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Electron-libron modes in a quasi-one-dimensional conductor
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A model calculation is done so as to study the conduction-electron excitation spectrum
for a solid consisting of equally spaced atoms which are free to rotate about their centers
of mass. In this model, the atoms are assumed to be electrically neutral dipoles of spin
—.Owing to the Coulomb interaction between an electron and a libron (the quantum of
libration) on neighboring lattice sites, it is shown that the system possesses a bound exci-
tonic state consisting of an electron and a libron. The quasiparticle spectrum for the exci-
tons consists of two branches co'k—' which are labeled by the wave number k. The gap
function hk, which is a measure of the electron-libron pairing, and a parameter g, deter-
mining the orientational order for the atomic system, are determined by a set of coupled
equations. We study the conditions under which there are electron-libron modes by doing
numerical calculations for various values of the parameters.

I. INTRODUCTION

For several years there has been considerable in-
terest in quasi-one-dimensional and two-dimen-
sional solids. ' In this paper we are concerned with
the study of electron-libron excitations in a one-
dimensional model and we show that such excita-
tions are well defined, with the use of a formalism
which we have presented recently. '

In the quasi-one-dimensional charge-transfer
salts such as TTF-TCNQ (tetrathiafulvalene tetra-
cyanoquinodimethane) the molecular degrees of
freedom can be classified into translations, libra-
tions, and intramolecular distortions. All three
types of motion have received some attention, with
the librational modes being discussed after a sug-
gestion by Morawitz that they may play a role in
the Peierls transition. Merrifield and Suna
showed that there would not be a Peierls transition
if the coupling is quadratic in the libron amplitude.
However, Morawitz avoided this difficulty by as-
suming electronic degeneracy. Weger and Friedel
showed that it is possible to understand the crystal-
lographic phase transitions in TTF-TCNQ by con-
sidering mechanisms which give rise to both libra-
tional and translational motion of the molecules.
In their formalism they assumed that the lattice
distortions which produce the N —S bond are.dom-
inant and consequently the libration about the axis
perpendicular to the molecular plane plays a cru-
cial role in their theory. Gutfreund, Weger, and
co-workers have also assumed that this mode

gives rise to the main scattering effects which
govern the resistivity at high temperature. Their
Hamiltonian thus contains a term which couples
this mode to the conduction electrons. This cou-
pling which is dependent on the size and shape of
the molecules gives rise to a modulation of the
transfer integral and of the Madelung potential as
well. With the use of a model for the lattice vibra-
tions in a molecular crystal, Conwell has made a
detailed study of the contribution of librons (as
well as phonons) to the transport properties of
one-dimensional conductors.

In our recent papers in which we studied libron
modes in crystals, we assumed that the molecules
are free to rotate with angular momentum S =1,
and thus our formalism is applicable to crystals
with large amplitude librations. The angular
momentum is thus a good quantum number for
this model and we proceed by working with these
eigenstates. In a solid material such as TTF-
TCNQ the amplitude of libration is small, between
1' and 4' at low temperature, and thus for such
materials it would not be accurate to treat the an-
gular momentum as a good quantum number in
our model. However, for small amplitude libra-
tions there is still a coupling of the Hc~ (i.e.,
electron-quadruple) or Hcts (i.e., electron-dipole)
type [see Eqs. (1.6) and (1.7) of Ref. 3] when the
molecules are tilted with respect to the chain axis,
as they are in TTF-TCNQ. The crystallographic
studies by Johnson and Watson' for crystalline
compounds formed from combinations of the
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tetrathiafulvalene molecule and the iodide salts of
the radical cation and dication show that the rota-
tions for (TTF)7I5 are indeed large. The molecules
are perpendicular to the chain axis and there is no
tilt.

The molecules of mesogenic compounds are
elongated and the liquid-crystalline phase of these
substances is characterized by long-range order in
the orientation but not in the position of the mole-
cules. The orientational order parameter deviates
from unity (perfect order) owing to the thermal
motion of the molecules. In the case of complete
disorder, the order parameter is zero. A distinc-
tion is made between nematic, cholesteric, and
smectic crystalline phases. "' These can best be
characterized by considering a liquid single crystal,
i.e., a region over which the long-range order is
ideal, apart from the thermal fluctuations. In par-
ticular, in the smectic phase one finds that in addi-
tion to orientational order there is a partial posi-
tional order, with the mole:ular centers of mass ar-
ranged in equidistant planes. There are two dif-
ferent possibilities for smectic phases. In one case
the molecular centers do not have any long-range
order within the layers, and thus correspond to a
two-dimensional liquid. In the second case the
layers are built up regularly so that the positions of
the molecular centers lie on a two-dimensional lat-
tice. If a conducting liquid crystal could be made
which has a smectic-like phase with the molecules
being regularly spaced along a linear chain, then
we feel that this would be a system in which to
look for electron-libron excitations of the type dis-

cussed in this paper.
Recently, we suggested that a collective mode

could arise in a semiconductor from a bound state
between a conduction electron and an exciton
which is an intermediately bound electron-hole
pair. ' The qualitative difference between the Ham-
iltonian of Ref. 13 which produces an electron-
exciton coupling and the term in our Hamiltonian
in Sec. II which gives rise to an electron-libron

coupling, is that the former is linear in the electron
density while the latter is quadratic in this opera-
tor Despite . this difference the methods we use to
solve these two problems are similar.

In Sec. II we describe the model Hamiltonian.
Section III contains a calculation of the electron-
libron Green's functions and some numerical re-
sults.

II. FORMULATION OF THE THEORY

p 4n.
Vll

Rg
(2.2c)

Here, p is the dipole moment, RII is the distance
between lattice sites at l and I', and OI is the
orientation of the molecule at the lattice site l rela-
tive to the crystal axis. Also, 0~I is the angle be-
tween molecules at l and l', C(112;MN) is a
Clebsch-Gordan coefficient, and Y]M is a spherical
harmonic. Transforming to a coordinate system
where the z] axis of each molecule is along the
symmetry axis of that molecule at l, we have

YIM(QI) g ~M (al Pl 11)Y]yg(1)

(2.3)

where a],p],y~ are Euler angles, O'M' is the
transformation matrix, and co] is the orientation of
the molecule at R] relative to the local frame of
reference. In terms of local-tensor operators, we
have

Y]~(d()=c~L ] (l) (2 4a)

o=&-i =—&+& =
4m

(2.4b)

Substituting Eq. (2.4) into (2.3) and then making
use of the result for Y,M(Q1) in Eq. (2.2), we ob-
tain

(2.5)

due to electron spin are ignored and we assume
that the system is described by

H:g—t (ll')al al +Hr]n+H, r], (2.1)
ll'

where t (ll') is the hopping energy of an electron
from lattice site RI to lattice site RI . aI,aI are the
destruction and creation operators for an electron
at the lattice site RI . The rotating molecules in-
teract via the dipole-dipole interaction H~~. This
interaction is three dimensional and is given by

Ht]D= —,g Vlp(Q], Qp) (2.2a)
11'

with the dipole-dipole interaction given by

Vlp =——vip+ C(112;MN) Y]M( Ql )
MX

X Y]N( Ql') Y2,M+N( Qll') ~

(2.2b)
and

1/2

In this section we describe the model Hamiltoni-
an for our system. For simplicity all considerations where

ll' mn
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I m&&(l/')—:1 vlrcmc&& g C(112&&MÃ)F1M+N(Oll')+Mm(tsl&PI&Y1)+N&& (+r&/ r&1 l') ' (2.6)

From the properties of the rotation matrix'"

@mm'(tSI &I/I &l I }

=( 1—) + 8"", (al,Pl, yl ), (2.7)

H= gt(//')alai
0'

—g Q I „(/1')L1 (/)L 1(l')
ll' mn

+g A,(//')L1(/)p(l') . (2.11)

we obtain

I' „(l/')=( —1) +"I' „(ll'),

For a molecule of spin S, we may express the
spherical-tensor operators in terms of the spin
coIQponents:

I „(ll')=1„(l'l) . (2.9)

The interaction between an electron and the rotat-
ing molecule may also be expressed in terms of
spherical-tensor operators. We have

L +, (I)=St-+-I+2f1,

L*l (l)=St'~fi

fl =S(S+1).
Wrtting al =—Sl, al =Sl, we have—= +

z )
Sl ———,—nl,

(2.12)

(2.13)

H,o —g A(//')L—
1 (1)p(l'),

ll'
(2.10)

where p(1) is the electron-density operator in the
Wannier representation and &(,(//') is the coupling
between a molecule and the conduction electrons.
Collecting the terms we rewrite the Hamiltonain of
Eq. (2.1) as

(2.14a)

(2.14b)

[al&arl =[al-ar 1 =0-
[al,ar ] =(1 2nl )51—1,

where nl =al al
—The .electron (a) and libron (a)

operators ant/commute with each other and the
electron operators obey the usual anticommutation
relations. In terms of the libron operators Eq.
(2.11}is rewritten as

H=gt(//')ajar ——,g {I'oo(//')(1 —2nl}(1—2nl. )+[21'+,+,(//')a, ar+ H c)

+[21 +1 1(/l')alai + H.c]+[2v 21+lo(ll')al(1 —2nr) —H.c.]I

+ g A(//)( I ,2nl )p(l—'),
II'

(2.1S)

where we have used the symmetry properties of
I'm„ in Eqs. (2.8) and (2.9). In calculating our
Green's functions in the next section we use the
form of the Hamiltonian in Eq. (2.15}. We em-
phasize that we ignore all effects due to electronic
sp111. II1 thc calculat1011s 111 Scc. III, wc mRkc llsc
of the fact that I'+1+,(l/') is much less than
I'oo(//') and I +1 1(ll') in most cases for fixed l
and l', and so set I +1+1 equal to zero in our cal-
culations. This is done for convenience but it can
be included easily.

III. DISPERSION RELATION FOR
ONE-DIMENSIONAL ELECTRON-LISRON

MODES

In this section we discuss the response of the
one-dimensiona1 conductor to an externa1 perturba-
tion. We use a Green's-function method similar to
that used in the theory of superconductivity. ' This
method eras recently used by the authors in a
theory for biexciton and electron-exciton complexes
in insulators, where the excitons are formed from
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intermediately bound electron-hole pairs. "'
Since we are interested in a bound state between

an electron and a libron, the Green's function
which we evaluate is ( (at(t);at (0) ) ). In this nota-
tion, ( (; ) ) denotes a retarded Green's function
and the time dependence of the operators is in the
Heisenberg representation T.his Libron elec-tron

Green's function is coupled to the eLectron Green's
function

To calculate the equations of motion of these func-
tions we commute aI and aI in turn with the Ham-
iltonian (2.15). Making use of the algebra in Eq.
(2.14) and the commutation relations for the elec-
tron operators, we obtain the following set of cou-
pled equations within our decoupling scheme

[ut, H] = —,iL g I Oo(LL')at —,[I'+, —i(l'l)+I +i i(LL')]at — A(LL')(at at )at
I'

(3.1)

[at,H] = —g t(LL')at q—g A(LL')at+ QA(LL')(at at )ttt .
I' 3 I' 3 I'

(3.2)

In deriving these equations, we have used the sym-

metry properties of I'~„ in Eqs. (2.8) and (2.9) and

we have replaced the dipolar operator by its ther-
mal average:

r

numbers are in the first Brillouin zone

ir/uo &k &n/ao In Eq. s. (3.4} and (3.5} we have

also introduced the notation

k« —=
3 9[2}'00(0)—1'+i-i(» —)'+i-i( —k)]

g—= 1 —2&n, &. (3.3)
(3.7)

Here rt is independent of lattice site since all sites
are equivalent. We have also ignored higher-order
terms which describe libron-libron scattering ef-

fects. This approximation is expected to be valid
in the coherence approximation where scattering
effects are supposed to be negligible. The last
terms on the right-hand side of Eqs. (3.1) and (3.2)
describe the pairing between an electron and a li-

bron located at different lattice sites of the crystal.
Since it is more convenient to do our calcula-

tions in momentum space, we use Eqs. (3.1) and

(3.2) in our equations of motion of our Green's

functions and then Fourier transform with respect
to time and space. We obtain (set %=1)

E«=e«+ —
A,(0) .I

3
(3.8)

Here y~„(k), A,(k), and e«are the Fourier
transforms of I ~„(LL'), A, (LL') and t (ll'), respective-
ly. g« is, of course, the rotational energy for a
molecule and e« the band energy for a free elec-
tron. In deriving Eqs. (3.4} and (3.5) we have ig-
nored the possibility of a libron and an electron
scattering off each other into different momentum
states.

The two sets of coupled algebraic equations (3.4)
and (3.5) may easily be solved to give the results,

(co —g«)((a«, a «)) +hrl(«( a«;a «))=0,

( —~—E«}&&a'-«,a «&&+~«&&u«, a «&&=1

(3.4)

((a«.,a «))

(3.9)

(&a «,a «»

~k
'9

(~ 4)( ~ ~«) —rLI ~« I'—
where

(3.5) —4
(~—4)(—~—E«}—n I ~« I' (3.10)

in the energy-gap function for electron-libron
bound pairs. N is the total number of atoms ori

the chain, with lattice spacing ao and the wave

(3.6) The thermal average (a «a«) in the gap function
of Eq. (3.6) may be obtained by taking the differ-
ence of the Green's function ((a«,'a «)) across
the branch cut along the real axis and integrating
over frequency,
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(a kak)= —2 f fp(rp)lm(&aq, a q».
(3.11)

(m —E+)
Here fp(cp}—=(1+e ") ' where T denotes tem-

perature and units with ks ——1 are used. Er is the
Fermi energy. Making use of Eq. (3.9} in Eq.
(3.11) and then substituting the result (a kak )
into Eq. (3.6), we obtain the result for hk.

ri —g A,(k')bk
4 1

k'

CA

X
0-
CQ
K
LIJ

LLI

where

(3.12) -0.5
I

0
kao/7r

0.5

FIG. 1. Electron-band energy as a function of wave
vector. 40 is the unit of energy.

(3.13)

are the excitation energies for the electron-libron
bound states.

The equation-of-motion method may again be
applied to calculate the libron libron Gr-een's func-
tion ((uk, ak ) ). Using the result in Eq. (3.1), one
finds that ((ak', ak ) ) is coupled to the Green's
function ((a k,ak ) ). Therefore, using Eqs. (3.1)
and (3.2) we obtain two sets of coupled equations
which may be solved easily. In particular we have

convenience we ignore the k dependence of gp de-
fined in Eq. (3.7), by setting this quantity equal to
a constant. All energies as well as temperature are
measured in terms of hp.

Figures 1 through 4 show plots of the electron-
band energy and the two branches of the electron-
libron excitation spectrum as a function of wave
vector. The energy of the lower cok

' branch
shows more variation with k than that of the
upper rp'k+' branch of the excitation spectrum The.
value of the ordering parameter ri must lie between

« uk,'ok »

(3.14)

where, we emphasize, all effects arising from the
scattering of an electron off a libron into different
momentum states are neglected. Taking the differ-
ence of the Green's function ((ak', ak ) ) in Eq.
(3.14) across the branch cut along the real axis and
integrating over frequency, we obtain from the de-
finition of ri in Eq. (3.2} another equation for ri
and hg.

For an undistorted linear chain we have hk
=hpcoskap. In our calculation we use b,p

——0.02
eV and set A,(k)=A, coskap, ek escoskap——, which

correspond to nearest-neighbor electron-libron cou-
pling, and electron hopping between nearest-
neighbor lattice sites, respectively. For the sake of

V)~ o-
N

I

K
LL) cl
LLI

6F= 3.5

e 50
X = IO.O

(„=6.0
T = I.O

}-0.5 0
kg 0 /7T

0.5

FIG. 2. Plot of the two branches coq-+' of the elec-
tron-libron excitation spectrum for the same values of
the parameters used in Fig. 1. 60 is the unit of energy.
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amplitudes in crystals which are electrically con-
ducting. This microscopic treatment in terms of a
model whose molecules have rigidly fixed centers
of mass illuminates some essential features of a
more general approach. A generalization to incor-

porate phonons into the present model would be
desirable. We hope that the future will see a
bridging between this and other models, at least in
some simple cases, as well as this calculation and
experiment.
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