S,+IIsSs) .21M

~qA
(94)

I=+1,+3,+5. . .
exp( —q ~

l
~

a +ik, la ) .

(91)

%e now discuss the long wavelength collective
modes implied by Eq. (94) in the strong (qa «1)
and weak (qa »1) coupling regimes. We use [see
Eq. (30)] the following long wavelength form for
the polarizability:

II, s(q, co)

Introducing 2l'=l in Eq. (90) gives

exp( —2q
~

l'
~

a+2ik,
(
l'

~

a } . (92a)
l'=O, +1,+2 J. Strong coupling (qa ((I) ease

The sum in Eq. (92a) has been evaluated before

[Eq. (39)] in the context of obtaining S in Eq. (37).
We obtain the following:

sinh2qa

cosh2qa —cos2k, a
(92b)

By comparing Eqs. (37), (90), and (91) we conclude

that S=S,+S~, giving

SI, ——S —S,
sinhqa

coshqa —cosk, a

Appropriate (qa «1) expansions of Eqs. (92b)
and (93) when inserted in Eq. (94} along with Eq.
(95) yield the following:

2m'e ~e ~h
co = — —-- +- +O(q ) for k, =0, (96)

a Ptl~ OTIC

to =2ne aq — -(1—cos2k, a)
Pl~

+= — [ (1—cosk, a)
~h

sinh2qa

cosh2qa —cos2k a
(93)

—(1—cos2k, a) ']

for k,+0 . (97)



25 COLLECTIVE EXCITATIONS IN SEMICONDUCTOR. . . 7615

Equation (96} gives the OP for a "bulk" electron-
hole system with three-dimensional electron and
hole densities given by n, /2a and nh/2a, respec-
tively. This is sensible because the basic period of
the type-II superlattice is 2a since carriers of simi-
lar charge are on layers separated by a minimum
distance of 2a. The collective modes given by Eq.
(97) for nonzero k, are the acoustic plasmons for
the type-II superlattice. Note that k, is now re-
stricted in a reduced Brillouin zone 0 & k, &n/a.
since the period has doubled to 2a.

and

277ll~8

KQ7tle

2enhe 2

Nph =
Kmha

eBp
Nce, ch =

Nl~ hC

4777f~e

am, (2a)
'

4mnhe

a.mh(2a)
'

(101}

(102)

2. Weak coupling (qa»I ) case

or

1= II,(q, co)
KqA

(98)

1= Iih(q, oi}
2KB

KqA

These are the 2D plasmons going as q
'~z for all k,

with a coefficient given by (2~n, he /m, h
)' as

the case may be.

B. Situation arit an external magnetic field

We can follow the RPA treatment of Sec. III A
to get the following equation for the magneto-
plasmons of an electron-hole superlattice:

It is easier to take this limit by going back to
Eq. (89}. One finds the only collective modes to be
either electron or hole plasmons corresponding to a
pure 2DEG:

Equation (101) gives the coupled magnetoplasmon
modes of a "bulk" electron-hole system in the long
wavelength limit. Other modes with k,+0 have
more complicated structure that can be obtained by
an appropriate expansion of Eq. (99}. In the
strong coupling (qa «1}case these other modes

(k,+0) carry small spectral weight and are cou-
pled cyclotron-acoustic plasmon "bulk" modes.

In the weak coupling (qa»1) situation we get
either the electron magnetoplasmon or the hole
magnetoplasmon modes for a 2DEG. Since these
modes can all be obtained by an appropriate expan-
sion of Eq. (99), we do not explicitly show those
modes for the sake of brevity.

Finally, we can apply hydrodynamic theory to
the electron-hole superlattice system in the pres-
ence of an external magnetic field by an appropri-
ate generalization of Sec. IV. One can easily ob-
tain the magnetoplasmons that we have obtained
earlier within RPA. Instead we obtain the dielectic
functions e+(co) defined in Eq. (86) of IV. For the
electron-hole system, e+(co) are given by

co~S,aq(co+co„)
e+ ——1—

co(cu —co„—p, qz)
(Bp ) (Bp)1= [ II, '

(q, co)S,+ Iih
'

(q, co)Sh ],
Kqi

(99}

H&hShaq(co+co h )
2

I( —co.h -&aq )
2 2 n2 2 (103)

2 2
N~ N~h

2 2 2 2
N —Nc~ N —Nch

where

(100)

(Bp)
where II, h' (q, co) is the electron or hole polarizabil-
ity [given by Eq. (51)] in the presence of external
magnetic field Bo along the z direction.

In the strong coupling (qa «1) situation we get
the following condition for the k, =0 mode which
carries most of the spectral weight:

where p„ph are the electron and hole "sound" ve-

locities, respectively.
In the strong coupling (qa «1) limit Eq. (103)

gives the familiar helicon waves ' ' of three-
dimensional uncompensated electron-hole plasma
(n, Qnh ). In the compensated situation (n, =nh )
one gets the Alfven waves. M 3' These modes can
all be calculated from Eq. (103) by demanding
co =Q c /e+, where Q=(q +k, )'~ is a three-
dimensional wave number. The dispersion of bulk
helicon waves and Alfven waves are we11 known in
the literature.
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VI. DISCUSSIONS AND CONCLUSION

In this paper we have studied theoretically the
collective-excitation spectrum of semiconductor su-

perlattices by modeling the system to be a periodic
array of charged layers. Within the simple model
of purely two-dimensional charge layers ("zero
thickness"), we have considered both types-I and
-II superlattices containing periodic array of elec-
tron layers only or of both electron and hole layers.
We also consider the experimentally interesting sit-
uation where a static magnetic field is present
along the superlattice growth direction. We find a
rich variety of possible collective modes of these
systems —optical plasmons, acoustic plasmons,
magnetoplasmons, helicon, and Alfven waves, to
name some of these modes. A particularly in-

teresting feature is the change in dimensionality of
the systems from two- to three-dimensional
behavior as the coupling between the layers is in-
creased by decreasing the dimensionless quantity
qa where q is the wave number and a is the super-
lattice period. In the strong coupling (qa «1) sit-
uation, the plasmon of the system is essentially a
three-dimensional plasmon, co& (4irn,——e /ma)'~,
corresponding to a volume density n, /a where n,
is the two-dimensional density. In the weak cou-
pling (aq»1) situtation, we get the two-dimen-
sional plasmon with frequency proportional to
n,

' q' in the long wavelength. In the intermedi-
ate situation (qa -1), plasmons of the superlattice
have character intermediate between two and three
dimensions. In the presence of an external static
magnetic field, we obtain magnetoplasmons and
other collective modes (helicons, etc.) which also
change their dimensional character with coupling
strength. In addition to the regular optical
plasmons which carry the maximum spectral
weight at long wavelength, we get a large number
of "acoustic" plasmons which have frequencies
proportional to q in the long wavelength limit.
These modes carry negligible spectral weight in the
q~0 and signify out-of-phase oscillations of elec-
trons on different layers. In the highest frequency
optical-plasmon mode, electrons of different layers
oscillate in phase.

Most of the experimental information on
plasmons of ZDEG are on the single-layer system
like inversion and accumulation layers on semicon-
ductor surfaces or electrons bound on liquid-
helium surface. Far-infrared absorption' ' and
emission technique were employed to observe
plasmons in single-layer 2DEG. Recently an

electron-energy-loss scattering experiment has suc-
cessfully been performed on zinc oxide accumula-
tion layer to observe two-dimensional plasrnons.
To our knowledge no experimental observation of
plasmons in a superlattice has yet been reported.
However, very recently experimental observations
of magnetoplasmons in GaAs-A1„Gai, As super-

lattice and of helicons in InAs-GaSb superlat-
tice have been reported. The first study uses
resonant inelastic light scattering technique
whereas the second employs far-infrared transmis-
sion spectroscopy. These experimental results are
rather preliminary and have not been analyzed in
complete detail yet. These data seem to be com-
pletely consistent with our theoretical results in
this paper. In particular, experimental parameter
values are such that one is in the strong coupling
(qa «1) situation in both the experiments. In the
magnetoplasmon experiment the resonant frequen-

cy is found to scale with (co, +co&)'~2 where co& is
found to be proportional to electron volume densi-

ty. This is exactly what we find in our analysis in
Secs. III and IV. Details of the helicon experiment
are not quite available yet. However, preliminary
resultss6 are consistent with our findings in Sec. V.

Experimental techniques that seem to be the best
suited for studying the collective excitations dis-
cussed in this paper are resonant Raman scattering
spectroscopy, ~5 far-infrared absorption measure-

ments, and inelastic electron-energy-loss scatter-
ing experiinents. Typical values for the superlat-
tice period (the parameter a) in the experimental
systems are in the 50—200-A range. This makes it
very difficult to explore anything but the strong
coupling limit (qa «1) experimentally since typi-
cal wave numbers involved in light scattering and
absorption measurements are small. Also, in the
long wavelength limit, most of the spectral weight
is carried by the optical plasmons, making it diffi-
cult to experimentally observe the "acoustic"
plasmons. However, we may mention that very re-
cently observation of acoustic plasmons has been
reported for the first time in a solid-state plasma
in an inelastic light scattering experiment.

We have made a number of simplifying approxi-
mations in our theory. We have neglected, among
other effects, effect of finite layer thickness, damp-
ing effect, coupling of electronic modes to LO pho-
nons, effect of subband structure, etc. These ef-
fects are all expected to be important in actual sys-
tems. However, we believe that the basic physics
of electronic collective excitations of superlattice
system are all contained in our simple model. In-
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elusion of damping is straightforward within hy-

drodynamic formalism by introducing a phenom-
enological damping parameter I /r. Since mobility
in these systems is rather high, we expect the col-
lective modes to satisfy cov & 1, making them ob-
servable in these systems. The effect that we be-

lieve should be included in a future improvement
of our theory is that of finite thickness of charge
layers in the model. This means relaxing the

~g(z)
~

=5(z) approximation of Eq. (2). This in-

troduces two important modifications: (i) Overlap
of electron wave functions from adjacent layers,
and (ii) introduction of subbands in each layer.
Subbands have their own resonant contribution to
the dynamical response since electrons can make
intersubband transitions. Much is known ' about
such intersubband transition from intersubband

spectroscopy. These intersubband transitions and
overlap of electronic wave functions in z direction
give rise to an actual electron current in z direction
not allowed within our model. This may produce
collective effects not contained in our thtxiry. Fi-
nally, one expects the electronic collective modes
discussed in this paper to be coupled to LO pho-
nons of the polar semiconductors (GaAs, A1As,
InAs, GaSb, etc.) forming the superlattice since the
two energies are comparable. Such LO-phonon-
plasmon coupling has been discussed in the con-
text of bulk and surface collective modes in the po-
lar materials. Such coupling is also very impor-
tant ' ' in the intersubband transition in mul-

tilayer systems. We can include LO-phonon cou-
pling in our formalism in a straightforward

fashion. Such coupling effects are expected to be
important in these weakly polar systems only in
the vicinity of coLo-to,„and co,„ is a typical
collective-excitation frequency obtained in this pa-
per.

We have restricted ourselves to RPA or a self-
consistent-field Hartree approximation. The hy-

drodynamical model gives the same results as RPA
in the q~0 limit. It is difficult to go beyond
RPA for a complicated system such as a superlat-
tice. We believe that it is more important to in-
clude some of the realistic effects discussed earlier
(particularly the finite-layer thickness) than trying
a more complicated many-body theory for the
response. Part of our work (Sec. I) is a finte fre-
quency generalization of the static self-consistent-
field treatment of Visscher and Falicov. The hy-
drodynamical calculation of Sec. IV is a generali-
zation of Fetter's work ' to finite magnetic fields.
Our theory for the collective modes of the
electron-hole systems is to our knowledge the first
calculation of its kind for type-II superlattices.
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