Theoretical investigations of superlattice band structure in the envelope-function approximation

G. Bastard*

IBM Thomas J. Watson Research Center, P. O. Box 218, Yorktown Heights, New York 10598 (Received 26 October 1981)

We extend our previous investigations on the band structure of superlattices by applying the envelope-function approximation to four distinct problems. We calculate the band structure of HgTe-CdTe superlattices and show that these materials can be either semiconducting or zero-gap semiconductors, i.e., behave exactly like the ternary $Hg_{1-x}Cd_xTe$ random alloys. We analyze the superlattice dispersion relations in the layer planes (Landau superlattice subbands) and we compare the longitudinal and transverse effective masses of semiconducting InAs-GaSb superlattices. We calculate the general equation for the bound states due to aperiodic layers, taking account of the band structure of the host materials. We finally derive the dispersion relations of polytype (*ABC* or *ABCD*) superlattices.

I. INTRODUCTION

Increasing attention is now paid to the manmade one-dimensional periodic structures, referred to as semiconductor superlattices after Esaki and Tsu.¹ The currently studied GaAs-Ga(Al,As) (Refs. 2 and 3) and InAs-GaSb (Refs. 4 and 5) superlattices are fabricated by molecular beam epitaxy. This technique makes it possible to produce abrupt interfaces between host materials; the interfaces extending only through few lattice planes. Besides their promising technical applications, the superlattices (SL) raise by themselves interesting theoretical problems. Their band structure has been calculated within the linear combination of atomic orbitals (LCAO) framework.⁶ A simple computational method, i.e., plane-wave matching,⁷ which amounts to be a one-band approximation, worked apparently well in the GaAs-GaAlAs system but completely failed to describe the behavior of InAs-GaSb superlattices.⁸ In a recent paper,⁹ we have shown that both GaAs-GaAlAs and InAs-GaSb superlattices can be described by the envelope-function (i.e., plane-wave) approximation (EFA) provided that the symmetries of the relevant band edges are correctly taken into account. In the existing SL, one deals with host materials with Stype conduction- and P-type valence-band edges. Hence, the Kane model¹⁰ is most helpful in describing the electron propagation inside the host layers since it automatically incorporates both conduction- and valence-band edges. Using the Kane-type solutions, we derived the boundary conditions fulfilled by the envelope function at the interfaces. The very simple dispersion relations of the InAs-GaSb SL were found to be in quantitative agreement with the LCAO predictions. This points out the advantages of Kane's model for band-structure calculations using measured parameters such as the effective masses at extrema points.

In contrast with three-dimensional LCAO calculations, very modest computational efforst are needed in the EFA. Hence, the EFA is capable of dealing with the SL of arbitrary periods and is applicable to any binary (A-B) superlattice, provided that the host's band structures can be described by the Kane model. Within this model, we will end up with two separate descriptions for heavy-hole SL states on the one hand and for coupled light particles (electrons and light holes) SL states on the other hand, provided that \vec{k}_{\perp} the carrier wave vector in the layer plane, is equal to zero. If this wave vector is nonzero light and heavy particles will be coupled and we will be able to discuss the SL cyclotron mass. The flexibility and generality of the EFA have inspired us to extend our previous analysis to several problems connected with SL band structure. The EFA will be discussed in Sec. II and applied to the case of HgTe-CdTe superlattices (Sec. III). The dispersion relations and SL effective masses (i.e., longitudinal or transverse with respect to the SL growing axis) will be discussed in Sec. IV. Section V will be devoted to interface defect states which arise from an irregular layer thickness. Finally, in Sec. VI, we will apply the EFA method to ABC or ABCD-type superlattices.

7584

©1982 The American Physical Society

II. THE ENVELOPE-FUNCTION APPROXIMATION

Consider two semiconductors A and B. The AB superlattice consists of alternating layers of A and B materials. In what follows, we shall take the z axis to be parallel to the SL axis. Longitudinal and transverse will, respectively, mean "along the SL axis" or perpendicular to this axis (i.e., in the layer plane). Inside each host material the electron states are assumed to be describable by the Kane model. The valence (*P*-like) and conduction (*S*-like) edges are at the center of the Brillouin zone.

where

$$\Pi_{c,v} = \frac{-i}{m_0} \langle S | P_x | X \rangle \; .$$

The free-electron kinetic energy has been neglected. This is consistent with our neglect of the remote band effects. The dispersion relations are

$$\boldsymbol{\epsilon} = -\frac{\boldsymbol{\epsilon}_A}{2} + \frac{\boldsymbol{\epsilon}_A}{2} \left[1 + \frac{8\Pi_{\boldsymbol{c},\boldsymbol{v}}^2}{3\boldsymbol{\epsilon}_A^2} \tilde{\boldsymbol{h}}^2 (k_A)^2 \right]^{1/2}.$$
 (2)

Each eigensolution of (1) is doubly degenerate with respect to the z projection of the total angular momentum. The values $M_J = \pm \frac{1}{2}$ correspond to light particles (electrons and light holes). They are completely decoupled from the $M_J = \pm \frac{3}{2}$ states which, as may be seen from Eq. (1), have no component on the $|S, M_J = \pm \frac{1}{2}\rangle$ states and are in fact dispersionless. The $M_J = \pm \frac{3}{2}$ states correspond to the heavy-hole solutions. A finite heavy-hole mass can be restored only if one accounts for $\vec{k} \cdot \vec{p}$ interaction between the $|P, M_J = \pm \frac{3}{2}\rangle$ states and the remote bands of the crystal (see below). The decoupling between $|S, M_J = \pm \frac{1}{2}\rangle$ and $|P, M_J = \pm \frac{3}{2}\rangle$ states holds only if $\vec{k}_1 = \vec{0}$. It arises from the fact that both \vec{J} and \vec{k} have been taken

to be parallel to the SL axis. For homogeneous A

The spin-orbit coupling lifts the sixfold valence degeneracy at k=0 into a Γ_8 quadruplet and a Γ_7 doublet. For our purpose, the Γ_7 doublet can be neglected. Since the spin-orbit coupling is quite large, the $\vec{k} \cdot \vec{p}$ interaction is exactly diagonalized with the Γ_6, Γ_8 basis. The electronic motion inside each layer (A or B) is described by k_A or k_B and $\vec{k}_1 = (k_x, k_y)$. Note that the transverse wave vector \vec{k}_1 is conserved across an interface since in the EFA the interface potential depends only on z. If $\vec{k}_1 = \vec{0}$, the Kane matrix describing the $\vec{k} \cdot \vec{p}$ interaction within the Γ_6, Γ_8 subspace is particularly simple. For instance, in A material it reads

$\frac{3}{2}$	$ P,M_J=+\frac{1}{2}\rangle$	$ P,M_J=-\frac{1}{2}\rangle $	$ P,M_J=-\frac{3}{2}\rangle$	
	0	$\Pi_{c,v}\sqrt{2/3}\hbar k_A$	0	
	$\Pi_{c,v}\sqrt{2/3}\hbar k_A$	0	0	
	0	0	0	,
	$-\epsilon_A$	0	0	
	0	$-\epsilon_A$	0	
	0	0	$-\epsilon_A$	
				.(1)

or *B* materials, the choice of the quantization axis is somewhat arbitrary (if one negelcts nonspherical terms like Γ_8 warping or inversion asymmetry splitting). In superlattices, on the other hand, the *z* axis is, in practice, chosen along the SL axis; this choice making the interface equations analytically trivial. If, however, the *z* direction is fixed and $\vec{k}_1 \neq \vec{0}$, the coupling between $M_J = \pm \frac{3}{2}$ and $M_J = \pm \frac{1}{2}$ states is nonzero. The origin of this coupling may be traced back to the fact that the most general spherically symmetric, quadratic $\Gamma_8 \mathscr{H}$ is not the scalar $C_2 k^2$, but rather

$$\mathscr{H} = C_1 k^2 + C_2 (\vec{\mathbf{k}} \cdot \vec{\mathbf{J}})^2 .$$
(3)

We have emphasized this point since it significantly influences the results of Sec. IV.

In *B* layers, at $\overline{k_1} = \overline{0}$, the effective \mathscr{H} is obtained by shifting the $\Gamma_6(S)$ origin by V_S and the Γ_8 -band edges by V_P . In principle one should also change $\Pi_{c,v}^{(A)}$ into $\Pi_{c,v}^{(B)}$. However, the Kane matrix element $\Pi_{c,v}$ does not change very much from one III-V compound to another, which in fact witnesses the similarities between the periodic part of the Bloch functions in various III-V semiconductors. Therefore, we will assume that $\Pi_{c,v}^{(A)}$ is the same as $\Pi_{c,v}^{(B)}$. This will avoid introduction of extra $[\Pi_{c,v}(z), d/dz]$ in the foregoing analysis [e.g., in

2.

Eq. (7)].

If we are interested in the slowly varying envelope functions and discard any phenomena rapidly varying on the scale of host unit cells, these envelope functions are the solutions of a 6×6 differential system obtained from \mathscr{H} [Eq. (1)] by changing $\hbar k_z$ into $-i\hbar d/dz$ and by letting the S and P edges be position dependent through the relations

$$V_{S,P}(z+md) = V_{S,P}(z)$$
, (4)

$$V_{S,P}(z) = 0 \text{ if } 0 \le z \le l_A ,$$

$$V_{S,P}(z) = V_{S,P} \text{ if } l_A \le z \le l_A + l_B ,$$
(5)

where l_A and l_B are the A- and B-layer thickness, respectively, and $d = l_A + l_B$ is the SL period. On the scale of variations of the envelope functions, the interfaces reduce to the planes

$$z = l_A + md ,$$

$$z = pd ,$$
(6)

where m and p are integers. Since we neglect any variations occurring on the scale of host unit cells, the SL medium is translationally invariant in the layer planes, and \vec{k}_{\perp} is a good quantum number. Owing to the fact that we neglect $\vec{k} \cdot \vec{p}$ coupling between Γ_8 states and the remote bands of the hosts, the 6×6 differential system can be easily transformed into a 2×2 differential system, nonlinear in ϵ , which governs the envelope functions associated with the $|S,M_J = +\frac{1}{2}\rangle$ and $|S,M_J = -\frac{1}{2}\rangle$ states. If $\vec{k}_{\perp} = \vec{0}$ a further simplification occurs. Rearranging Eq. (1) one transforms the 6×6 problem into two identical 1×1 equations decoupled from two identical and independent 2×2 differential systems describing the coupled behavior of envelope functions associated with $|S,M_J = +\frac{1}{2}\rangle$ and $|P,M_J = +\frac{1}{2}\rangle$ and with $|S,M_J = -\frac{1}{2}\rangle$ and $|P,M_J = -\frac{1}{2}\rangle$, respectively. These identical 2×2 systems are

$$\begin{bmatrix} V_s(z) - \epsilon & \prod_{c,v} \sqrt{2/3} P_z \\ \prod_{c,v} \sqrt{2/3} P_z & -\epsilon_A + V_P(z) - \epsilon \end{bmatrix} \begin{bmatrix} F_S(z) \\ F_P(z) \end{bmatrix} = 0 ,$$
(7)

where F_S and F_P are the slowly varying envelope functions associated with $|S\rangle$ and $|P\rangle$ states, respectively, and $P_z = -i\hbar(d/dz)$. Projecting onto the S state one further transforms the system [Eq. (7)] into a differential equation which is nonlinear in ϵ

$$\frac{\Pi_{\epsilon,\nu}^2}{3} P_z [\epsilon_A + \epsilon - V_P(z)]^{-1} P_z + V_S(z) \bigg| F_S(z)$$
$$= \epsilon F_S(z) . \quad (8)$$

To complete the problem, we impose on $F_S(z)$ the Bloch condition

$$F_S(z+md) = \exp(iqmd)F_S(z) , \qquad (9)$$

where q is the SL wave vector along the SL direction and m is an integer. At the A-B interface, we integrate Eq. (8) across the boundary and, if F_S is assumed to be continuous, we obtain

$$[\epsilon_A + \epsilon - V_P(z)]^{-1} \frac{dF_S}{dz}(z) ,$$

continuous at the interface . (10)

This equation, already derived in Ref. 9, has also been recently obtained by White and Sham.¹¹ It generalizes Ben Daniel and Duke's result,¹²

$$\frac{1}{m^*(z)}\frac{dF}{dz}$$
, continuous at the interface,

to the case of nonparabolic materials, i.e., to materials in which the band mixing is important. It is therefore of crucial use in the type-II superlattices (InAs-GaSb) in which one has to admix predominantly S-type electrons with predominantly P-type light holes to build the superlattice states.

Inside A and B layers, V_S and V_P are constant and the eigenstates of Eq. (8) are a linear combination of two plane waves with opposite wave vectors. There are, therefore, four unknown coefficients to be determined by four equations. The wave functions $F_S(z)$ are nonvanishing only if

$$\cos qd = \cos k_A l_A \cos k_B l_B$$
$$-\frac{1}{2} (\xi + \xi^{-1}) \sin k_A l_A \sin k_B l_B , \qquad (11)$$

$$\xi = \frac{k_A}{k_B} \frac{\epsilon_A + \epsilon - V_P}{\epsilon_A + \epsilon} . \tag{12}$$

This dispersion relation (11) is, of course, the same if one projects the system equation (7) on the P state rather than on the S state.

If the energy ϵ does not correspond to a propagating state in A or B layer, k_A or k_B is imaginary (evanescent states). Finally, no SL exists if both k_A and k_B are imaginary owing to the Bloch equation (9). Note that Eqs. (11) and (12) are quite general, describing the band structure of any A-B superlattice provided that the relevant host electronic states are well described by the Kane model.

THEORETICAL INVESTIGATIONS OF SUPERLATTICE BAND ...

A. Heavy-hole dispersion relations at $\vec{k}_{\perp} = \vec{0}$ effect of effective-mass gradients

As for the heavy-hole dispersion relations, they are identically $\epsilon = 0$ or $\epsilon = V_p$, corresponding to SL heavy-hole states which are entirely localized within A or B layers. More embarrassing is the lack of one-dimensional quantization originating from the absence of finite heavy-hole masses. These shortcomings are cured by introducing the quadratic effective \mathscr{H} for heavy holes. If (and only if) $\vec{k}_{\perp} = \vec{0}$, the $\Gamma_8 \mathscr{H}$ [Eq. (3)] is diagonal in the $|P, M_J\rangle$ basis, and for $m_J = \pm \frac{3}{2}$, one has simply

$$\langle P, \pm \frac{3}{2} | \mathscr{H} | P, \pm \frac{3}{2} \rangle = (-\gamma_1^{(A)} + 2\gamma^{(A)}) P_z^2$$
$$= -\frac{P_z^2}{2M_A} \quad \text{if } 0 \le z \le l_A .$$
(13)

In Eq. (13) the γ_1 and γ are the Luttinger parameters describing the $\vec{k} \cdot \vec{p}$ interaction between the $|P \pm \frac{3}{2}\rangle$ states and the remote bands of the hosts. Along the same line one should also add to the system (7) a term $(\gamma_1 + 2\gamma)P_z^2$ in the F_P diagonal term. This term is small and does not bring any new qualitative insight to the previous analysis. We will henceforth neglect it. As for the $|P \pm \frac{3}{2}\rangle$ states, let us stress the fact that the effective masses M_A and M_B are in general different; one must solve the differential equation

$$\{\frac{1}{4}[P_z^2, M_{\rm hh}^{-1}(z)] + V_p(z)\}F_{\rm hh}(z) = \epsilon F_{\rm hh}(z), \quad (14)$$

where $\{A,B\} = AB + BA$; $V_P(z)$ is defined in Eqs. (4) and (5) and

$$M_{\rm hh}(z) = M_A, \quad 0 \le z \le l_A$$

$$M_{\rm hh}(z) = M_B, \quad l_A \le z \le l_A + l_B \quad (15)$$

$$M_{\rm hh}(z + md) = M_{\rm hh}(z)$$

for any relative integer m. In contrast to the usual Kronig-Penney situation, we see that both valenceband edges and effective masses are position dependent. Even if there is no valence-band offset $(V_P=0 \text{ for any } z)$ band gaps will still exist in the heavy-hole SI band structure due to the periodic variation of the heavy-hole effective mass.

To complete Eq. (14), boundary conditions should be added. Again, we impose the Bloch condition Eq. (9) on $F_{\rm hh}$. Integrating Eq. (14) across an interface, assuming $F_{\rm hh}(z)$ to be continuous and using the fact that $M_{\rm hh}(z)$ is piecewise constant, the boundary condition becomes

$$M_{\rm hh}^{-1}(z) \frac{dF_{\rm hh}(z)}{dz} \tag{16}$$

continuous at the interface. Consider the probability density $\rho_{hh}(z) = |F_{hh}(z)|^2$; it fulfills the continuity equation

$$\frac{\partial \rho_{\rm hh}}{\partial t} + \frac{\partial J_{\rm hh}}{\partial z} = 0 \tag{17}$$

with

$$J_{\rm hh}(z) = -\frac{i\hbar}{2M_{\rm hh}(z)} \left[F_{\rm hh}^*(z) \frac{d}{dz} F_{\rm hh}(z) - \operatorname{cc} \right].$$
(18)

For a stationary state one has simply

 $J_{\rm hh}(z) = {\rm const} \,. \tag{19}$

Therefore, if at the A-B interface $F_{\rm hh}(z)$ is assumed continuous, the $M_{\rm hh}^{-1}(z)dF_{\rm hh}/dz$ continuity and not the $dF_{\rm hh}/dz$ continuity will ensure the constancy of $J_{\rm hh}$, i.e., the time independence of the $\rho_{\rm hh}$.¹²

Building the SL wave function inside the unit cell $(0 \le z \le d)$ in the same way as before, we finally obtain the SL heavy-hole dispersion relations,

$$\cos qd = \cos k_A l_A \cos k_B l_B$$
$$-\frac{1}{2} (\eta + \eta^{-1}) \sin k_A l_A \sin k_B l_B , \qquad (20)$$

where

$$\eta = \frac{k_a M_B}{k_B M_A}.$$
(21)

Note that Eq. (20) is similar in form to the lightparticles dispersion relation (11). In fact, this form is quite general and is obtained for any *A-B* superlattice problem, even if the band edges $V_S(z)$ and $V_P(z)$ were position dependent inside each host layer.¹³ The details of $V_P(z)$, $V_S(z)$, and of the boundary conditions are embedded in the energy dependence of the parameter η .

III. BAND STRUCTURE OF HgTe-CdTe SUPERLATTICES

The HgTe-CdTe superlattices have not yet been fabricated. They are, however, conceptually quite interesting because, in contrast to GaAs-GaAlAs or InAs-GaSb superlattices, the relevant host electronic states belong to Γ_8 bands. Schulman and McGill¹⁴ have numerically calculated their band structure within the three-dimensional LCAO framework. They were, therefore, limited to rather small SL periods and, for this reason, do not reach general conclusions concerning the trend of the

HgTe-CdTe SL band structure. The EFA is again capable of providing a complete and simple description. CdTe is a standard wide-gap semiconductor ($\epsilon_B \sim 1.6$ eV), whereas HgTe is a symmetry-induced zero-gap semiconductor. In HgTe, both conduction and valence bands have Γ_8 $(P,J=\frac{3}{2})$ symmetry at the center of the Brillouin zone. The Γ_6 $(S,J=\frac{1}{2})$ levels lie below the Γ_8 edges. Hence, the interaction gap $\epsilon_A = \epsilon_{\Gamma_6} - \epsilon_{\Gamma_8}$ is negative, whereas in standard (e.g, CdTe) materials $\epsilon_B = \epsilon_{\Gamma_6} - \epsilon_{\Gamma_8}$ is positive (Fig. 1).

One does not know the valence-band offset between HgTe and CdTe. The common anion argument and the similarity of the host's lattice constants have led Schulman and McGill to assume it to be zero. We shall use here the same assumption. Both host material's band structures are of the Kane type and we may use the results obtained in Sec. II.

At $\vec{k}_{\perp} = \vec{0}$ the heavy-hole $|P, M_J = \pm \frac{3}{2}\rangle$ levels are completely decoupled from the light-particle levels that arise from $\vec{k} \cdot \vec{p}$ hybridization of $|P, M_J = \pm \frac{1}{2}\rangle$ with $|S, M_J = \pm \frac{1}{2}\rangle$. Since the relevant band edges are Γ_8 levels, we choose the energy zero at the top of the heavy-hole valence band and we project the 2×2 system equation (7) onto the *P* level. The $F_P(z)$ envelope functions are, therefore, the eigenstates of

$$\frac{2}{3} \prod_{c,v}^{2} P_{z} [\epsilon - V_{S}(z) - \epsilon_{A}]^{-1} P_{z} F_{P}(z) + V_{P}(z) F_{P}(z)$$
$$= \epsilon F_{P}(z) , \quad (22)$$

where $\epsilon_A < 0$ is the negative HgTe interaction gap and $V_P(z)=0$ since there is no valence-band offset. The boundary conditions are therefore

$$F_P(z), \quad [\epsilon - V_S(z) - \epsilon_A]^{-1} \frac{dF_P(z)}{dz},$$

continuous at the interface

(23)

and

$$F_P(z+md) = \exp(iqmd)F_P(z)$$
.

The SL dispersion relations are given by Eq. (11) with

$$\xi = \frac{k_A}{k_B} \frac{\epsilon - \epsilon_B}{\epsilon + |\epsilon_A|} . \tag{24}$$

The methodological interest of HgTe-CdTe SL lies in the fact that the light particles of host materials have effective masses of opposite signs but the same band-edge symmetry. In fact, if one neglects

FIG. 1. Band structure of $Hg_{1-x}Cd_xTe$ random alloys vs the composition x (virtual-crystal approximation). The dashed line represents the variation of ϵ_0 with x.

the band nonparabolicity, viz, neglects ϵ with respect to $|\epsilon_A|$, ϵ_B one gets

$$\xi = \frac{k_A}{k_B} \frac{m_B}{m_A}, \ m_B < 0$$

This formula is the same as that for conduction superlattice states in GaAs-GaAlAs superlattices where the host's band edges are S-like⁹ or for heavy-hole SL dispersion relations [see Eq. (21)].

For $\epsilon > 0$, k_B is imaginary, whereas if $\epsilon < 0$, k_A is imaginary. It is interesting to observe that $\epsilon = 0$ is an allowed state in the SL. It corresponds to q = 0. Hence, $\epsilon = 0$ is either the top of the highest light-hole subband LH_1 or the bottom of the lowest electron subband E_1 , or both. An expansion of the dispersion relation in the vicinity of $\epsilon = 0$

FIG. 2. Evolution of the band structure of HgTe-CdTe SL's vs the SL period d. Only the light particles bands are shown. $l_A/l_B=2$, $k_1=0$. The allowed energy bands are shaded.

 $(\epsilon > 0)$ shows the lack of allowed SL states if

$$\frac{l_A}{l_B} < \frac{\epsilon_B}{|\epsilon_A|} \sim 5.3 . \tag{25}$$

Conversely, for Hg-rich SL $(l_A/l_B > \epsilon_B/|\epsilon_A|)$, the first conduction subband E_1 starts at $\epsilon = 0$ and the LH_1 top is located at some finite negative energy. For the critical l_A/l_B ratio $(\epsilon_B/|\epsilon_A|)$, LH_1 and E_1 touch at q=0. Moreover, the dispersion relations are linear in q $(q \rightarrow 0)$ for this peculiar composition. As for the heavy-hole subbands, they are readily obtained from Eqs. (17) and (18). Since the

valence-band offset is assumed to be zero, the energy $\epsilon = 0$ is always a SL solution corresponding to q=0: The last heavy-hole subband HH_1 ends at $\epsilon = 0$. Collecting all these information we see the following.

(1) If $l_A/l_B < \epsilon_B/|\epsilon_A|$, the HgTe-CdTe SL are semiconducting. The SL fundamental gap is equal to E_1 $(q=0)-HH_1(q=0)$.

(2) If $l_A/l_B > \epsilon_B/|\epsilon_A|$, the HgTe-CdTe SL are zero-gap semiconductors with the E_1 and HH_1 subbands touching at q = 0.

(3) If $l_A/l_B = \epsilon_B/|\epsilon_A|$, the HgTe-CdTe SL are zero-gap semiconductors with a heavy-hole band quadratic in q and two light bands linear in q.

The HgTe-CdTe superlattices behave then exactly in the same way as do the ternary random alloys $Hg_{1-x}Cd_xTe^{.15}$ In the virtual-crystal approximation, these solid solutions display the HgTe zerogap structure if x < 0.16, i.e., if the [Hg]/[Cd] ratio $> 0.84/0.16 = \epsilon_B/\epsilon_A$. If on the other hand, x > 0.16, the $Hg_{1-x}Cd_xTe$ solid solutions are narrow-gap semiconductors with the CdTe band structure (see Fig. 1). At this zero-gap-tosemiconductor transition (x = 0.16) there is a triple band degeneracy and the heavy-hole band is quadratic in k, whereas the electron- and light-hole bands are linear in k.

Finally, owing to the imaginary k_A or k_B one should expect narrow SL bands. We illustrate this point in Fig. 2, which shows the evolution of the HgTe-CdTe SL band structure (for light particles only) with increasing periodicity d when $l_A = 2l_B$.

IV. TRANSVERSE DISPERSION RELATIONS—COMPARISON BETWEEN LONGITUDINAL AND TRANSVERSE EFFECTIVE MASSES

When $\vec{k}_1 \neq \vec{0}$, the procedure we applied in Sec. II [Eqs. (1)-(7)] is still of relevance. Projecting onto the S states leads to 2×2 differential system:

$$\begin{bmatrix} \mathscr{H}_{11}(\epsilon) & \mathscr{H}_{12}(\epsilon) \\ \mathscr{H}_{21}(\epsilon) & \mathscr{H}_{22}(\epsilon) \end{bmatrix} \begin{bmatrix} F_1 \\ F_2 \end{bmatrix} = \epsilon \begin{bmatrix} F_1 \\ F_2 \end{bmatrix},$$
(26)

where

$$\mathcal{H}_{11}(\epsilon) = \mathcal{H}_{22}(\epsilon) = V_S(z) + \Pi_{c,v}^2 P_- [\epsilon_A + \epsilon - V_p(z)]^{-1} P_+ + \frac{\Pi_{c,v}^2}{3} P_+ [\epsilon_A + \epsilon - V_P(z)]^{-1} P_- + \frac{2\Pi_{c,v}^2}{3} P_z [\epsilon_A + \epsilon - V_P(z)]^{-1} P_z , \qquad (27)$$

$$\mathscr{H}_{12} = \mathscr{H}_{21}^{*} = \prod_{c,v}^{2} \sqrt{2} / 3 \{ P_{z} [\epsilon_{A} + \epsilon - V_{P}(z)]^{-1} P_{+} - P_{+} [\epsilon_{A} + \epsilon - V_{P}(z)]^{-1} P_{z} \} , \qquad (28)$$

where

$$P_{\pm} = (P_x \pm iP_y)/\sqrt{2}$$
 (29)

The 1 and 2 indices play the part of spin \downarrow and spin \uparrow quantum states in a band structure which is otherwise characterized by a strong spin-orbit coupling. \mathscr{H}_{12} then reflects the mixing of $|\uparrow\rangle$ and $|\downarrow\rangle$ states induced by the combined action of the scalar $\vec{k} \cdot \vec{p}$ and interface $V_S(z)$, $V_P(z)$ potentials with the host's spin-orbit coupling. That \mathscr{H}_{12} exactly vanishes if the spin-orbit coupling Δ_{so} vanishes is immediately seen if one uses the natural basis $S\uparrow, S\downarrow; X\uparrow, \downarrow; Y\uparrow, \downarrow; Z\uparrow, \downarrow$ for $\Delta_{so}=0$. If using the $\Gamma_6, \Gamma_7, \Gamma_8$ basis, well suited to nonzero Δ_{so} , one should first reintroduce the Γ_7 states and then let Δ_{so} vanish. The existence of \mathscr{H}_{12} analogs is well known in narrow-gap semiconductor physics.¹⁶⁻¹⁸

In magneto-optics, the combined action of Δ_{so} and radiation electric fields allows for the existence of electric dipole spin-flip resonance if $k \neq 0.^{16}$ The finite Δ_{so} and the band nonparabolicity are responsible for anomalous Hall effect observed, e.g., in InSb.¹⁷ In narrow-gap metal-oxide – semiconductor (MOS) structures, Ohkawa and Uemura¹⁸ have already discussed the combined effect of Δ_{so} , $\vec{k} \cdot \vec{p}$ interaction and the surface electric field. They predicted anomalously large surface electron g factors.

The coupling term \mathscr{H}_{12} increases with \vec{k}_{\perp} . Its explicit k_{\perp} dependence implies that the SL dispersion relations $\epsilon(q,k_{\perp})$ cannot be simply obtained by using appropriate $k_A(\vec{k}_{\perp})$ and $k_B(\vec{k}_{\perp})$ in Eqs. (11) and (12). Instead, explicit and tedious calculations are required.

Before giving the results of these calculations, we need to discuss the \overline{k}_{\perp} -induced coupling between heavy-hole and light-particle states. In Sec. II, we showed that the light particles decouple from heavy holes if $\vec{k}_1 = \vec{0}$. We were then justified in discarding remote-band effects on the lightparticle dispersion relations and in calculating $E_n(k_\perp=0)$ and $LH_n(k_\perp=0)$ with $M_{\rm hh}=\infty$. Subsequently, we obtained HH_n by introducing the heavy-hole curvature. At $\vec{k}_{\perp} = \vec{0}$ the remote-band effects exactly reduce to the (diagonal) heavy-hole kinetic energy. At $k_1 \neq 0$ this agreeable simplification no longer holds. The explicit 6×6 matrix which reduces to Eq. (1) at $k_1 = 0$ now contains a whole nonzero $(4 \times 4) \Gamma_8$ block. Its explicit form is known.¹⁹ Still, it displays several terms involving $k_{\perp}P_{z}$ which spoils any simplification like a simple projection on the $|S\uparrow\rangle$ and $|S\downarrow\rangle$ bandedge states. We have not been able to overcome these difficulties and to treat the problem \vec{k}_{\perp} different from $\vec{0}$ exactly. We have then followed the same decoupling procedure as at $\vec{k}_{\perp} = \vec{0}$:

(1) For light-particles dispersion relations, we have neglected the remote-band effects, which amounts to dealing with a diagonal Γ_8 block in the general 6×6 matrix.

(2) For heavy-hole states, the Γ_8 block is treated in the parabolic approximation. The remote and the Γ_6 band are taken into account up to the order k^2 . This procedure amounts to changing the γ_1 and γ parameters into $\tilde{\gamma}_1$ and $\tilde{\gamma}$ with

$$\widetilde{\gamma}_{1}^{\begin{bmatrix} A \\ B \end{bmatrix}} = \gamma_{1}^{\begin{bmatrix} A \\ B \end{bmatrix}} + 2m_{0}\Pi_{c,v}^{2}/3\epsilon_{B}^{A} ,$$

$$\widetilde{\gamma}^{\begin{bmatrix} A \\ B \end{bmatrix}} = \gamma^{\begin{bmatrix} A \\ B \end{bmatrix}} + m_{0}\Pi_{c,v}^{2}/3\epsilon_{B}^{A} .$$
(30)

This decoupling procedure is expected to be good for all SL states if, at $\vec{k}_{\perp} = \vec{0}$, the E_n and HH_n states are energically well seperated. This is, for instance, the case in GaAs-GaAlAs or in semiconducting InAs-GaSb superlattices. The semimetallic InAs-GaSb superlattices are a notable exception. In these materials, $E_1(k_1=0)$ is very close to or degenerate with HH_1 ($k_{\perp}=0$) and $HH_2(k_{\perp}=0)$. Suppose, for instance, that at $k_{\perp}=0$, $E_1(q=0,k_1=0) < HH_1(q=0,k_1=0)$. Tuning k_1 (experimentally the magnetic field) would cause $E_1(q=0,k_{\perp})$ to cross $HH_1(q=0,k_{\perp})$, since E_1 is predominantly InAs electronlike and HH₁ GaSb heavy-hole-like. This crossing takes place at $k_{\perp} \neq 0$; it is likely that E_1 will in fact not cross HH_1 . A correct description of this anticrossing requires an exact calculation of the k_{\perp} dependence of all SL states, which is beyond the scope of our decoupling scheme. Keeping these reservations in mind, we have calculated the light-particle dispersion relations neglecting remote-band effects. The 2×2 system (26)-(29) is completed by the boundary conditions:

$$F_1(z), \quad [\epsilon_A + \epsilon - V_P(z)]^{-1} \left[-\sqrt{2} \frac{dF_1}{dz} - ik_+ F_2 \right],$$
(31)

$$F_2(z), \quad [\epsilon_A + \epsilon - V_P(z)]^{-1} \left[-\sqrt{2} \frac{dF_2}{dz} + ik_-F_1 \right],$$

all continuous at the A - B interface, and

<u>25</u>

THEORETICAL INVESTIGATIONS OF SUPERLATTICE BAND ...

$$F_{1,2}(z) \exp(iqmd) = F_{1,2}(z+md)$$
. (32)

The boundary conditions provide us with eight homogeneous equations in eight unknowns (two plane-wave amplitudes per layer and per "spin"). Setting the determinant of this 8×8 system to zero leads to two identical dispersion relations. These are

$$\cos qd = \cos k_{A} l_{A} \cos k_{B} l_{B}$$
$$-\frac{1}{2} \left[\xi + \xi^{-1} + \frac{k_{\perp}^{2}}{4k_{A}k_{B}} (r + r^{-1} - 2) \right]$$
$$\times \sin k_{A} l_{A} \sin k_{B} l_{B} , \qquad (33)$$

$$(\sin k_A l_A \sin k_B l_B),$$
 (33)

where

$$\xi = \frac{k_A}{k_B} r, \quad r = \frac{\epsilon_A + \epsilon - V_P}{\epsilon_A + \epsilon} , \qquad (34)$$

$$\frac{2}{3}\Pi_{c,\nu}^2 \hbar^2 (k_A^2 + k_\perp^2) = \epsilon(\epsilon + \epsilon_A) , \qquad (35)$$

$$\frac{2}{3} \prod_{c,v}^{2} \hbar^{2} (k_{B}^{2} + k_{\perp}^{2}) = (\epsilon - V_{S})(\epsilon + \epsilon_{A} - V_{P}) .$$
(36)

The twofold degeneracy is expected since there is no external magnetic field. Note also that \vec{k}_{\perp} enters the dispersion relations only through k_{\perp}^2 ; this accounts for the cylindrical symmetry around the SL axis. Finally, let us remark that the whole SL band structure and especially the SL bandwidths are k_{\perp} dependent. In other words, SL bands are not only k_{\perp} shifted but also deformed with k_{\perp} . Apart from the explicit k_{\perp} dependence of Eq. (33), which is entirely due to the nonvanishing \mathcal{H}_{12} , the $\epsilon(q)$ dispersion relations are obtained as if host band structures were different for different k_{\perp} . For instance, in the InAs-GaSb system, one deals with an effective k_{\perp} -dependent overlap between the InAs conduction band and the GaSb light-hole level; this overlap decreases with increasing k_{\perp} (Fig. 3). It is then natural that the E_1 bandwidth decreases with increasing k_{\perp} corresponding to SL states, which are more localized at finite k_{\perp} than at $k_{\perp}=0$. For very large k_{\perp} , the E_1 bandwidth may even become negligible. We illustrate this point in Fig. 4 where we show the evolution of Γ_1 , the E_1 bandwidth, versus k_{\perp}^2 for two InAs-GaSb superlattices with (30-50)-Å and (65-80)-Å layer thicknesses, respectively.

The most convenient techniques to study SL dispersion relations are the Shubnikov-de Haas effects and the far-infrared magnetoabsorption. If

FIG. 3. GaSb (light-hole) and InAs (conduction-) band-edge energies are plotted vs k_{\perp}^2 to illustrate the decrease of the effective overlap between the light-particle state from which the SL states are built. The component k_{\parallel} of the wave vector parallel to the SL axis is set equal to zero.

one neglects the spin effects, our k_{\perp} calculation can be translated into Landau-level patterns by using the quantization rule

$$k_{\perp}^{2} = (2n+1)/\lambda^{2} , \qquad (37)$$

where $\lambda = (\hbar c / eH)^{1/2}$ is the usual magnetic length. Figure 5 shows the calculated Landau levels belonging to the lowest electronic subband E_1 at q=0 for semiconducting InAs-GaSb superlattices. We have also shown in this figure the semiempirical dispersion relations

$$\epsilon \left[1 + \frac{\epsilon}{\epsilon_A} \right] = E_1(q = 0, k_\perp = 0)$$

$$\times \left[1 + \frac{E_1(q = 0, k_\perp = 0)}{\epsilon_A} \right]$$

$$+ (n + \frac{1}{2}) \frac{\hbar e H}{m_A c} \qquad (38)$$

FIG. 4. E_1 bandwidth Γ_1 is plotted vs k_{\perp}^2 for two InAs-GaSb SL's: $l_A, l_B = 30$ and 50 Å (left scale) and 65 and 80 Å (right scale).

FIG. 5. Calculated Landau-level patterns at q = 0 for three different InAs-GaSb SL's. (a) $l_A, l_B = 65$ and 80 Å; (b) 30 and 50 Å; (c) 30 and 30 Å. The dashed lines represent the semiempirical result (38).

 $(A \equiv InAs)$, which has proved successful in interpreting several oscillatory phenomena in the InAs-GaSb system.²⁰⁻²² Equation (38) is based on the assumption that E_{\perp} (q =0, k_{\perp}) SL states are mostly built from InAs conduction states, for which a Kane-type treatment is appropriate. For the (65-80)-Å sample, both models almost agree if $n \neq 0$. In this sample, far-infrared magneto-optical experiments²⁰ have shown a broad cyclotron line

corresponding to $1 \rightarrow 2$ or $3 \rightarrow 4$ cyclotron resonances depending on the laser frequency. Both Eq. (38) and our model give an acceptable agreement between calculations and experiments. The Landau-level patterns are, however, sensitively different if $E_1(q=0,k_1=0)$ increases (short-periods SL) or thick GaSb layers. When expressed in terms of a transverse mass m_{\perp} , our calculations lead to much lighter m_{\perp} than Eq. (38) in InAs-

E (meV)

E1(0)

(b)

GaSb superlattices with large $E_1(q=0,k_1=0)$. That the two models should differ is clear from the lack of any explicit d, l_A, l_B dependences in Eq. (38). Hence, in this model two SL with different d_{l_A}, l_B but the same $E_1(q=0, k_1=0)$ should have the same Landau levels. These Landau levels are, in principle, different according to our calculations. The difference between the two models ultimately arises from the InAs confinement assumption underlying the semiempirical approach. This assumption works well in large periodicity SL [as witnessed by the good agreement between Eq. (38) and the far-infrared data obtained in the semimetallic InAs-GaSb SL (Refs. 21 and 22)]. We believe it should fail if $\Gamma_1(k_{\perp})$ is noticeable, i.e., if the electron appreciably penetrates in GaSb layers. Experiments are needed to elucidate this point.

Quite generally, we may define the SL band-edge effective masses m_{\perp} and m_{\parallel} : For E_1 , we define

$$E_1(q,k_{\perp}) = E_1(0,0) + \frac{\hbar^2 q^2}{2m_{\parallel}} + \frac{\hbar^2 k_{\perp}^2}{2m_{\perp}} .$$
 (39)

The masses m_{\parallel} and m_{\perp} can be analytically obtained from Eq. (33). The resulting expressions are, however, cumbersome and of little use. It is more instructive to relate m_{\parallel} and m_{\perp} to the qp_z and $\vec{k}_{\perp} \cdot \vec{p}$ perturbation expansion on the exact $q=0, k_{\perp}=0$ superlattice states. In doing so, we eliminate the k_{\perp} -induced light-heavy particle coupling and may safely describe whole InAs-GaSb family. We have

$$\frac{1}{m_{\perp}} = \frac{1}{m_0} + \frac{2}{m_0^2} \sum_{X_n} \frac{|\langle E_1, 0, 0 | P_x | X_n, 0, 0 \rangle|^2}{E_1(0, 0) - X_n(0, 0)} ,$$
(40)

$$\frac{1}{m_{||}} = \frac{1}{m_0} + \frac{2}{m_0^2} \sum_{X_n} \frac{|\langle E_1, 0, | P_z | X_n, 0, 0 \rangle|^2}{E_1(0,0) - X_n(0,0)}$$

in Eq. (40) the summation over X_n includes all but E_1 SL states (light-particle and heavy-hole states) at the center of the SL Brillouin zone. There exist two $|E_1,0,0\rangle$ states corresponding to a given M_J . Each of these states is P_z connected with all the $|E_n,0,0\rangle$ and $|LH_n,0,0\rangle$ states of the same M_J . The operator P_z has, however, no nonvanishing element between $|E_10,0\rangle$ and $|HH_n,0,0\rangle$. On the other hand, P_x connects the $|E_1,0,0\rangle$ level with $M_J = \pm \frac{1}{2}$ to the $|HH_n,0,0\rangle$ states of $M_J = \pm \frac{3}{2}$ but also with the $|E_n0,0\rangle$ and $|LH_n,0,0\rangle$ levels corresponding to $M_J = \pm \frac{1}{2}$.

The lack of qp_z interaction between E_1 and HH_n and

$\langle E_1, 0, 0 | P_x | HH_n, 0, 0 \rangle \neq 0$

have some interesting consequences on the behavior of $m_{||}$ and m_{\perp} with SL periodicity in the InAs-GaSb system. In this system, there exists a semiconductor \rightarrow semimetal (SC \rightarrow SM) transition resulting from the inversion of the relative positions of $E_1(0,0)$ and $HH_1(0,0)$. For equal InAs and GaSb thicknesses, this SC \rightarrow SM transition takes place near $d \sim 185$ Å.^{4,5,9} At this transition nothing particular occurs to the longitudinal mass $m_{||}$ since E_1 and HH_1 are not P_z coupled. Such is not the case for m_1 . Since

$$\langle E_1, 0, 0 | P_x | HH_1, 0, 0 \rangle \neq 0$$

one expects the $k_x P_x$ coupling between E_1 and HH_1 to dominate the remaining terms in Eq. (40). Therefore, m_1 should vanish at the SC \rightarrow SM transition and change sign from SC to SM sides. Note that this sign reversal is currently met in II-VI mixed crystals like the $Hg_{1-x}Cd_x$ Te alloys: At critical composition $x \simeq 0.16$ the Γ_6 band passes through the Γ_8 edges and its masses changes sign. Note also that such a mass reversal is absent from the semiempirical approach of Eq. (38).

It is, however, very likely that the m_{\perp} sign reversal will take place in a very narrow d range. The reason is the smallness of the coupling matrix element $\langle E_1, 0, 0 | P_x | HH_1, 0, 0 \rangle$ because of the important spatial confinement of E_1 into InAs and HH_1 into GaSb layers, respectively. To dominate the remaining terms in Eq. (40), the P_x coupling between E_1 and H_1 should take place between extremely close E_1 and H_1 states $[E_1(0,00$ $-HH_1(0,0)$ being in the meV range]. This is in contrast to II-VI alloys were the Γ_6 - Γ_8 coupling is predominant for $\epsilon_{\Gamma_6} - \epsilon_{\Gamma_8}$ gaps as large as 0.3 eV. Symmetrically, HH_1 will exhibit a m_{\perp} sign reversal at the $SC \rightarrow SM$ transition but again this anomaly will not be easy to detect. For equal InAs and GaSb thicknesses, $E_1(0,0)$ becomes very close to $LH_1(0,0)$ for $d \simeq 230$ Å (E_1 and LH_1 actually anticross). Hence, a very light m_{\parallel} mass can be expected for E_1 . Again the two-band $(E_1$ and $LH_1)$ situation will prevail only near $d \simeq 230$ Å since, as before, the involved P_z matrix element will be rather small owing to the pronounced localization of E_1 and LH_1 states into different layers.

We have numerically calculated $m_{||}$ and m_{\perp} according to Eq. (33) in the InAs-GaSb system for equal layer thicknesses. Owing to our oversimplified decoupling procedure m_{\perp} cannot be reliably obtained above the SC \rightarrow SM transition, whereas $m_{||}$ can be calculated for arbitrary d. The results

FIG. 6. Evolution of the E_1 transverse (m_1) and longitudinal $(m_{||})$ SL effective masses with the period d for InAs-GaSb SL's of equal-layer thicknesses.

are shown on Fig. 6. One sees that $m_{||}$ and m_{\perp} are quite light in small-period superlattices. Moreover, the mass anisotropy is not very large ($\leq 20\%$) at small d. The longitudinal effective mass $m_{||}$ decreases with d, approaching $6 \times 10^{-3} m_0$ near the E_1 -LH₁ anticrossing. Plotting $m_{||}$ vs $E_1(0,0)$ -LH₁(0,0) gives us a rough estimate of the $\langle E_1, 0, 0 | P_z | LH_1, 0, 0 \rangle$ matrix element in the vicinity of the anticrossing. We have obtained

$$\frac{2}{m_0} |\langle E_1, 0, 0 | P_z | LH_1, 0, 0 \rangle|^2 \simeq 0.9 , \qquad (41)$$

in units of eV, which has to be compared with the Kane matrix element

$$\frac{2}{m_0} |\langle S | P_z | Z \rangle|^2 \sim 19 ,$$

in units of eV, found in usual III-V and II-VI semiconductors.

V. INTERFACE DEFECT STATES

Consider a A-B superlattice with period $d = l_A + l_B$, and assume that one of the A layers is irregular with a thickness L_A . We choose the z origin at the left side of the irregular A layer. We want to calculate the wave function and the energy position of the A-type bound state associated with this defect. If $L_A > l_A$, we know that at least one such bound state exists since we are dealing with a one-dimensional problem. The very same problem was recently treated by Combescot and Benoit à la Guillaume²³ in the simple plane-wave approach assuming moreover equal valence and conduction masses. Restricting themselves to the infinitely deep quantum wells, Voisin *et al.*²⁴ have recently studied the bound states created by trenchlike defects. Here we want to show that the EFA allows a complete and simple treatment of the planar interface defects, taking exactly into account the host material band structures. We, therefore, adopt all the notations used in Sec. II.

If there exists a bound state at the energy ϵ , its wave function decreases exponentially when $z \rightarrow \pm \infty$. The Bloch condition (9) should then be replaced by

$$F_{S}(z+md) = \exp(-qmd)F_{S}(z) , \qquad (42)$$

$$F_{S}(-z-md)\exp(-qmd)F_{S}(-z) , \qquad z > 0, \quad m > = 0.$$

Let us assume for simplicity $\vec{k}_{\perp} = \vec{0}$. The boundary conditions at the *A*-*B* interfaces are the same as before [Eq. (10)]. Writing these boundary conditions when going from the *N*th unit cell to the $(N+lth) [L_A+l_B+Nd \le z \le L_A + l_B + (N+1)d]$ and making use of Eq. (42), one obtains the "dispersion relations"

$$h(qd) = \cos k_A l_A \cos k_B l_B$$
$$-\frac{1}{2} (\xi + \xi^{-1}) \sin k_A l_A \sin k_B l_B , \quad (43)$$

where all the symbols have the same meaning as in Sec. II. We also obtain the ratio of incoming and outgoing plane waves in the B layer. Hence, in the irregular unit cell $(0 < z < L_A + l_B)$ the wave function for $L_A < z < L_A + l_B$ is entirely known (apart from a normalization coefficient). Writing the continuity equations at $z = L_A$ provides us with two equations linking the two unknown coefficients $(C_1 \text{ and } C_2)$ in the anomalous A layer to the two coefficients in the neighboring B layer. Finally, one eliminates the B-layer coefficients and gets one homogeneous equation linking the two unknowns C_1 and C_2 . The same procedure is repeated for negative z. The dispersion relation (43) is again obtained as well as the ratio of the two plane-wave amplitudes inside the B layer. In the final step, one writes the boundary conditions at z=0 and reduces the problem to two homogeneous linear equations for the two unknown coefficients C_1 and C_2 . The energy position of the bound level is then determined by solving

 $\exp(qd)[\cos k_B l_B \cos k_A L_A]$

cos

$$-\frac{1}{2}(\xi+\xi^{-1})\operatorname{sin}k_{B}l_{B}\operatorname{sin}k_{A}L_{A}]$$

= $\operatorname{cos}k_{A}l_{A}\operatorname{cos}k_{A}L_{A}+\operatorname{sin}k_{A}l_{A}\operatorname{sin}k_{A}L_{A}$, (44)

FIG. 7. Binding energy E_D of the ground interface defect bound state plotted vs $v = (L_A - l_A)/l_A$ the relative thickness of the anomalous InAs layer in a 30-Å-50-Å InAs-GaSb SL.

where qd is obtained from Eq. (43). The boundstate equation is again quite general and may be applied to any kind of binary SL. To illustrate the previous results, we have calculated the bound state created by an anomalous InAs layer in the InAs-GaSb SL system. Luminescence experiments were performed on a (30-50) Å InAs-GaSb SL. For this SL, the lowest-lying (E_1) conduction band extends from 392 to 433 meV (the energy zero being taken at the bulk InAs conduction-band edge). In Fig. 7, we show the binding energy E_D of the InAs defect versus $v = (L_A - l_A)/l_A$, which is the relative excess thickness of the InAs anomalous layer. One sees that the binding energy is quite substantial (41 meV) for v = 0.2. The value v = 0.2 roughly corresponds to an extra InAs thickness of two InAs atomic planes. If v is large enough, a second

 $(v \sim 1.5)$, third, etc., bound state appears. Ultimately, when $v \rightarrow \infty$ one should recover the InAs impurity modes $k_A L_A = p\pi, p = 1, 2$.

Since the transverse motion is free in regular and anomalous layer, a steplike density of states is associated to each of the A-type bound states. In real SL, many irregular A slices of different v exist. Hence, several A-type bound states together with B-type bound levels will be found in the forbidden gap. The identification of these defect states will be quite difficult. The difficulty is further increased by the fact that trenchlike²⁴ of shoeboxlike irregularities may also give rise to bound impurity states. Note also that the shallow impurities do not produce well-defined hydrogenic impurity states but are smeared out into impurity bands due to the dependence of the binding energy on the impurity position.²⁵

VI. POLYTYPE SUPERLATTICES BAND STRUCTURE

Our calculations have been so far restricted to binary (A - B) superlattices. It may prove useful for specific technological purposes to grow ternary (A-B-C), quaternary (A-B-C-D), etc., SL. Esaki, Chang, and Mendez²⁶ recently proposed this novel idea and applied it to the case of InAs-GaSb-AlSb multiheterojunctions. The calculations of A-B-Ctype SL band structure will be almost unfeasible in the three-dimensional LCAO framework unless l_A , l_B , l_C are only a few atomic planes thick. On the other hand, the EFA is capable of achieving this task. To do so, let us use the transfer matrix scheme. Consider a given ABC superlattice unit cell and assume for simplicity $\vec{k}_{\perp} = \vec{0}$. Inside each layer the projection $F_{S}(z)$ of the wave function on the S level is a sum of incoming and outgoing plane waves:

$$F_{S}(z) = \alpha_{A} = \exp(ik_{A}z) + \beta_{A}\exp(-ik_{A}z), \quad 0 \le z \le l_{A}$$

$$F_{S}(z) = \alpha_{B}\exp[ik_{B}(z-l_{A})] + \beta_{B}\exp[-ik_{B}(z-l_{A})], \quad l_{A} \le z \le l_{A} + l_{B}$$

$$F_{S}(z) = \alpha_{C}\exp[ik_{C}(z-l_{A}-l_{B})] + \beta_{C}\exp[-ik_{C}(z-l_{A}-l_{B})], \quad l_{A} + l_{B} \le z \le l_{A} + l_{B} + l_{C}.$$
(45)

We can write the boundary conditions (10) for F_S and its derivative at the *A-B* and *B-C* interfaces. This gives us

$$\begin{bmatrix} \alpha_B \\ \beta_B \end{bmatrix} = T_{A \to B} \begin{bmatrix} \alpha_A \\ \beta_A \end{bmatrix}, \quad \begin{bmatrix} \alpha_C \\ \beta_C \end{bmatrix} = T_{B \to C} \begin{bmatrix} \alpha_B \\ \beta_B \end{bmatrix}, \quad (46)$$

and the Bloch therorem reads

$$\begin{bmatrix} \alpha_A \\ \beta_A \end{bmatrix} \exp(iqd) = T_{C \to A} \begin{bmatrix} \alpha_C \\ \beta_C \end{bmatrix}.$$
 (47)

 (α_A, β_A) is then the eigenvector corresponding to the eigenvalue e^{iqd} of the transfer matrix

$$\tau = T_{C \to A} T_{B \to C} T_{A \to B} . \tag{48}$$

To find the eigenvalue of $\tau \det \tau$ has to be 1 and the solutions are such that⁶

$$2\cos(qd) = \mathrm{Tr}(\tau) \ . \tag{49}$$

Let us choose the energy zero at the bottom of the S-type band of the A material. Define $V_P^{B,A}$ and $V_P^{C,A}$ the energy shifts of the P edges between A and B, A, and C materials, respectively. In terms of the quantities

$$\xi_{A,B} = \frac{k_A}{k_B} \frac{\epsilon_A + \epsilon - V_P^{A,B}}{\epsilon_A + \epsilon} ,$$

$$\xi_{B,C} = \frac{k_B}{k_C} \frac{\epsilon_A + \epsilon - V_P^{C,A}}{\epsilon_A + \epsilon - V_P^{B,A}} ,$$

$$\xi_{C,A} = \frac{k_C}{k_A} \frac{\epsilon_A + \epsilon}{\epsilon_A + \epsilon - V_P^{C,A}} ,$$
(50)

which are such the $\xi_{A,B}\xi_{B,C}\xi_{C,A} = 1$, the dispersion relations obtained from Eq. (49) are

$$\cos(qd) = \cos k_A l_A \cos k_B l_B \cos k_C l_C$$

$$-\frac{1}{2} (\Omega_{B,C} \cos k_A l_A \sin k_B l_B \sin k_C l_C + \Omega_{C,A} \sin k_A l_A \cos k_B l_B \sin k_C l_C$$

$$+ \Omega_{A,B} \sin k_A l_A \sin k_B l_B \cos k_C l_C)$$
(51)

with

$$\Omega_{X,Y} = \xi_{X,Y} + \xi_{X,Y}^{-1} , \qquad (52)$$

where q is the SL wave vector and $d = l_A + l_B + l_C$, the SL period. This procedure can be clearly iterated. For instance, the dispersion relations of *ABCD*-type SL are obtained in terms of $\xi_{A,B}$, $\xi_{B,C}$, $\xi_{C,D}$, $\xi_{D,A}$:

$$\begin{aligned} \cos(qd) &= \cos k_A l_A \left[\cos k_B l_B \cos k_C l_C \cos k_D l_D - \frac{1}{2} (\xi_{C,D} \xi_{B,C} + \xi_{C,D}^{-1} \xi_{B,C}^{-1}) \sin k_B l_B \cos k_C l_C \sin k_D l_D \right. \\ &\qquad \left. - \frac{1}{2} \Omega_{C,D} \sin k_C l_C \sin k_D l_D \cos k_B l_B - \frac{1}{2} \Omega_{B,C} \sin k_B l_B \sin k_C l_C \cos k_D l_D \right] \\ &\qquad \left. - \frac{1}{2} \sin k_A l_A \left[(\xi_{A,B} \xi_{B,C} + \xi_{A,B}^{-1} \xi_{B,C}^{-1}) \cos k_D l_D \cos k_B l_B \sin k_C l_C \right. \\ &\qquad \left. - (\xi_{B,C} \xi_{D,A} + \xi_{B,C}^{-1} \xi_{D,A}^{-1}) \sin k_B l_B \sin k_C l_C \sin k_D l_D \\ &\qquad \left. + \cos k_C l_C (\Omega_{A,B} \sin k_B l_B \cos k_D l_D + \Omega_{D,A} \sin k_D l_D \cos k_B l_B) \right], \end{aligned}$$

where all the symbols have the same meaning as before except that d is now equal to $l_A + l_B + l_C + l_D$.

Let us remark that for the A, B, C system there exist in principle two possible ternary SL's built from these elements. There are the A, B, C and A, C, B materials. However, the sequence ACBCB... is ABCABC... spelled backward. Therefore, the SL potentials $V_{ACB}(z)$ and $V_{ABC}(z)$ are such that $V_{ACB}(z) = V_{ABC}(-z)$. The Bloch eigenstates $\psi_{ABC}(z)$ and $\psi_{ACB}(z)$ of the same energy correspond to SL states of opposite wave vector qand -q. But $\epsilon(q) = \epsilon(-q)$ and the dispersion relations of ABC and ACB SL's are, therefore, identical. This is in fact apparent in Eq. (51) which is invariant under any permutation of A, B, and C. For quaternary SL such a simplification does not occur and the ABCD, ACBD SL's should have different band structures.

VIII. CONCLUSION

We have extended our previous work on the EFA to four distinct SL problems. For all these problems, the EFA has enabled us to obtain entirely analytical solutions. We believe that no other computation method (LCAO, etc.) would have achieved this task. We have shown that HgTe-CdTe SL's may display either a finite or a zero-gap semiconductor configuration; the zero-gap \rightarrow semiconductor transition taking place for a host thickness ratio l_{HgTe}/l_{CdTe} which is exactly the same as the [HgTe]/[CdTe] ratio for which the ternary random alloy $Hg_{1-x}Cd_xTe$ undergoes the same transition. We have derived and discussed the transverse SL dispersion relations of A-B-type SL's. We have shown that the transverse SL effective mass m_{\perp} in the InAs-GaSb system should undergo

(53)

a sign reversal when the lowest electric band E_1 crosses the highest heavy-hole band HH_1 . This sign reversal will, however, be very hard to detect due to the small p_x matrix element between E_1 and HH_1 . We have derived the bound-state equation for planar interface defects in superlattices, taking exactly into account the host band structure. This equation is valid for any kind of A-B SL. Finally, we have obtained the dispersion relations of polytype superlattices (A-B-C or A-B-C-D systems). Owing to a \vec{k}_1 -induced light-particle—heavy-hole coupling, our EFA calculations require further ela-

- *Permanent address: Groupe de Physique des Solides de l'Ecole Normale Supérieure, 24 rue Lhomond 75231, Paris Cedex 05, France.
- ¹L. Esaki, and R. Tsu, IBM J. Res. Dev. <u>14</u>, 61 (1970).
- ²R. Dingle, in Festkörperprobleme XV (Advances in Solid Physics), edited by H. J. Queisser (Pergamon, Vieweg, 1975), p. 21.
- ³L. Esaki and L. L. Chang, Thin Solid Films <u>36</u>, 285 (1976).
- ⁴L. L. Chang, Proceedings of the XV International Conference on Semiconductors, Kyoto, 1980 [J. Phys. Soc. Jpn <u>69</u>, Suppl. A, 997 (1980)].
- ⁵L. Esaki, in Narrow Gap Semiconductors—Physics and Applications, Vol. 133 of Lecture Notes in Physics, edited by W. Zawadzki (Springer, Berlin, 1980), p. 302.
- ⁶G. A. Sai Halasz, L. Esaki, and W. A. Harrison, Phys. Rev. B <u>18</u>, 2812 (1978).
- ⁷D. Mukherji and B. R. Nag, Phys. Rev. B <u>12</u>, 4338 (1975).
- ⁸G. A. Sai Halasz, R. Tsu, and L. Esaki, Appl. Phys. Lett. <u>30</u>, 651 (1977).
- ⁹G. Bastard, Phys. Rev. B <u>24</u>, 5693 (1981).
- ¹⁰E. O. Kane, J. Phys. Chem. Solids <u>1</u>, 249 (1957).
- ¹¹S. White and L. Sham, Phys. Rev. Lett. <u>47</u>, 879 (1981).
- ¹²D. J. Ben Daniel and C. B. Duke, Phys. Rev. <u>152</u>, 683 (1966); see also W. A. Harrison, Phys. Rev. <u>123</u>, 85 (1961).
- ¹³N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976), p.

borations and refinements to reliably describe the Landau levels of semimetallic InAs-GaSb SL's.

ACKNOWLEDGMENTS

All the calculations and results obtained in this paper have considerably benefited by the valuable remarks and discussions made by Dr. Y. Guldner, Dr. P. Voisin, and Dr. M. Voos of the Ecule Normale Supérieure Laboratory. I am glad to thank Dr. L. Esaki for his kind invitation at the IBM Laboratory and Dr. L. Esaki, Dr. L. L. Chang, and Dr. E. E. Mendez for helpful remarks.

146.

- ¹⁴J. N. Schulman and T. C. McGill, Phys. Rev. B <u>23</u>, 4149 (1981).
- ¹⁵See, for instance, Y. Guldner, C. Rigaux, A. Mycielski, and Y. Couder, Phys. Status Solidi B <u>81</u>, 615 (1977); <u>82</u>, 149 (1977).
- ¹⁶C. R. Pidgeon, in *Handbook on Semiconductors*, edited by T. S. Moss (North-Holland, Amsterdam, 1980), Vol. 2; *Optical Properties of Solids*, edited by M. Balkanski (North-Holland, Amsterdam, 1980).
- ¹⁷C. Lewiner, O. Betbeder, Betbeder-Matibet, and P. Nozières, J. Phys. Chem. Solids <u>34</u>, 765 (1973).
- ¹⁸F. J. Ohkawa and Y. Uemura, J. Phys. Soc. Jpn. <u>37</u>, 1325 (1974).
- ¹⁹J. M. Luttinger, Phys. Rev. <u>102</u>, 1030 (1956).
- ²⁰H. Bluyssen, J. C. Maan, P. Wyder, L. L. Chang, and L. Esaki, Solid State Commun. <u>31</u>, 35 (1979).
- ²¹Y. Guldner, J. P. Vieren, P. Voisin, M. Voos, L. L. Chang, and L. Esaki, Phys. Rev. Lett. <u>45</u>, 1719 (1980).
- ²²J. C. Maan, Y. Guldner, J. P. Vieren, P. Voisin, M.
- Voos, L. L. Chang, and L. Esaki, Solid State Commun. <u>39</u>, 683 (1981).
- ²³M. Combescot and C. Benoit à la Guillaume, Solid State Commun. <u>39</u>, 651 (1981).
- ²⁴P. Voisin, G. Bastard, C. E. T. Gonzalves da Silva, M. Voos, L. L. Chang, and L. Esaki, Solid State Commun. <u>39</u>, 79 (1981).
- ²⁵G. Bastard, Phys. Rev. B <u>24</u>, 4714 (1981).
- ²⁶L. Esaki, L. L. Chang, and E. E. Mendez, Jpn. J. Appl. Phys. <u>20</u>, L529 (1981).