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The theory of permutational crystallographic color groups is used to construct tables of
the k =0 irreducible representations whose basis functions are linear combinations of the

components of tensor fields defined on the atoms of an arbitrary crystal. As examples of
their use, these tables are shown to be applicable in determining the k =0 vibrational and

magnetic modes of a crystal, the infrared and Raman-active vibrational modes, in testing
the validity of the Jahn-Teller theorem in crystals, and in applying the tensor-field cri-
terion in the Landau theory of continuous phase transitions in crystals.

I. INTRODUCTION

In many problems in solid-state physics it is
often necessary to determine the irreducible repre-
sentations of the symmetry group of the crystal
whose basis functions are linear combinations of
components of tensars defined on the atams of the
crystal. In lattice vibrational problems, one deter-
mines the irreducible representations whose basis
functions are combinations of components of a
three-component tensor, the displacements, of each
of the atoms. ' These irreducible representations
of the symmetry group G of the crystal are con-
tained in the direct product of the polar vector rep-
resentation DG and the permutation representation

Df of the atoms of the crystal. The permuta-
tion representation characterizes how the atoms of
the crystal permute under elements of the symme-

try space group af the crystal. In determining pos-
sible types of magnetic ordering in crystals, one
can determine the irreducible representations of the
nonmagnetic symmetry group of the crystal whose
basis functions, the magnetic modes, are linear
cambinations of the atomic spins. s These irredu-

cible representations are contained in the direct
product of the axial vector representation DG and

the permutation representation Df of the mag-
netic atoms. In the general case, the problem is to
determine the irreducible representations contained
in the direct product of a tensor representation DG,
whose basis functions are the components of the
tensor defined on the atoms, and the permutation
representation DP of the atoms of the crystal.
We refer to this direct product representation as
the tensor field representation DG~ of the crystal.

Central in determining the irreducible represen-
tations contained in the tensor field representation,
is the problem of deterinining the irreducible repre-
sentations contained in the permutation representa-
tion DP . Using the theory af permutational
color groups, Litvin, Kotzev, and Birman have de-
rived and tabulated all k =0 irreducible representa-
tions contained in the permutation representation
Dg for all possible crystals of all space-graup
symmetry G. In Sec. II we briefly review the
method of Litvin, Kotzev, and Birman. We then
derive and tabulate all k =0 irreducible representa-
tions contained in the tensor-field representation
DG", for all possible crystals of all space-group
symmetry, in the cases where the tensor representa-
tion DG is DG, the polar vector representation, DG,
the axial vector representation, DG XDG, and
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(DG )(2). Applications of these tables in determin-
ing lattice vibrational modes, infrared and Raman-
active lattice vibrations, in the Jahn-Teller theorem
in crystals, magnetic modes, and equitranslational
phase transitions are given in Sec. III.

II. TENSOR-PIEI. D REPRESENTATION

where DP is the permutation representation of
6, representing how the atoms of the crystal per-
mute under elements of the space group G.

A crystal of space-group symmetry 6 can be
partitioned into "simple crystals. "' Each simple
crystal consists of all atoms of the crystal whose
position vectors can be obtained by applying all
elements of the space group 6 to any one position
vector r, and is said to be generated by 6 from r
A crystal can be considered as consisting of a cer-
tain number of simple crystals, no two simple crys-
tals having atoms in common, and the elements of
6 permute the atoms of each simple crystal among
themselves.

For a single simple crystal generated by 6 from
r, the permutation representation DP is given by

Df =DG '=D$(r) &6 (2)

where S(r) is the subgroup of all elements of 6
such that gr =r, and DG" is the representation of
6 induced by the identity representation D$(„) of
S(r) The tensor. -field represe'ntation, Eq. (1), can
then be written as

TF DS(r) XDe~ ' (3)

The tensor-field representation is in general reduci-

ble, and in this paper we are interested in deter-
mining the k =0 irreducible representations con-
tained in this representation.

Because the tensor representation DG describes
the rotational properties of the components of the

Let T, a=1,2, . . . , q be the q components of a
tensor T defined on the atoms, at position r;, of a
crystal of space-group symmetry G. Let DG be the
tensor representation of G whose basis functions
are the q components of the tensor T, and DG" the
tensor-field representation of 6 whose basis func-
tions are the components of the tensor field T;
—= T(r;)~, a=1,2, . . .',q, i =1,2, . . . defined on the
atoms of the crystal. The tensor-field representa-
tion DG" is related to the tensor representation DG

by

'~ XD

tensor T, it contains only k =0 irreducible repre-
sentations DG

'"' of the space group G. From Eq.
(3) it follows that the k dependence of the irreduci-
ble representations contained in the tensor-field
representation DG depends only on the k depen-
dence of the irreducible representations contained
in the permutation representation DG", Eq. (2).
Consequently, to determine the k =0 irreducible
representations in DG" one needs to know the k =0
irreducible representations contained in the permu-
tation representation D& '.

Litvin, Kotzev, and Birman have derived and
tabulated the k =0 irreducible representations in
all permutation representations DG". The permu-
tation representation DG" is, in general, reducible,

DS(r) ~ (DS(r) ) D(k, v))D(k, v)

(k,v)

where (DG"
~
DG '"') is the number of times the

(k,v)th irreducible representation of the space
group 6 is contained in DG". It has been shown
that

(4)

(DS(r)
~

D(0,v)) (Df(r)
~

Dv )

where Dy =I „is the vth irreducible representation
of the point group 6 of the space group G. The
permutation representation

Dy ——Dg(, )
)GS(r)

is the representation of 6 induced by the identity
1representation Dg(„) of the site point group S(r ) of

the atom at position r. All possible permutation
representations Dy are in a one-to-one correspon-S(r)

dence with all permutational color point groups.
Using the "short" notation for permutational color
group, the permutation representation Dy" corre-

sponds to the permutational color point 6(S(r)).
A list of all classes of permutational color point
groups is given in Table I. The number
(Dg"

~

I „) of times each irreducible representation

I „=Dy is contained in each permutation represen-

tation D$'"), and, by Eq. (5), equal to the number

of tiines DG
'"' is contained in DG'"', has been de-

rived by Litvin, Kotzev, and Birman. Their re-
sults are found in the first line of each subtable of
Table II.

The tensor-field representation is in general
reducible:

DTF ~ (DTF ) D(k, v))D(k, v)
6 —~ 6 I 6 6

(k, v)

For the k =0 irreducible representations DG
'"'
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III. APPLICATIONS

A. Lattice vibrations

The k =0 irreducible representations of a space
group 6, whose basis functions are linear combina-
tions of atomic displacements of the atoms of a
simple crystal generated by 6 from r, are deter-
mined using Eq. (8) by finding the irreducible rep-
resentation I „ofthe point group 6 contained in

Eq. (9),

Dy =&t,'"'X&y, (10)

where Dy is the polar vector representation of the

point group 6 and S(r ) is the site point group of r.
As an example, consider the rutile structure of

Ti02." This crystal is of space-group symmetry
6=D4s and consists of two simple crystals The.
simple crystal of Ti atoms, at the 2(a) positions, '2

is generated by D&s from r i
——000, and the simple

crystal of 0 atoms, at the 4(f) positions, ii gen-.
erated bg Dqs from rz xx0. The point g——roup of
D4s is 6=D4s, and the site point groups of the
simple crystals are S{ri}=Dz'g~'+' and S{rq}

(xy)= Cg"„'.
For the Ti atom simple crystal, irreducible repre-

sentations contained in the representation DP(r ),
Eq. (10) for the simple crystal generated by 6 from
r, are found as follows: In Table I, the permuta-

(DTF ~:D(o,v)) {DTF
~
I )

where DP is defined by

g)$(r) ~g) T

That is, the number (DP
~
DG '"') of times the

k =0 irreducible representation DG
'"' of the space

group 6 is contained in DP is equal to the num-

ber (DP
~

I'„) of times the irreducible representa-

tion I'v of the point group 6 is contained in DP
defined by Eq. (9). Consequently, determining the
irreducible representations I'„of the point group 6
in DP deteraiines, by Eq. {8},the k =0 irreducible

representations Dg'"' contained in DP. We have
calculated the coefficients (DP ~

I'„) for all DP
for tensor representations Dy Dy, the polar vec-

tor representation, Dy, the axial vector representa-

tion, Dy )&Df, and (Dy)(2}, the symmetrized

square of the polar, or axial, vector representation.
These coefficients are tabulated in lines two to
four, respectively, of the subtables of Table IL

tional color point group 6(S(ri ))= D&s(D'z'P"+')
is listed as group 15.15a. In Table II, subtable
15.15a, line two, one finds the irreducible com-
ponents of the representation, Eq. {10):

Dp(ri)=I'2 +I 3 +21'
In the same manner, for the 0 atom simple crystal
one finds from subtable 15.5b of Table II:

DP(r, )=I ++I ++I ++I ++I +

(12)

Consequently, the k =0 irreducible representations

Dg '"' of D4s whose basis functions are linear com-
binations of the atomic displacements of atoms of
the Ti02 crystals are, combining Eqs. (11) and (12),
and using Eq. (8):

g)(0, 1+) g)(0,2+}g)(0,3+) g)(0,4+)6 ~ 6 ~ 6 ~ 6
a"'+' m"'-' 2a" '-' 4D" '-'

6 ~ 6 ~ 6 ~ 6

8. Infrared and Raman-active
lattice vibrations

A k =0 irreducible representation DG" of the
space group 6 of a crystal whose basis functions
are Hnear combinations of the atomic displace-
ments of the crystal, is said to be infrared active if

{14)

if it is con'tained in the polar vector representation
of the pint group G. The irreducible representa-
tion Do '" is Raman active if

(15)

if it is contained in the symmetrized square of the
polar vector representation of G.'

The k =0 irreducible representations Dz" are,
for each simple crystal, determined as in the above
example, using Tables I and II. For the TiOi crys-
tal, of space-group symmetry D4s~, these irreducible
representations are listed in Eq. (13).

Because the representation Dl", for S(r }=6, is
the identity irreducible representation of 6, the ir-
reducible components of Dy and (Df)(2) can also
be determined from Table II: In Table II, in the
subtable corresponding to the permutational color
point group 6(6), the hsted irreducible cem-
ponents of the second and fifth rows, respectively,
are the irreducible components of Dy and (Dy){21.
In the example of the TiO2 crystal, 6=D~„ the
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TABLE L Permutational color point groups 6(S) are listed using the numbering of Ref. 9.
group's number, column 2, the point group 6, and column 3, the subgroup S of C.

Column 1 lists the

3.1
3.2
4.1

4.2
5.1
52
5.3
5A

5.5
6.1
6.2u

6.2b

6.3
7.1
7.2
7.3a

7.3b

8.3u

8.3b

8.3e

8Au

8.4b

8.5u

8.5b

8.5e

8.6

C)

C;

C)

C)

C(

C2

Cz C)

C,

C2a

C,

Cg

C;

C2a

Dg C)
Cx

Cz

Cy

D2

Ceo

C2
Cx

Cy

C2„

CI
Cy

C2
Cx

Cy

Cz

C»

Cy

D2

8.7b

8.7e

8.8
9.1
9.2
9.3

10.1
10.2

10.3
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
12.1

12i2a

12.2b

12.3

12.4a

12Ab

12.5

12.6
13.1
13.2u

13.2b

13.3
13.4u

13.4b

13.5
13.6
14.1

14.2

D2a

DM

C2h

Cy2I

D2h

C)

Cp

Cg

C)

Cg

Sg

C)

C2

Cz

C;

Sg

Cg

C4h

C)
Cx

Cxy

Cz

D(z,xy, Ty)

D(z,x,y)

Cg

D4

C)
Cx

Cxy

Cg
C(z,»y,+)

2p

C(z,x,y)

Cg

C)
Cx

14.3

14.4
14.5

14,6
14.7

14.8

15.1

15.2a

15.2b

15.3a

15.3b

15A-
15.5a

15.5b

15.6
15.7a

15.7b

15.8

15.9
15.10a

15.10b

15.11a

15.lib
15.12

15.13

15.14

15.14b

15.15a

15.15b

15.16

15.17

15.18

15.19

16.1
16.2

C3

C
Cz

D2

S4

C)
C»

Cxy

C»

C»y

Cz

Cxy

C(

C2a

Cg
Cz

C2a
~(z,x,y)~2
D(z,»y, +)

2

C(z,»,y)
2IP

C(z,xy,xy)

C4

Sg
D(z,xy, xy)

2d

D(z,x,y)
2d

D{z,xy, xy)
2h

D(z]»,y)

C4„

C~l

D4

D4

C)

C3

17.1
17.2
17.3
17.4

18.1

18.2
18.3
18.4
19.1
19.2
19.3
19.4
20.1

20.2
20.3

20.4
20.5

20.6
20.7
20.8
20.9
20.10

21.1
21.2
21.3
21A

22.1

22.2

22.3

22A

23.1
23.2
23.3
23.4
23.5

C3f C)

C;

C3

D3 C)

Cg

C3

D3

Cz

C3

C3u

C2

C,

C;

C2a

C3

C3u

D3

C6 C)

C2

C3

Cg

C3I

Cs

C3

C3a

Col

Cf

C2

C,

D@=r, +r,-,
(Dy )(21=2I'i++ I'p++ I'g++ I's+ .

(16)

Consequently, for the TiOs crystal, the lattice vi-
brations [see Eq. (13)] corresponding to the k =0
irreducible representations D6. ' ' and DG ' ' are

permutational color point group D4s(D4s) is listed
in Table I as group 15.19, and from subtable 15.19
of Table II, we have

infrared active, and D"'+' D" '+' D"'+' and

Dg ' are Raman actlvc.

C. Jahn-Teller theorem in crystals

The Jahn-Teller theorem, which states that de-

generate electronic states give rise to configuration-
al instabilities that lower the symmetry and split
the electronic degeneracy, has been shown to be
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TABLE I. (Continued. )

23.6
'23.7

23.8
23.9
23.10

24.1

24.2a

24.2b

24.3

24.4
24.5

24.6a

24.6b

24.7

24.8

25.1

25.2a

25.2b

25.3
25.4
25.5
25.6a

25.6b

25.7
25.8
26.1

26.2
26.3
26.4
26.5
26.6
26.7

26.8

26.9
26.10

C6h

D6

D3h

C3

C3g

C6

C

C6

C)
Cy

Cz

Cz

Dg

C3
D(spz, z )

3

Fl (zp»py )D3

C6

D6

Ci
C»

Cz

Cg

C2„

C3
~(z,x,x')
~3@

C3tp

C6

Ci
C»

Cz

Cz

C2.

C3

D3

C3h

D

27.1

27.2a

27.2b

27.3a

27.3b

27.4

27.5a

27.5b

27.6

27.7a

27.7b

27.8

27.9
27.10

27.11

27.12

27.13

27.14

27.15

27.16

27.17a

27.17b

27.1&a

27.1&b

27.19a

27.19b

27.20a

27.20b

27.21

27.22

27.23

27.24

28.1

28.2
28.3

D6h Ci
Cz

C»

Cz

C»

Cz

c»„

CI

Czh

C2h

Cg

Dg

Czu

C2h

D

C3

C6

C3h
~(z,x,x')
LJ3
D(z,y,y')

3
~(z,x,x')
Lr 3y

C("y'y)
30

D(z,y,y')
3h

~(z,x,x')
~3h
~(z,x,x')
D3d
D(zJ},y')

3d

C6.

C6AI

D6

D6h

Ci

Cp

C3

28.4

28.5

29.1
29.2
29.3
29.4
29,5

29.6
29.7
29.8
29.9
29.10

29.11

29.12

30.1
30.2
30.3
30.4
30.5
30.6
30.7
30.8
30.9
30.10

30.11

31.1
31.2
31.3
31.4
31.5
31.6
31.7
31.8
31.9
31.10

Th

0

Td

D2

T
Ci

Cz

Cg

C3

C

D2

T
C;

Czh

D2h

Th

Ci
C'
Cxy

2

C3
D(z,xy,@)

2

C4

D3
~(z,x,y)~2
D4

T
0
C)

C2

C,

C3

S4

C3u

Dg

D
T

31.11

32.1

32.2
32.3
32.4
32.5
32.6
32.7
32.8
32.9
32.10

32.11

32.12

32.13

32.14

32.15

32.16

32.17

32.18

32.19

32.20

32.21

32.22

32.23

32.24

32.25

32.26

32.27

32.2&

32.29

32.30
32.31

32.32

32.33

Td

Oh

Td

C)

C2
Cz

C
Cx»

C3

C4

S4
C(z,x,y)

2v

D(z,x»,Q)
2

C(z,xy,~)
2'

C(xy, xy,z)
2t}

D3

Csv

C4.
m(z, x,y)

2d '

CI

C2h

c5
C3;

C4h
D(z,xy,xy)

2h.

D3d
~(z,x,y)~2
D4
D(z,xy,@)

D(z~x,y)

D

T
Td

0
Th

Oh

valid for all molecules. ' '7 Examples in crystals
where the Jahn-Teller theorem is not valid have
been given by Birman. ' We shall discuss here the
use of Tables I and II in determining whether or
not a k =0 degenerate electronic state in a crystal
gives rise to a configurational instability.

Let DGi
"be a degenerate "single" k =0 irredu-

cible representation of the space group 6 of a crys-
tal, corresponding to a degenerate electronic state.
This degenerate electronic state gives rise to a con-

figurational instability if there is at least one ir-
reducible representation DG ",corresponding to a
lattice vibrational mode, such that

I;G(I' }[i}, (18}

that is, I; is contained in the symmetrized square
of I', and where the following conditions apply.

(I}I't is not the identity irreducible representa-
tion I ~.
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(19)

The irreducible representations I; corresponding to
k =0 irreducible representations of lattice vibra-
tions in TiOi are given in Eqs. (11) and (12), and
from subtable 15.19 of Table II we have, for the
point group D4~

(2) If I', is contained m times in Dy, I', is con-

tained M & m times in DP, Eq. (10). If I;=I'i,
the symmetry of the crystal is not lowered, and the
degeneracy of the electronic state is not split. Con-
dition (2) takes into account that a rigid translation
of the crystal also does not lower the symmetry of
the crystal and split the electronic degeneracy.

(3) If I; is contained m times in Dy and I'; cor-

responds to a rigid rotational lattice vibrational
mode of the atoms in the unit cell of the crystal,
I i is contained M & m times in Eq. (10). If there
is only one atom per unit cell of the crystal, condi-
tion (3) may be deleted. The symmetrized squares
of all degenerate point-group irreducible represen-
tations are given in Table III.

In the Ti02 crystal of space-group symmetry

DJ„ the symmetrized squares (I', )2 of irreducible
representations I, corresponding to k =0 degen-
erate irreducible representations DG" are (see D4s
in Table III)

(r&+)(2)=(r5 )(2)=ri++r&+ .

Dy=I g +I 5

DZ=r+gr+ .

(20)

(21)
+IA

+%

+&

+&4
+~,e 4

+M

+w

+M

+co4
0 +~
& 4

+IA

+w4
+&

+M

& +~

(r,')(„=(r;)„,=r,'yr,',

=r+gI+gr+ .

(22)

(23)

The irreducible representations I; contained in Eq.

The irreducible representation I 4 is contained in
both Eqs. (19) and (12), i.e., I'; = r4+ is contained
in (r, )(2), and is not contained in either Dy or
Dy, Eqs. (20) and (21). Consequently, both the
k =0 degenerate electronic states DG ' +' and
DG' ' of Ti02 give rise to configurational insta-
bilities. Since r4 is contained in Eq. (12), we have
that these configurational instabilities are associat-
ed with the oxygen atoms of the crystal.

In the diamond structure, the space group is Oi„
and the crystal consists of a single simple crystal
generated by Oi, from r =000, the 8(a) atomic po-
sitions, with site point group S(r)=Tq. The sym-
metrized squares of irreducible representations I',
corresponding to k =0 degenerate electronic states
D~ "' are (see Table III)
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TABLE III. Symmetrized squares of degenerate point-group irreducible representations.
The notation for the point-group irreducible representations is that of Ref. 25.

Point group

D4 C4. »~
D4I
D3, C

D6s C6usD3It

D61
T
Th

O, Tg

I5
r+
r3
lp
r„r,r, r,-'
r,
r
r3
r4 rs
rg
r+r+

r, +r,
r++ r+
r)+r3
r++r+
I )+r6
r++ r+
r, +r,+r,+r,
r++ r++ r++ r+
I )+r3
I )+r3+rg
r++r+
r++r++ r+

(10) are found in subtable 32.30 of Table II:

Dy"=1 5++I 4 (24)

and from subtable 32.33, for the point group Os.

Dy=I 4,

from ri ——xy —,4(c) atomic positions, ' and the site

point group S(ri )= C,'. The permutational color
point group D2s(C,') is listed as group 8.4b in
Table I, and in line three, subtable 8.4b of Table II
one finds the irreducible representations I'„con-
tained in Eq. (27):

DA I+ (26) D,'"(r, )=r++2r++ r++2I +

Since the irreducible representation I;=I 5+, Eq.
(24), is contained in (I, )(&), Eq. (23), for I,= I 4,
I'4, I 5+, I'5, but not in Eqs. (25) and (26), the
k =0 degenerate electronic states DG ' +', DG '

Dg' +', and D~' ' all give rise to configurational
instabilities. Since no I; of Eq. (24) is contained
in Eq. (22}, the k =0 degenerate electronic states

DG ' +' and DG ' do not give rise to configura-
tional instabilities. '

+2I, +I, +2r, +r, . (28)

DP(r )=3I'++3I'++3I'++3I'+ . (29)

The chromium simple crystal is generated by D2I,
from rq ——0—,0, the 4(b) atomic positions, and the
site point group S(r2)=C;. The permutational
color point group D2s(C, ) is listed as group 8.2 in
Table I, and in line three subtable 8.2 of Table II
one finds the irreducible representations I'„con-
tained in Eq. (27):

D. Magnetic modes

(27)

where Dy is the axial vector representation of the

point group G and S(r) is the site point group of r.
As an example, we consider the crystal of

TbCr03 of space-group symmetry Dz~. The
terbium atom simple crystal is generated by D2~

The k =0 irreducible representations of a space
group G, whose basic functions are linear combina-
tions of the spins of the magnetic atoms of a sim-

ple crystal generated by G from r, are determined
using Eq. (8} by finding the irreducible representa-
tions I'„of the point group G contained in

DTF Dg(r) ~DA

Consequently, the terbium k =0 magnetic modes
are associated with the irreducible representations

DG
'"' with v of the representations I „given in Eq.

(28), and the chromium magnetic modes to those
given in Eq. (29).

E. Equitranslational phase transitions

In the Landau theory of continuous phase transi-
tions one of the several group theoretical criteria
used' is the tensor-field criterion. As reformu-
lated by Litvin, Kotzev, and Birman, this cri-
terion, for equitranslational phase transitions is as
follows. If the phase transition is due to a physical
property described by a q-component tensor T de-
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Dy"=I'p++1"g++I') +I 5 . (30)

Consequently, the k =0 irreducible representations
D' ' + D' '+' D' ' ' andD' ' ''satisfy the6 y 6 y 6 y 6
tensor-field cfltcrloil fol' cqulffallslafloiial lllagllcflc
phase transitions in Ubiz. Using the additional

fined on the atoms of a crystal of space-group
symmetry 6, then a k =0 irreducible representa-
tion DG'" of 6 is associated with a phase transi-
tion from a high-symmetry phase 6 is I"„is con-
tained in DP defined by Eq. (9).

As an example, consider UBi2 a&hose nonmag-
netic space group is B4~ with the uranium atoms
forming a single simple crystal, the 2(c) atomic po-
sitions, generated by D4s from r =0 , z—.The site

point group S(r)=C4„. For the magnetic phase
transition in UBiz, to find the k =0 irreducible
representations which satisfy the tensor-field cri-
terion, one uses Eq. (9) with Dy =Did, the axial

vector representation. From line three, subtable
15.16, of Table II one finds that

group theoretical criteria as formulated in Ref. 9,
the magnetic phase transition associated with the
irreducible representation D' ' gives rise to the

2low-symmetry phase of space-group symmetry D4
with a spin arrangement generated by D4 from
S(0, 2,z)= (0,0,to). This ls thc spill alTallgclllcilf,

of the uranium atoms in the magnetic phase of
UBi2.

ACKNO%LEDGMENTS

This work eras supported in part by NSF Con-
tract No. DMR 78-12399 and PSC-BHE No.
13404. The authors wish to thank Professor J. L.
Birman for discussions and for bringing together
this group of researchers. One of us (J.N.K.)
gratefully acknowledges the financial support of
the International Research and Exchange Board,
and two of us (J.N.K. and D.B.L.) acknowledge
the travel support provided by the Penn State-
Berks Campus Scholarly Activity Fund.

'Permanent address: Faculty of Physics, University of
Sofia, Sofia, Bulgaria, BG-1126.

~A. A. Maradudin and S. H. Vosko, Rev. Mod. Phys.
, 1 (1968).

&C. J. Bradley and A. P. Cracknell, The Mathematical
Theory of Symmetry in Solids: Representation Theory
of Point Groups and Space Groups (Clarendou, Ox-
ford, 1972).

sJ. L Birman, Theory of Crystal Space Grottps and
Infra-red and Raman Lattice Processes of Insulating
Crystals (Springer, Berlin, 1974).

4A. Agyei and J. L. Birman, Phys. Status Solidi 8 80,
509 {1976);82, 656 (1977).

5I. E. Dzialoshinsky, J. Phys. Chem. Solids 4, 241
(1958).

6S. Alexander, Phys. Rev. 127, 420 (1962).
7E. F. Bertaut, Acta Crystallogr. Sect. A 24, 217 (1968).
8Y. A. Izyumov, Usp. Fiz. 131, 387 (1980).
9D. B. Litvin, J. N. Kotzev, and J, L. Birman (unpub-

.lished).
M. Opechowsld and R. Guccione, in Magnetism, edit-

ed by G. T. Rado and H. Suhl (Academic, New York,
1965), Vol. IIA, p. 105.

i~J. L. Warren and T. G. %'orlton, Symmetry Aoperties
of the Lattice Dynamics of Twenty three Crysta-ls (Ar-
gonne National Laboratory, Illinois, 1973).

izInternational Tables for X Ray Crystallograp-hy, edited

by N. F. M. Henry and K. Lonsdale (Kynoch, Birm-
ingham, 1969), Vol. I.

~3E. B.%ilson, J. C. Decius, and P. C. Cross, Molecular
Vl&Iatlons {MCGraw-Hill, New York, 1955).

~4H. Jahn and E. Teller, Proc. R. Soc. London Ser. - A
161, 220 (1937); H. Jahn, ibid A164, 1. 17 (1938).

15E. Ruch and A. Schonhofer, Theor. Chim. Acta $, 291
{1965).

lsE. L Blount, J. Math. Phys. (N. Y.) +I, 1890 (1971).
17I. V. V. Raghavacharyulu, J. Phys. C Q, L455 (1973).
'sJ. L. Birman, Phys. Rev. 125, 1959 (1962).
'9L. D. Landau and E. M. Lifshitz, Statistical Physics

(Pergamon, New York, 1958), Chap. XIV.
2oJ. L. Birman, Phys. Rev. Lett. +1, 1216 (1966).
2~F. E. Goldrich and J. L. Birman, Phys. Rev. 528

(1968).
22M. V. Jaric and J. L. Birman, Phys. Rev. B 16, 2564

(1977).
23J. L. Birman, in Group Theory Methods in Physics,

Vol. 79 of Lecture Notes in Physics, edited by P. Kra-
mer and A. Rieckers (Springer, New York, 1978), p.
203.

24J. Przystawa, Phys. Status Solidi 30, K115 (1968).
25G. F. Koster, J. O. Dimmock, R. G. %heeler, and S.

Statz, Properties of the Thirty-two Point Groups, (MIT
Press, Cambridge, Mass. , 1963).


