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We extend our previous investigations on the band structure of superlattices by apply-

ing the envelope-function approximation to four distinct problems. We calculate the band

structure of HgTe-CdTe superlattices and show that these materials can bc either semi-

conducting or zero-gap semiconductors, i.e., behave exactly like the ternary Hgl „Cd„Te
random alloys. We analyze the superlattice dispersion relations in the layer planes {Lan-

dau superlattice subbands) and we compare the longitudinal and transverse effective

masses of semiconducting InAs-GaSb superlattices. We calculate the general equation for
the bound states due to aperiodic layers, taking account of the band structure of the 1&ost

materials. We finally derive the dispersion relations of polytype (ABC or ABCD) super-

lattices.

I. INTRODUCTION

Increasing attention is now paid to the man-
made one-dimensional periodic structures, referred
to as semiconductor superlattices after Esaki and
Tsu. ' The currently studied GaAs-Ga(AI, As)
(Refs. 2 and 3) and InAs-GaSb (Refs. 4 and 5) su-
perlattices are fabricated by molecular beam epi-
taxy. This technique makes it possible to produce
abrupt interfaces between host materials; the inter-
faces extending only through few lattice planes.
Besides their promising technical applications, the
superlattices (SL) raise by themselves interesting
theoretical problems. Their band structure has
been calculated within the linear combination of
atomic orbitals (LCAO) framework. A simple
computational method, i.e., plane-wave matching,
which amounts to be a one-band approximation,
worked apparently well in the GaAs-GaA1As sys-

tem but completely failed to describe the behavior

of InAs-GaSb superlattices. In a recent paper,
we have shown that both GaAs-GaAlAs and

InAs-GaSb superlattices can be described by the
envelope-function (i.e., plane-wave) approximation
(EFA) provided that the symmetries of the relevant

band edges are correctly taken into account. In the

existing SL, one deals with host materials with S-
type conduction- and P-type valence-band edges.
Hence, the Kane model' is most helpful in

describing the electron propagation inside the host

layers since it automatically incorporates both
conduction- and valence-band edges. Using the
Kane-type solutions, we derived the boundary con-

ditions fulfilled by the envelope function at the in-

terfaces. The very simple dispersion relations of
the InAs-GaSb SL were found to be in quantitative
agreement with the LCAO predictions. This
points out the advantages of Kane's model for
band-structure calculations using measured param-
eters such as the effective masses at extrema

points.
In contrast with three-dimensional LCAO calcu-

lations, very modest computational efforst are
needed in the EFA. Hence, the EFA is capable of
dealing with the SL of arbitrary periods and is ap-
plicable to any binary (A B) superlattic-e, provided
that the host's band structures can be described by
the Kane model. Within this model, we will end

up with two separate descriptions for heavy-hole

SL states on the one hand and for coupled light
particles (electrons and light holes) SL states on the
other hand, provided that ki the carrier wave vec-

tor in the layer plane, is equal to zero. If this
wave vector is nonzero light and heavy particles
will be coupled and we will be able to discuss the
SL cyclotron mass. The flexibility and generality
of the EFA have inspired us to extend our previ-

ous analysis to several problems connected with SL
band structure. The EFA will be discussed in Sec.
II and applied to the case of HgTe-CdTe superlat-
tices (Sec. III). The dispersion relations and SL ef-
fective masses (i.e., longitudinal or transverse with

respect to the SL growing axis) will be discussed in
Sec. IV. Section V will be devoted to interface de-

fect states which arise from an irregular layer
thickness. Finally, in Sec. VI, we will apply the
EFA method to ABC or ABCD-type superlattices.
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II. THE ENVELOPE-FUNCTION
APPROXIMATION

Consider two semiconductors A and B. The AB
superlattice consists of alternating layers of A and
B materials. In what follows, we shall take the z
axis to be parallel to the SL axis. Longitudinal
and transverse will, respectively, mean "along the
Sl. axis" or perpendicular to this axis (i.e., in the
layer plane). Inside each host material the electron
states are assumed to be describable by the Kane
model. The valence (P-like) and conduction (S-
like) edges are at the center of the Brillouin zone.

The spin-orbit coupling lifts the sixfold valence de-

generacy at k=0 into a I 8 quadruplet and a I 7

doublet. For our purpose, the I 7 doublet can be
neglected. Since the spin-orbit coupling is quite

large, the k p interaction is exactly diagonalized
with the I 6,I 8 basis. The electronic motion inside
each layer (A or 8) is described by kz or ks and

kz ——(k„,kz). . Note that the transverse wave vector

kz is conserved across an interface since in the
EFA the interface potential depends only on z. If
kj ——0, the Kane matrix describing the k p in-

teraction within the I 6,I'8 subspace is particularly
simple. For instance, in A material it reads

IsM, = ,'& Is——M,=+ ,'& IP-M, =+ ,'& IP-MJ + ,——& I—P,Mg ——,'&l—
l IPMJ

0 0 0 0 II, „v'2/3A'kg 0

II, „V2/3irikg

0

0

11,„V'2/3'„
0

II„v'2/3irikg

0
A

where

mo
(s IP, Ix& .

The free-electron kinetic energy has been neglected.
This is consistent with our neglect of the remote
band effects. The dispersion relations are

' 1/22
&A EA 8Hc, u 21+ ~' A' (kg } (2)

Each eigensolution of (1) is doubly degenerate with
respect to the z projection of the total angular

1

momentum. The values Mq ——+ —, correspond to
light particles (electrons and light holes). They are

3
completely decoupled from the MJ ——+ —, states
which, as may be seen from Eq. (1), have no com-

1

ponent on the
I
S,Mq ——+ —, & states and are in fact

dispersionless. The Mz ——+ —, states correspond to
the heavy-hole solutions. A finite heavy-hole mass
can be restored only if one accounts for k p in-

3
teraction between the

I
P,Mq + , & states and th——e-

remote bands of the crystal (see below). The
decoupling between

I
S,MJ ——+ —, & and

I
P,MJ ——+ —, & states holds only if kz ——0. It arises

from the fact that both J and k have been taken
to be parallel to the SL axis. For homogeneous A

4 =Cik +C2(k. J) (3)

We have emphasized this point since it significant-
ly influences the results of Sec. IV.

In B layers, at kz ——0, the effective P is ob-
tained by shifting the I 6(S) origin by Vs and the
I 8-band edges by Vz. In principle one should also
change H,'"„' into H,' „'. However, the Kane matrix
element II, „does not change very much from one
III-V compound to another, which in fact
witnesses the similarities between the periodic part
of the Bloch functions in various III-V semicon-
ductors. Therefore, we will assume that H,'"„' is the
same as II,'„'. This will avoid introduction of extra
[II,„(z},d/dz] in the foregoing analysis [e.g., in

I

or 8 materials, the choice of the quantization axis
is somewhat arbitrary (if one negelcts nonspherical
terms like I 8 warping or inversion asymmetry
splitting). In superlattices, on the other hand, the z
axis is, in practice, chosen along the SL axis; this
choice making the interface equations analytically
trivial. If, however, the z direction is fixed and

~

'
3kj+0, the coupling between Mq ——+ —, and

MJ ——+ —, states is nonzero. The origin of this cou-

pling may be traced back to the fact that the most
general spherically symmetric, quadratic I q A is
not the scalar C2k, but rather
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Eq. (7)].
If we are interested in the slowly varying en-

velope functions and discard any phenomena rapid-

ly varying on the scale of host unit cells, these en-

velope functions are the solutions of a 6X 6 dif-
ferential system obtained from 4 [Eq. (1)] by
changing haik, into —ibid/dz and by letting the S
and P edges be position dependent through the re-

lations

Vs, p(z+md) = Vs, p(z),

Vs p(z)=0 if 0&z &lz,

Vs, p(z)=Vs, p if l~ &z &1~+la,

II
2 ' P, [eg+e—Vp(z)] 'P, + Vs(z} Fs(z)

=eFs(z) . (8)

To complete the problem, we impose on Fs(z) the
Bloch condition

Fs(z +md) =exp(i qmd)Fs(z),

where q is the SL wave vector along the SL direc-
tion and m is an integer. At the A-8 interface, we

integrate Eq. (8) across the boundary and, if Fs is
assumed to be continuous, we obtain

1
dES

[e~ +e—Vp(z)] ' (z),

where lq and lq are the A- and 8-layer thickness,
respectively, and d =lz+lz is the SL period. On
the scale of variations of the envelope functions,
the interfaces reduce to the planes

z =lg+md,

z =pd,
(6)

continuous at the interface . (10)

This equation, already derived in Ref. 9, has also
been recently obtained by %hite and Sham. " It
generalizes Ben Daniel and Duke's result, '

1 dF
continuous at the interface,

where m and p are integers. Since we neglect any
variations occurring on the scale of host unit cells,
the SL medium is translationally invariant in the
layer planes, and kj is a good quantum number.

Owing to the fact that we neglect k p coupling be-

tween I'8 states and the remote bands of the hosts,
the 6X 6 differential system can be easily
transformed into a 2X2 differential system, non-
linear in e, which governs the envelope functions
associated with the

~
S,MJ ——+ —, ) and

~
S,MJ ————, ) states. If kz ——0 a further simpli-

fication occurs. Rearranging Eq. (1) one
transforms the 6X 6 problem into two identical
1 X 1 equations decoupled from two identical and

independent 2 X2 differential systems describing
the coupled behavior of envelope functions associ-
ated with ~S,MJ ——+ —, ) and ~P,MJ ——+ —,) and

1 1

with
~
S,MJ ————, ) and

~
P,MJ ————, ), respec-

tively. These identical 2X2 systems are

V, (z) e II, „v'—2/3' Fs(z)

H, „v 2/3P, —eg+ Vp(z) —e Fp(z)
=0,

(7)

where Fs and Fp are the slowly varying envelope
functions associated with

~
S) and

~
P) states,

respectively, and P, = i A(d/dz). Proj—ecting onto
the S state one further transforms the system [Eq.
(7)] into a differential equation which is nonlinear

ln 6

to the case of nonparabolic materials, i.e., to ma-

terials in which the band mixing is important. It
is therefore of crucial use in the type-II superlat-

tices (InAs-GaSb) in which one has to admix

predominantly S-type electrons with predominantly

P-type light holes to build the superlattice states.

Inside A and 8 layers, Vs and V~ are constant
and the eigenstates of Eq. (8) are a linear combina-

tion of two plane waves with opposite wave vec-

tors. There are, therefore, four unknown coeffi-
cients to be determined by four equations. The
wave functions Fs(z) are nonvanishing only if

cosqd = coskg lg coskglg

——,(g+g ')sink„lqsinksls

(12)

This dispersion relation (11) is, of course, the same
if one projects the system equation (7) on the P
state rather than on the S state.

If the energy e does not correspond to a pro-

pagating state in A or 8 layer, k& or kz is ima-

ginary (evanescent states}. Finally, no SL exists if
both kz and kz are imaginary owing to the Bloch
equation (9). Note that Eqs. (11) and (12) are quite

general, describing the band structure of any A-B
superlattice provided that the relevant host elec-

tronic states are well described by the Kane model.
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A. Heavy-hole dispersion relations at k& ——0—
effect of effective-mass gradients

dFhh(z)
Mhh'(z)

dz
(16)

As for the heavy-hole dispersion relations, they
are identically @=0or e= V~, corresponding to SL
heavy-hole states which are entirely localized
within A or 8 layers. More embarrassing is the
lack of one-dimensional quantization originating
from the absence of finite heavy-hole masses.
These shortcomings are cured by introducing the
quadratic effective 4 for heavy holes. If (and
only if) kj ——0, the I s A [Eq. (3)] is diagonal in
the

~
P,Mq }basis, and for mq ——+ —,, one has sim-

ply

(P, +, ~A ~P, + , ) =( —y)"'+2—y'"')Pg

with

ap„„az„„+ =0
Bt z

(17)

l f1
Jhh(z} Fhh(z} Fhh(z}

2Mhh(z) dz

For a stationary state one has simply

continuous at the interface. Consider the probabil-

ity density phh(z) =
~
Fhh(z) ~; it fulfills the con-

tinuity equation

Jhh(z) = const. (19)

(13) Therefore, if at the A-B interface Fhh(z) is assumed
continuous, the Mhh'(z)dFhh Idz continuity and not
the dFhh/dz continuity will ensure the constancy
of Jhh, i.e., the time independence of the phh.

'

Building the SL wave function inside the unit
cell (0 &z &d) in the same way as before, we final-

ly obtain the SL heavy-hole dispersion relations,

cosqd = cosk„lz cosksla

, (rt+rl—'—)sinkzlzsinksls, (20)

where

k,Mg

kgb
(21)

In Eq. (13) the y~ and y are the Luttinger parame-
ters describing the k p interaction between the

3

~

P+ , }states a—nd the remote bands of the hosts.

Along the same line one should also add to the
system (7) a term (y~+2y)P, in the F~ diagonal
term. This term is small and does not bring any
new qualitative insight to the previous analysis.
We will henceforth neglect it. As for the

~
P+ ,}-

states, let us stress the fact that the effective
masses Mq and Ms are in general different; one
must solve the differential equation

[ , [P„Mhh (z)]—+V~(z) IFhh(z) =eFhh(z), (14)

where I A,B I =AB +BA; Vt (z) is defined in Eqs.
(4) and (5) and

Mhh(z) =My, 0 &z & lg

Mhh(z)=M» l„& z&l„+l s

Mhh(z+ md) =Mhh(z)

(15)

for any relative integer m. In contrast to the usual
Kronig-Penney situation, we see that both valence-
band edges and effective masses are position depen-
dent. Even if there is no valence-band offset
(Vp ——0 for any z) band gaps will still exist in the
heavy-hole Sl band structure due to the periodic
variation of the heavy-hole effective mass.

To complete Eq. (14), boundary conditions
should be added. Again, we impose the Bloch con-
dition Eq. (9) on Fhh. Integrating Eq. (14}across
an interface, assuming Fhh(z) to be continuous and
using the fact that Mhh(z) is piecewise constant,
the boundary condition becomes

Note that Eq. (20) is similar in form to the light-
particles dispersion relation (11}. In fact, this form
is quite general and is obtained for any A-B super-
lattice problem, even if the band edges Vs(z) and
Vt, (z) were position dependent inside each host
layer. ' The details of Vt (z), Vs(z), and of the
boundary conditions are embedded in the energy
dependence of the parameter rl.

III. BAND STRUCTURE OF HgTe-CdTe
SUPERLATTICES

The HgTe-CdTe superlattices have not yet been
fabricated. They are, however, conceptually quite
interesting because, in contrast to GaAs-GaAlAs
or InAs-GaSb superlattices, the relevant host elec-
tronic states belong to I 8 bands. Schulman and
McGill' have numerically calculated their band
structure within the three-dimensional LCAO
framework. They were, therefore, limited to rather
small SL periods and, for this reason, do not reach
general conclusions concerning the trend of the
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HgTe-CdTe SL band structure. The EFA is again
capable of providing a complete and simple
dcscflpt1on. CdTc 1S a standaI'd w1dc-gap semicon-
ductor (e~ —1.6 eV), whereas HgTe is a
symmetry-induced zero-gap semiconductor. In
Hg Te, both conduction and valence bands have I 8

(P,J= —,) symmetry at the center of the Brillouin

zone. The I 6 (S,J= —, ) levels lie below the 1's

edges. Hence, the interaction gap eq ——eq, —e~, is

negative, whereas in standard (e.g, CdTe) materials

es ——er, —er is positive (Fig. 1).

One does not know the valence-band offset be-
tween HgTe and CdTe. The common anion argu-
ment and the similarity of the host*s lattice con-
stants have led Schulman and McGill to assume it
to be zero. We shall use here the same assump-
tion. Both host material's band structures are of
the Kane type and we may use the results obtained
1n Scc. II.

At kj ——0 the heavy-hole
i
P,Mz + —, ) lev——els

are completely decoupled from the hght-particle
levels that arise from k p hybridization of

~
P,M~ +2 ) wit—h—

~
S,M~ ——+ —, ). Since the

relevant band edges are I'g levels, we choose the
energy zero at the top of the heavy-hole valence
band and we project the 2)&2 system equation (7)
onto the P level. The Ep(z) envelope functions are,
therefore, the eigenstates of

—, II, „Pg[e—Vs(z) eg ] 'P,F—I(z) +VI(z)FI(z)

I

Hg~ „Cd„Te
I I I

(23)

Fp(z +md) =exp(iqmd)Fp(z) .

The SL dispersion relations are given by Eq. (11)
with

kq e—eg

k~ e+ ~e„~
(24)

The methodological interest of HgTC-CdTe SL lies
in the fact that the light particles of host materials
have effective masses of opposite signs but the
same band-edge symmetry. In fact, if one neglects

=eFp(z), (22)

where eq &0 is the negative HgTC interaction gap
and Vp(z) =0 since there is no valence-band offset.
The boundary conditions are therefore

i dFI, (z)
Fp(z), [e—Vs(z) —eg ]

dz

continuous at the interface

X

FIG. 1. Band structure of Hg~ „Cd„Te random al-
loys vs the composition x (virtual-crystal approxima-
tion). The dashed line represents the variation of eo
with x.

the band nonparabolicity, viz, neglects e with

respect to
~
eq ~, es one gets

kg mg
mz &0.

kg tPlg

This formula 1s the same as that foI conductioIl
superlattice states in GaAS-GaAlAS superlattices
where the host's band edges are 5-like or for
heavy-hole SL dispersion relations [see Eq. (21)].

For up 0, kz is imaginary, whereas if e &0, kz
is imaginary. It is interesting to observe that @=0
is an allowed state in the SL. It corresponds to

q =0. Hence, @=0 is either the top of the highest
light-hole subband LH, or the bottom of the
lowest electron subband E~, or both. An expansion
of the dispersion relation in the vicinity of @=0
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0.2—

Hg Te-Cd Te valence-band offset is assumed to be zero, the ener-

gy e=O is always a SL solution corresponding to
q=O: The last heavy-hole subband HH~ ends at
e=O. Collecting all these information we see the
following.

sL O.I—
LLJ

-O. I

IOO 200
d (A)

300

(1) If lq/ls & es/
~
eq ~, the HgTe-CdTe SL are

semiconducting. The SL fundamental gap is equal

to E ~ (q =0)—HH
~ (q =0).

(2) If l„/ls & es/
~
eq ~, the HgTe-CdTe SL are

zero-gap semiconductors with the E& and HH&

subbands touching at q =0.
(3) If /q /ls ——es/

~
eq ~, the HgTe-CdTe SL are

zero-gap semiconductors with a heavy-hole band

quadratic in q and two light bands linear in q.

FIG. 2. Evolution of the band structure of HgTe-
CdTe SL's vs the SL period d. Only the light particles
bands are shown. l&/l~ ——2, kj ——0. The allowed energy
bands are shaded.

(e&0) shows the lack of allowed SL states if

(25)

Conversely, for Hg-rich SL (lq /ls & es/
~
ez

~
), the

first conduction subband E& starts at e=O and the
I.H& top is located at some finite negative energy.
For the critical lq/ls ratio (es/

~ e„~ },IH
~ and

E~ touch at q=O. Moreover, the dispersion rela-
tions are linear in q (q~O) for this peculiar com-
position. As for the heavy-hole subbands, they are
readily obtained from Eqs. (17) and (18). Since the

The HgTe-CdTe superlattices behave then exactly
in the same way as do the ternary random alloys

Hg~ „Cd„Te.' In the virtual-crystal approxima-
tion, these solid solutions display the HgTe zero-

gap structure if x &0.16, i.e., if the [Hg]/[Cd] ra-
tio &0.84/0. 16=ss/ez. If on the other hand,
x & 0.16, the Hg~ „Cd„Te solid solutions are
narrow-gap semiconductors with the CdTe band
structure (see Fig. 1). At this zero-gap —to-
semiconductor transition (x =0.16}there is a triple
band degeneracy and the heavy-hole band is qua-
dratic in k, whereas the electron- and light-hole
bands are linear in k.

Finally, owing to the imaginary kq or k~ one
should expect narrow SL bands. We illustrate this
point in Fig. 2, which shows the evolution of the
HgTe-CdTe SL band structure (for light particles
only) with increasing periodicity d when /z

——2ls.

IV. TRANSVERSE DISPERSION RELATIONS —COMPARISON BETWEEN LONGITUDINAL
AND TRANSVERSE EFFECTIVE MASSES

When kL+0, the procedure we applied in Sec. II [Eqs. (1}—(7)] is still of relevance. Projecting onto the
S states leads to 2&(2 differential system:

where

~))(e) A )2(e) F, F(
P z~(e) A 22(e) F2 F2 (26)

~»(e')=~22(&)= V ( )+II,,„P [e„+e V(z}] 'P—
2II, „' P+[e„+e Vp(z)] 'P + —' P, [~&+e—Vp(z)]-'P, , (27)

4 )z ——4 2) ——II „V2/3[P [eg +e Vp(z)] P —P[e'g +e—Vp—(z)] P j (28)
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P+ (P——~+i')/W2 .

The 1 and 2 indices play the part of spin J. and
spin f quantum states in a band structure which is
otherwisc characterized by a strong spin-orbit cou-
pling. A iz then refiects the mixing of

~
t ) and

~
t ) states induced by the combined action of the

scalar k p and interface Vs(z), V~(z) potentials
with the host's spin-orbit coupling. That P 12 ex-
actly vanishes if the spin-orbit coupling h„van-
ishes is immediately seen if one uses the natural
basis St,S&; X&, &; Ft, &; Zt, & for b„,=O. If us-

ing the I 6,I q,I 8 basis, well suited to nonzero 6„,
one should first reintroduce the I'7 states and then
let b,» vanish. The existence of 4 i2 analogs is
well known in narrow-gap semiconductor phys-
1CS

In magneto-optics, the combined action of b,»
and radiation electric fields allows for the existence
of elix:trio dipole spin-flip resonance if k+0. '
The finite h„and the band nonparabolicity are re-
sponsible for anomalous Hall effect observed, e.g.,
in InSb. ' In narrow-gap metal-oxide —semicon-
ductor (MOS) structures, Ohkawa and Uemura"
have already discussed the combined effect of 6„,
k p interaction and the surface electric field.
They predicted anomalously large surface electron

g factors.
The coupling term P iz increases with ki. Its

explicit ki dependence implies that the SL disper-
sion relations e(q, ki) cannot be simply obtained by
using appropriate kq(kj ) and kii (ki) in Eqs. (11)
aiid {12). Iiistead, explicit aiid tedious calclilatioiis
are required.

Before giving the results of these calculations,
we need to discuss the kj-induced coupling be-
tween heavy-hole and light-particle states. In Sec.
II, we showed that the light particles decouple
from heavy holes if ki ——0. We were then justified
in discarding remote-band effects on the light-
particle dispersion relations and in calculating
E„(k&——0) and LH„(ki ——0) with Mhh = oo. Subse-

quently, we obtained HH„by introducing the
heavy-hole curvature. At kz ——0 the remote-band
effects exactly reduce to the (diagonal) heavy-hole
kinetic energy. At k&+0 this agreeable simplifica-
tion no longer holds. The ex~licit 6&&6 matrix
which reduces to Eq. '(1) at ki=0 now contains a
whole nonzero (4X4) I"s block. Its explicit form
is known. ' Still, it displays several terms involv-

ing kj P, which spoils any simplification like a
simple projection on the

~
St ) and

~

S& ) band-

edge states. %C have not been able to overcome
these difficulties and to treat the problem ki dif-

ferent from 0 exactly. We have then followed the
same decoupling procedure as at kz ——0:

(1) For light-particles dispersion relations, we

have neglected the remote-band effects, which

amounts to dealing with a diagonal I 8 block in the
general 6y6 matrix.

(2) For heavy-hole states, the I's block is treated
1n thc paI'Rbol1c approximation. Thc remote Qlll

the I'6 band are taken into account up to the order
k ~ Th18 pIoccdurc amounts to changing thc p1
and y parameters into y1 and y with

This decoupling procedure is expected to be good
for all SL states if, at ki ——0, the E„and HH„
states are energically well seperated. This is, for
instance, the case in GRAs-GRAlAs or in semicon-
ducting InAs-GaSb superlattices. The semimetallic
InAs-GaSb superlattices are a notable exception.
In these materials, Ei(ki =0) is very close to or
degenerate with HHi (ki ——0) and HH2(ki 0). ——
Suppose, for instance, that at ki=0,
Ei(q=0,ki ——0) &HHi(q =O,ki ——0). Tuning ki
(experimentally the magnetic field) would cause
Ei(q =O, k&) to cross HH, (q =O,ki), since Ei is
predominantly InAs electronlike and HH1 GaSb
hcavy-hole-11kc. Th18 crossing takes place Rt

k&+0; it is likely that Ei will in fact not cross
HHi. A correct description of this anticrossing re-
quires an exact calculation of the ki dependence of
all SL states, which is beyond the scope of our
decoupling scheme. Keeping these reservations in
mind, we have calculated the light-particle disper-
sion relations neglecting remote-band effects. The
2g 2 system (26)—(29) is completed by the boun-

dary cond1t1ons:

all continuous at the A —8 interface, and
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F, 2(z) exp(iqmd) =F, 2(z+md) . (32)

The boundary conditions provide us with eight
homogeneous equations in eight unknowns (two
plane-wave amphtudes per layer and per "spin").
Setting the determinant of this 8 X 8 system to zero
leads to two identical dispersion relations. These
are

cosqd =coskg lg coskg ls

kq
g+g '+ (r+r ' —2)

4k' kg

—loO

(3
CL

IJJ

50

El. In As

L.H. Ga Sb

|tll "-0

g sink~ l~ sink~ I~,

eg +e—Vp

Eg +E

—,II, „A (kg+kg) =e(eyeg ),
—,Ii,,„fi (kg+kg) =(e—Vs)(@+ed —Vp) .

(33)

(35)

(36)

FIG. 3. GaSb (light-hole) and InAs (conduction-)
band-edge energies are plotted vs k& to illustrate the de-

crease of the effective overlap between the light-particle
state from which the SL states are built. The com-
ponent k~~ of the wave vector parallel to the SL axis is
set equal to zero.

one neglects the spin effects, our k~ calculation can
be translated into Landau-level patterns by using
the quantization rule

kf =(2n+ I)/A,

The twofold degeneracy is expected since there is

no external magnetic field. Note also that k j
enters the dispersion relations only through k f; this
accounts for the cylindrical symmetry around the
SL axis. Finally, let us remark that the whole SL
band structure and especially the SL bandwidths

are kq dependent. In other words, SL bands are

not only kj shifted but also deformed with kj.
Apart from the explicit kq dependence of Eq. (33),
which is entirely due to the nonvanishing A i2, the

e(q) dispersion relations are obtained as if host

band structures were different for different kj.
For instance, in the InAs-GaSb system, one deals

with an effective kj-dependent overlap between the

InAS conduction band and the GaSb light-hole lev-

el; this overlap decreases with increasing kj (Fig.
3). It is then natural that the E, bandwidth de-

cfcascs with lncfcasing ky corresponding to SL
states, which are more localized at finite kj than at

kz ——O. For very large kz, the EI bandwidth may

even become negligible. %C illustrate this point in

Fig. 4 where we show the evolution of I ~, the E~
bandwidth, versus k& for two InAs-GaSb superlat-

tices with (30—50)-A and (65—80)-A layer

thicknesses, respectively.
The most convenient techniques to study SL

dispersion relations are the Shubnikov —de Haas
effects and the far-infrared magnetoabsorption. If

=Ei(q =O.kj ——0)

E((q =O, kg ——0)
X &+

%H+(n+-, )
Ply C

60 I

In As-Ga Sb

'~

'o 1.6 5.2 4.8 6.4
k~~ (iO'~ cm-~)

FIG. 4. Ei bandwidth I ~ is plotted vs k~ for two
InAs-GaSb SL's: l~, l~ ——30 and. 50 A (left scale) and 65
and 80 A (right scale).

where A, =(Pic/eH)' is the usual magnetic length.
Figure 5 shows the calculated Landau levels be-

longing to the lowest electronic subband E~ at

q =0 for semiconducting InAs-GaSb superlattices.
We have also shown in this figure the semiempiri-

cal dispersion relations
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(A:—InAs), which has proved successful in inter-
preting severa1 oscillatory phenomena in the InAs-
GaSb system. Equation (38) is based on the
assumption that E~ (q =0, k~) SL states are most-

ly built from InA.s conduction states, for which a
Kane-type treatment is appropriate. For the
(65—80)-.A sample, both models almost agree if
n+0 In this sam. ple, far-infrared magneto-optical
experiments have shown a broad cyclotron line

corresponding to 1~2 or 3~4 cyclotron reso-
nances depending on the laser frequency. Both Eq.
(38) and our model give an acceptable agreement
between calculations and experiments. The
Landau-level patterns are, however, sensitively dif-
ferent if E&(q =O,k~ =0) increases (short-periods
SL) or thick GaSb layers. When expressed in
terms of a transverse mass mj, our calculations
lead to much lighter mz than Eq. (38) in InAs-
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GaSb superlattices with large Ei (q =O,ki =o).
That the two models should differ is clear from
the lack of any explicit d, lz, lii dependences in Eq.
(38). Hence, in this model two SL with different

d, l~,la but the same Ei(q=0,ki ——0) should have
the same Landau levels. These Landau levels are,
in principle, different according to our calcula-
tions. The difference between the two models ulti-

mately arises from the InAs confinement assump-
tion underlying the semiempirical approach. This
assumption works well in large periodicity SL [as
witnessed by the good agreement between Eq. (38)
and the far-infrared data obtained in the semime-
tallic InAs-GaSb SL (Refs. 21 and 22)].
lieve it should fail if I i(ki) is noticeable, i.e., if
the electron appreciably penetrates in GaSb layers.
Experiments are needed to elucidate this point.

Quite generally, we may define the SL band-edge
effective masses mi and m

~~
For .Ei, we define

flak i
Ei (qki) =Ei (00)y + . (39)

2p?l
~~

2?tl j

The masses m
~~

and mz can be analytically ob-
tained from Eq. (33). The resulting expressions
are, however, cumbersome and of little use. It is
more instructive to relate m~~ and mz to the qp,
and kz. p perturbation expansion on the exact

q =0, kz ——0 superlattice states. In doing so, we el-
iminate the ki-induced light-heavy particle cou-

p»ng and may safely describe whole InAs-GaSb
family. We have

( (E„o,o ( p, )x„,o,o) [
'

mo x Ei{00)—X (0 0)

/ (Ei,o, f P,
f X„o,o)

/

i

mo x Ei(0,0)—X„(0,0)

in Eq. (40) the summation over X„ includes all but
Ei SL-states (»ght-particle and heavy-hole states)
at the center of the SL Brillouin zone. There exist
two

~
E„o,o) states corresponding to a given Mz.

Each of these states is P, connected with all the
~E„,O, O) and ~LH„,O, O) states of the same Mq.

The operator P, has, however, no nonvanishing ele-
ment between ~Eio,o) and ~HH„, O, O}. On the
other hand, P„connects the

~
Ei,o,o) level with

MJ ——+ —, to the
~
HH„, O, O) states of MJ —+ —, but

also with the
~
E„O,O} and

~
LH„,O, O) levels cor-

1
responding to MJ ——+ —,.

The lack of qp, interaction between Ei and HH„
and

(Ei,o,o
~
P„~HH„, O,O}~

have some interesting consequences on the behavior
of m

~~
and mi with SL periodicity in the InAs-

GaSb system. In this system, there exists a semi-
conductor ~ semimetal {SC—+SM) transition re-
sulting from the inversion of the relative positions
of Ei(0,0) and HHi(0, 0). For equal InAs and
GaSb thicknesses, this SCHISM transition takes.
place near d -185 A. ' ' At this transition noth-
ing particular occurs to the longitudinal mass m

~I

since E~ and HHI are not P, coupled. Such is not
the case for mi. Since

(Ei,0,0 i P„
i HHi, o,o)+0,

onc cxpccts thc k„P„coupling between Ei and
HHi to doiillllate 'tlie reillalllillg ternls in Eq. (40).
Therefore, mi should vanish at the SC-+SM tran-
sition and change sign from SC to SM sides. Note
that this sign reversal is currently met in II-VI
mixed crystals like the Hg] „Cd„Tealloys: At
critical composition x=0.16 the I & band passes
through the I 8 edges and its masses changes sign.
Note also that such a mass reversal is absent from
the semiempirical approach of Eq. (38).

It is, however, very likely that the mz sign rever-
sal will take place in a very narrow d range. The
reason is the smallness of the coupling matrix ele-
ment (Ei 0,0

~
P„~HH i,o,o) because of the im-

portant spatial confinement of Ei into InAs and
HH& into GaSb layers, respectively. To dominate
the remaining terms in Eq. (40), the P„coupling
between E~ and HI should take place between ex-
tremely close Ei and Hi states [Ei(0,00
—HHi(0, 0) being in the meV range]. This is in
contrast to II-VI alloys were the I'6-I 8 coupling is
predominant for e'r -er, gaps as large as 0.3 eV.
Symmetrically, HH] will exhibit a mz sign reversal
at the SC—+SM transition but again this anomaly
will not be easy to detect. For equal InAs and
GaSb thicknesses, Ei(0,0) becomes very close to
LHi(0,0) for d=230 A (Ei and I.Hi actually an-
ticross). Hence, a very light m

~~
mass can be ex-

pected for E, . Again the two-band {Ei and I.Hi)
situation will prevail only near d =230 A since, as
before, the involved P, matrix element will be rath-
er small owing to the pronounced localization of
Ei and LH i states into different layers.

%C have numerically calculated m
II

and mq ac-
cording to Eq. (33) in the InAs-GaSb system for
equal layer thicknesses. Owing to our oversimpli-
fied decoupling procedure mi cannot be reliably
obtained above the SC—+SM transition, whereas
m~~ can be calculated for arbitrary d. The results
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longitudinal {m~~) SL effective masses with the period d
for InAs-GaSb SI.'s of equal-layer thicknesses.

masses. Restricting themselves to the infinitely

deep quantum wells, Voisin et a/. have recently

studied the bound states created by trenchlike de-

fects. Here we want to show that the EFA allows
a complete and simple treatment of the planar in-

terface defects, taking exactly into account the host
material band structures. We, therefore, adopt all

the notations used in Sec. II.
If there exists a bound state at the energy e, its

wave function decreases exponentially when

z~+ ao. The Bloch condition (9) should then be
replaced by

Fs(z+md) =exp( qmd)F—s(z),
Fs( —z —md )exp( qmd )F—g ( —z)

i (E„0,0 i
p,

i
LH, ,O, O) )

'=0.9,
7tl 0

(41)

in units of eV, which has to be compared with the
Kane matrix element

i (S
i P, i

Z ) J
z-19,

Ngo

in umts of eV, found in usual III-V and II-VI
semiconductors.

V. INTERFACE DEFECT STATES

Consider a A-8 superlattice with period
d =lq+l~, and assume that one of the A layers is
irrcgular with a thickness I.z. We choose the z
origin at the left side of the irregular A layer. We
want to calculate the wave function and the energy

position of the A-type bound state associated with

this defect. If Lq & l~, we know that at least one

such bound state exists since we are dealing with a
onc-dimensional problem. Thc very same problem

was recently treated by Combescot and Bcnoit a la
Guillaume in the simple plane-wave approach as-

suming moreover equal valence and conduction

are shown on Fig. 6. One sees that m
~t

and mz arc
quite light in smaB-period superlattices. Moreover,

the mass anisotropy is not very large ( & 20 lo) at
small d. The longitudinal effective mass m~~ de-

creases with d, approaching 6X 10 mo near the
Ei-LHi anticrossing. Plottmg m

~~
vs Ei(0,0)

—LHi {0,0) gives us a rough estimate of the

(Ei,o,o
~
P,

~
LHi, O, O& matrix element in the vi-

cinity of the anticrossing. We have obtained

Let us assume for simplicity ki= 0. The boun-

dary conditions at the A-8 interfaces are the same

as before [Eq. {10)]. Writing these boundary con-

ditions when going from the ¹hunit cell to the

(N+lth) [Lg+ls+Nd (z (Lg +ls+(N+1)d]
and making use of Eq. (42), one obtains the
"dispersion relations"

cosh (qd) =coskq lq coskslz

——,(g+g ')sinkzlzsinkzls, (43)

where all the symbols have the same meaning as in

Sec. II. We also obtain the ratio of incoming and

outgoing plane waves i.n the 8 layer. Hence, in the
irregular unit cell (0 &z &L„+lz ) the wave func-
tion for Lz &z &Lq+lz is entirely known (apart
from a normalization coefficient). Writing the
continuity equations at z =I.q provides us with

two equations linking the two unknown coeffi-
cients (C, and C2) in the anomalous A layer to the
two coefficients in the neighboring 8 layer. Final-

ly, one eliminates the 8-layer coefficients and gets
one homogeneous equation linking the two un-

knowns C& and C2. The same procedure is repeat-

ed for negative z. The dispersion relation (43) is
again obtained as well as the ratio of the two
plane-wave amplitudes inside the 8 layer. In the
final step, one writes the boundary conditions at
z =0 and reduces the problem to two homogeneous
linear equations for the two unknown coefficients

C~ and C2. The energy position of the bound level

is then determined by solving

exp(qd) [coskz liicosk„L„

, (g+ g ')sink—ii—lzsink&Lq ]
=cos44cos@Lq+sinkqlqsink„L„, (44)
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FIG. 7. Binding energy E~ of the ground interface
defect bound state plotted vs U =(I.~ —l~ )/l~ the rela-
tive thickness of the anomalous InAs layer in a 30-
A —50-A InAs-GaSb SL

(U -1.5), third, etc., bound state appears. Ulti-
mately, when u~ ao one should recover the InAs
impurity modes kyle =ps,p = 1~2.

Since the transverse motion is free in regular and
anomalous layer, a steplike density of states is as-
sociated to each of the A-type bound states. In
real SL, many irregular A slices of different u exist.
Hence, several A-type bound states together with
8-type bound levels will be found in the forbidden

gap. The identification of these defect states will

be quite difficult. The difficulty is further in-

creased by the fact that trenchlike of shoeboxlike
irregularities may also give rise to bound impurity
states. Note also that the shallow impurities do
not produce well-defined hydrogenic impurity
states but are smeared out into impurity bands due
to the dependence of the binding energy on the im-

purity position.

VI. POI.YTYPE SUPERI.ATTICES
BAND STRUCTURE

where qd is obtained from Eq. (43).
state equation is again quite general and may be
apphed to any kind of binary SL. To illustrate the
previous results, we have calculated the bound state
created by an anomalous InAs layer in the InAs-
GaSb SL system. Luminescence experiments were
performed on a (30—50) A InAs-GaSb SL. For
this SL, the lowest-lying (Ei ) conduction band ex-

tends from 392 to 433 meV (the energy zero being
taken at the bulk InAs conduction-band edge). In
Fig. 7, we show the binding energy ED of the InAS
defect versus U =(LA —lA )/lA, which is the relative
excess thickness of the InAs anomalous layer. One
secs that thc bllldlllg clicrgy 1s quite sllbstalltial (41
meV) for u =0.2. The value u =0.2 roughly corre-
sponds to an extra InAs thickness of two InAs
atomic planes. If U is large enough, a second

I

Our calculations have been so far restricted to
binary (A -8) superlattices. It may prove useful for
specifr'c technological purposes to grow ternary
(A-8-C), quaternary (A -8-C-D), etc., SL. Esaki,
Chang, and Mendez s recently proposed this novel
idea and apphed it to the case of InAs-GaSb-AISb
multiheterojunctions. The calculations of A 8 C--
type SL band structure will be almost unfeasible in
the three-dimensional LCAO framework unless lA,
lB, lc are only a few atomic planes thick. On the
other hand, the EFA is capable of achieving this
task. To do so, let us use the transfer matrix
scheme. Consider a given ABC superlattice unit
cell and assume for simphcity ki ——0. Inside each
layer the projection I'B(z) of the wave function on
the S level is a sum of incoming and outgoing
plane waves:

Iiz(z) =aA exp(ikA——z) +pA exp( —ikAz),

+s(z) =aBexp[ikB(z —1A )1+pBexp[ ikB(z l„—)], lA —&z &I„+lB

IB(z)=acexp[ikc( lA lB)]+pcexp——[ ikc(z iA —lB)] lA—+lB—&z &lA+lB+lc .

0!C. Qg

p =TB~c p
(46)

and the Bloch therorem reads

We can write the boundary conditions (10) for I'B
and its derivative at the A-8 and 8-C interfaces.
This gives us

. Ag

p
=TA-+B p

Qg ac
exp(lrid) =Tc~A

(aA, pA ) is then the eigenvector corresponding to
the eigenvalue c'+ of the transfer matrix

&—~C~A TB C~A 8 .
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To find the eigenvalue of r detr has to be 1 and
the solutions are such that

k~
,B

kB

ez +e—Vp"A„B

6g +6

2cos(qd) =Tr(r) . (49)
kB &g+&—Vp'C,A

4,c= B,Akc e~+e—Vp'
(50)

Let us choose the energy zero at the bottom of the
S-type band of the A material. Define Va'" and
Va'" the energy shifts of the I' edges between A

and B, A, and C materials, respectively. In terms
of the quantities

kc Eg +E'
kc,~ =

C,Akq ez+e —Vp'

which are such the gz a(a cgcz ——1, the dispersion
relations obtained from Eq. (49) are

cos(qd ) =coskg lg coska la coskclc

—
~ (Qacco,st lz sin ka lasinkclc+ Qc a sinks la coska la sinkc lc

+Qq asinkz lz sinkalacoskclc) (51)

with

QX, Y gX, Y+fX, Y ~

—1
(52)

where q is the SL wave vector and d =lq +la+le, the SL period. This procedure can be clearly iterated.
For instance, the dispersion relations of ABCD-type SL are obtained in terms of gz a,ga c,gc a,ga z.

cos(qd) =cost i~ [coskalacoskclccoskDla 2((ca—4,c+

Ccats,

c)»nkaiacoskclcsinkD4

, Qc D sink—cl—csin' lacoska la ——,Qa cslnka la sinkclccoskD lD ]

2 sinkA 1A [(CA,aka, c+KA, Bka,c )coskDlacoskalasinkclc

—(ka, c4,~+Ca,c4,a )»nkala»nkclcsinkDlD

+coskclc(Q& asinkalacoskDID+ QD „sinkalDcoskala )], (53)

where all the symbols have the same meaning as
before except that d is now equal to lz+lB
+~c+~a

Let us remark that for the A,B,C system there
exist in principle two possible ternary SL's built
from these elements. There are the A,B,C and
A, C,B materials. However, the sequence
ACBCB. . . is ABCABC. . . spelled backward.
Therefore, the SL potentials Vqca(z) and Vqac(z)
are such that Vqca(z) = Vqac( —z). The Bloch
eigenstates fqac(z) and furca(z) of the same energy
correspond to SL states of opposite wave vector q
and —q. But e(q) =e( —q) and the dispersion rela-
tions of ABC and ACB SL's are, therefore, identi-
cal. This is in fact apparent in Eq. (51) which is
invariant under any permutation of A, B, and C.
For quaternary SL such a simplification does not
occur and the ABCD,ACBD SL's should have dif-
ferent band structures.

VIII. CONCLUSION

We have extended our previous work on the
EFA to four distinct SL problems. For all these
problems, the EFA has enabled us to obtain entire-
ly analytical solutions. We believe that no other
computation method (LCAO, etc.) would have
achieved this task. We have shown that HgTe-
CdTe SL's may display either a finite or a zero-gap
semiconductor configuration; the zero-gap~ semi-
conductor transition taking place for a host thick-
ness ratio l H~~, /tcdq, which is exactly the same as
the [HgTe]/[CdTe] ratio for which the ternary
random alloy Hg~ „Cd„Teundergoes the same
transition. We have derived and discussed the
transverse SL dispersion relations of A-B-type SL's.
We have shown that the transverse SL effective
mass m& in the InAs-GaSb system should undergo
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a sign reversal when the lowest electric band Ei
crosses the highest heavy-hole band HHi. This

sign reversal will, however, be very hard to detect

due to the small p„matrix element between E& and

HH~. %e have derived the bound-state equation

for planar interface defects in superlattices, taking

exactly into account the host band structure. This

equation is valid for any kind of A -8 SL. Finally,

we have obtained the dispersion relations of poly-

type superlattices (A -8-C or A -JJ-C-IJ systems).

Owing to a kj-induced light-particle —heavy-hole

coupling, our EFA calculations require further ela-

borations and refinements to reliably describe the
Landau levels of semimetallic InAs-GaSb SL's.
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