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Point-defect diffusion in a strained crystal
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The diffusion equations for interstitials and vacancies in the field of an edge dislocation
are numerically solved within a theoretical model that takes into account the full lattice
and defect symmetry in the migration jump. The defect concentration is calculated
within two different approximations: In one, only the defect drift contribution to the dif-
fusion is considered, while in the other, the drift and gradient terms are included as well

as a constant defect generation rate. In this second approximation the steady-state con-
centration is calculated. The influence on the solutions of an external uniaxial stress with
different orientations with respect to the dislocation is studied. Numerical results for the
dislocation sink strength are obtained for vacancies and interstitials in Cu. These are
compared with previous approximations in the literature. The relevance of the results to
the establishing of a radiation creep mechanism is discussed.

I. INTRODUCTION

When deducing a lattice defect diffusion equa-
tion the lattice symmetry is generally included both
in the defect occupation and in the jump probabili-

ty. However, to our knowledge, the detailed solu-
tion of complex problems that involve the dif-
fusion in a space-varying strain field, for example,
in a dislocation field, has been tackled only within

a continuum model that involves a series expansion
of those equations (i.e., Ham, ' Margvelashvili and
Saralidze, Wolfer and Ashkin, Rauch and
Simon ). Some of the lattice influence on the pro-
cess can be smeared out, and physically relevant ef-
fects may be lost in that expansion. The continu-
um approximation must be revised when diffusion
in a strained crystal is studied. This revision was
performed among others by Girifalco and Welch, '
Kronmuller et al. , Savino, and Dederichs and
Schroeder (hereafter called DS). However, the
first two sets of authors deduced diffusion equa-
tions which also lack some defect symmetry contri-
butions that might be relevant to the process under
study. Within a simple thermodynamic approxi-
mation, DS have obtained essentially complete ex-
pressions for the defect drift towards a sink in a
strained crystal. The model deduced by them will

be called "discrete approximation" to differentiate
it from the continuum approximation previously
mentioned.

Mathematical expressions for that discrete ap-
proximation, however, are cumbersome to evaluate
when the defect-sink interaction field is complex,

as in the previously mentioned case of drift to-
wards a dislocation sink. The purpose of this work
is to solve this drift problem for self-defects in a
fcc structure. The effect of an external stress is
also included in order to relate the solution of the
problem to the irradiation creep phenomenon. As
the results of this work are relevant to the rate
theory of a medium under irradiation (Brailsford
et al. ), the dislocation sink strengths are evaluat-
ed.

The plan of this paper is as follows: In Sec. II,
based on the works of Savino and DS, we sum-
marize the main facts about anisotropic diffusion
in a strained lattice. In Sec. III the models adopt-
ed for calculating the point-defect —dislocation in-
teraction energy are described. In Sec, IV the drift
of point defects towards an edge dislocation is cal-
culated within the discrete approximation by using
an integration procedure inspired by that of Cot-
trell and Bilby' (CB) for the continuum model.
This calculation highlights the differences between
the results obtained with the discrete and with the
continuum approximation, especially with respect
to the effect of an external field. In Sec. V, the
steady-state vacancy and interstitial concentration
profiles around a dislocation in a medium irradiat-
ed at constant rate are calculated for a strained
crystal. Those calculations allow the evaluation of
the dislocation sink strengths for vacancies and in-
terstitials and the influence of an external stress on
those strengths. If the defect-strain field interac-
tion energy is evaluated up to first order, the influ-
ence of an external stress on the sink strength is
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zero within a pure continuum model, though the
sink strength depends on that stress when higher-
order terms are included on evaluating the interac-
tion (Bullough and Willis" ). In the calculations
for the discrete approximation used here, only
first-order terms are included for the interaction
energy, and any effect of the external stress on the
sink strength values arises precisely from that ap-
proximation to the problem.

site j it must go through an activated state, most
probably through the so-called saddle-point config-
uration n,j.. Kronmuller et al. proposed the
current density of defects at that point as a vec-

IZ
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II. DIFFUSION EQUATIONS IN THE
DISCRETE AND CONTINUUM

APPROXIMATION

Consider a lattice defect located at a given site i
In order to migrate from that site to a neighboring

where c'"~(R;) is the density of defects at i with
orientation n; the total number of neighboring sites

j that can be occupied by a single defect jump is N,
and s,

&
is a vector that joins the site i with the site

j (s,
&

——R~ —R&}. The jump probability from i to j
is taken as

vIJ~' " (R;)=vo", 'exp{ —[Q
' s (R;)—E'"'(R;)/kTI, (2)

where Q
' '~ (R,) is the lattice energy for a defect located at the saddle point in a n&J-type jump which start-

ed in the R; position (where the defect was originally located) with orientation n and with the corresponding
lattice energy E'"'(R;). As discussed by DS on evaluating Eq. (2), one must consider that, depending on the
defects symmetry and orientation n at R;, some jump paths (n;J) or neighboring sites (j) are forbidden. In
what follows the preexponential factor in Eq. (2} is taken as constant (vo". ' ——vo) and it is assumed that the

ij
equilibrium defect orientation at a given site is attained within a few jumps, i.e.,

exp[ —E'"'(R; )/kT]c'"'(R; ) =c(R; ) (3)
+exp[ —E' '(R;)/kT]

If defect concentrations and energies are considered to be values of a continuous and slows varying function
of the spatial coordinates, and c'"'(RJ)=c'"'(R& )+ s

&&
Vc'"'(R; },E'"'(R; ) «kT, and s;1'VE'"'(R;) «kT,

after replacing Hqs. (2} and (3) in Eq. (1},it can be expanded in Taylor series and then be written as
no N,.

J(R;)=—g g g exp{ —[Q
' " (R;)—E(R;)]/kTI

j=I n=I n"=I 2nO
fj

X {s," Vc(R;)+[c(R;)/kT] s,j VE(R;) J sij (4)

where N is the number of neighbor sites within the defect single-jump distance, no the number of equilbrium
orientations, and NJ the number of different symmetry defect jumps. The average energy at the equilibrium
site is defined as

no

E(R;)= y E'"'(R ) .
7$

i
o n=1

Equation (4) can be written in vector notation as

J(R)= —D(R) Vc(R)+ V'E(R)
kT

by defining a diffusivity tensor
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N no N

(R)—g g g expI —[Q
' ' (R)—E(R)]/kTIs&&stj .
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Equation (7) reduces to the standard diffusivity
constant for a stress-free lattice. However,

(n, n&)
Q

' '~ (R) in Eq. (7} cannot be generally expanded
around a value Q(R) due to its dependence on the
saddle-point configuration via n,j and n, and there-
fore, its intrinsic discontinuity at R (see DS).

IV. POINT-DEFECT DRIFT TOWARDS
AN EDGE DISLOCATION

A. Theory

The number of point defects satisfies the conser-
vation law (Fick's second law)

= —V J
Bt

(9)

IB. DEFECT CONFIGURATION
AND INTERACTION ENERGY

We shall consider the drift of a vacancy and a

(100)-split dumbbell interstitial towards an edge

dislocation in a fcc crystal. The point-defect
equilibrium and saddle-point configurations are ex-

tensively discussed in the literature. Numerical

values for Cu are taken from Schober's work, '

where the dipole tensors for the equilibrium and

saddle-point configuration are calculated by com-

puter simulation. Schober has used different po-
tentials for the atomic interaction. For our calcu-

lations the use of dipole tensor values based on dif-

ferent interatomic potentials gives some confidence

that the dependence of the results on the lattice

symmetry can be elucidated. According to the po-
tential used by Schober for obtaining the dipole
tensor this will be called either M (Morse), MM
(modified Morse} or BM (Born-Mayer} dipole ten-

sor.
Tome and Savino' have shown that generally

the main contribution to the anisotropy in the
defect-dislocation interaction field comes from the

anisotropic defect dipole tensor but not from the

anisotropy of the elastic dislocation field, which is

then taken as isotropic hereafter (Nabarro' ). The
interaction energy between a point defect and a
dislocation in the presence of a strain field, when

only the first-order (size) interaction is included,

can be written as (Savino )

E;„,(R)= —p+X(e "(R)+e'"'(R)}

J =cv,
an Eq. (9} reduces to

Be dc

Bt dt
+v Vc= =0,

where the condition of defect conservation in a
given volume element is implied (then V v =0).
Also, if v is irrotational (VX v=0), a potential

function can be defined by

(10)

v= —VP,
and with the above consideration on defect conser-
vation p is harmonic (i.e., V /=0). Also, a flow
line function g can be defined by

v V/=0. (13)
The functions / =const and /=const define the
characteristic coordinates of the problem. If the
initial condition for the concentration is

which results from Eq. (6) in a second-order partial
differential equation for c. If we are only interest-

ed in the drift contribution to the diffusion, the
random-walk terms must be neglected in Eq. (9),
and it reduces to a first-order differential equation
in the space coordinates. This is possible whenever

the term with Vc in Eqs. (4) or (6) is negligible

compared to the drift term (c/kT)VE. It can be
seen that neglecting this term in these equations is
equivalent to taking the concentration c'"'(RJ) in

Eq. (1) for J as constant in the neighborhood of
R;. Within this approximation, the defect flow

vector J is linear in concentration, i.e.,

In Eq. (g},p& is the dipole tensor for the point de-

fect either at an equilibrium site or at the saddle-

point location, while es" and e'"' stand for the
dislocation and external strain fields, respectively.

c(r, t =0)=c'(r),
the solution of (11) is

(14)
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Dk~ —D5km ~

pi+=p~i

(16)

(17)

then Eq. (8} reduces in an isotropic continuum to

E;„,(r) A —p trd"',sin8
P

(18)

where A =pGb/2m(1 —v), with b the dislocation
Burgers vector, G the Young's modulus, v the
Poisson's ratio, and the polar coordinates r, 8,z,
with z along the dislocation line and r measured
from this line. Equation (11) was solved by Cot-
trell and Bilby (CB) under the assumptions of Eqs.
(16)—(18) and considering the dislocation core as
an ideal sink, i.e., with boundary conditions

c(r =O, t)=0,
and with initial conditions

(19)

c(r, t=O)=coH(r) . (20)

Here, H(r) is the Heaviside function and r is the
modulus of the vector r. CB's solution of Eq. (11)
results with a time t in a zone depleted of defects
which have been absorbed at the sink, and this
zone is bounded by the line

' 1/3

Rc~(8,t) = 2ADt

kT
cos8

' —1/3-
sin28x ——8—

2 2
(21)

Outside this zone the concentration is co. 8 in
Eq. (21) is the locus of points r on a characteristic
line f, =const that satisfies the relation

' —1

As previously discussed, the influence of the lat-
tice symmetry is retained when the flux vector
J(c,r, 8) is defined either by Eq. (1) or Eq. (6).
Equation (9) can be reduced to Eq. (11)by neglect-
ing in the evaluation of J terms which contain
spatial derivatives of c or, equivalently, assuming
c(RJ}=c(R;)=co in Eq. (1); in this case, Eq. (10)
is a valid approximation. The flow lines g can be

(22)

where g is an unit vector tangent to the charac-
teristic line g defined by Eq. (13}at r. Equation
(15) shows that solving Eq. (11) is equivalent to ob-
taining the characteristic functions P and f for
every point in space.

If the diffusivity and the defo:t dipole tensors
are isotropic and space independnt, i.e.,

obtained afterward either analytically or simply by
numerical or graphical methods. For a conserva-
tive and irrotational defect flux, if the boundary
conditions of Eqs. (19) and (20) are adopted, the
solution of Eq. (11) is.

c(r, t) =coH(r R(8—,t)) (23)

B. Vacancy drift

The numerical method previously described is
applied to solve Eq. (11}for the vacancy and inter-
stitial drift towards an edge dislocation along a

I 111 J plane with a (110) Burgers vector. Al-
though the omission of the diffusion term in Eq.
(9) implies that th6 solution is only valid for un-

realistically short times, a comparison with the
equivalent one obtained within a continuum model
by CB will provide some insight about the rele-
vance of including (via the discrete approximation}
the lattice and defect symmetry into J. In this
section, the M point-defect dipole tensor values are
used.

Results for the vacancy drift towards the dislo-
cation in the absence of an external stress are
shown in Fig. 1. There, the depleted zone boun-
dary R(8, t) is drawn as a function of the reduced

where r =r(cos8,sin8) and R(8,t) is the absolute
value of the vector

R= v t

collinear with r. Equation (22) can be used for ob-
taining the boundary between the depleted and
constant density (co) zones for a given time t.

We have adopted a step-by-step numerical inter-
polation method for constructing the flow lines
/=const. This is based on evaluating the flow
vector J tangent to that line. In the discrete ap-
proximation, J is given by Eq. (1) with. c(R)=co
and by assuming an edge-dislocation interaction
with point defects of different symmetry via their
dipole tensor values, while the dislocation field is
taken as the continuum field at the defect position.
This numerical procedure to solve Eq. (22) enables
us to map the depleted zone contour R (8,t) for a
given defect symmetry, that is a given J form.
Evidently this method can also be used to solve
Eq. (11) when the flow vector J is calculated
under the same approximations as those made by
CB. The comparison between the numerical solu-
tion and the analytic one of Eq. (21) is used as a
test for the accuracy of the numerical method.
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Cu

a,=s.e A

discrete approximation that includes the full lattice

effects (the solid line in Fig. 1), significant differ-

ences are found. These differences are then mainly

due to the inclusion of the vacancy-dislocation in-

teraction at the saddle-point configuration in the

diffusion equation.

C. Vacancy and interstitial drift to
a dislocation in an externally

strained crystal

FIG. 1. Vacancy-depleted zone around an edge dislo-
cation in Cu at 300 K. The time is taken in units of
to=vo 'exp(go/kT), and M dipole tensors (Ref. 13) are
used. Solid line: "discrete approximation, "Eq. (1).
Dashed line: R (O, t) and "discrete approximation"
with zero dipole tensor at the saddle point.

time

1 0
tp ———exp

vp kT
(24}

where Qo is the migration energy in a stress-free
lattice. A plane perpendicular to the dislocation
line and that contains the Burgers vector is con-
sidered. Solid lines correspond to a flux vector J
evaluated with Eq. {1}.The equilibrium dipole ten-
sor for the vacancy is spherically syinmetric as in
Eq. (17), while the corresponding dipale tensor in
the saddle-point configuration is anisotropic
(Schober' ). If the interactian between the dislaca-
tion and the defect at the saddle point is neglected
in J, Eq. {1),the numerical solution should con-
verge to the corresponding analytic solution of CB
provided the proper values of A are adopted in Eq.
(18). This is indeed the case and it is found (see
Fig. 1) that the numerical solution abtained agrees
closely with the analytic solution (21). By compar-
ing this analytic solution [the dashed line for
R(8,t) in Fig. 1] with the numerical salution in the

From Eqs. (6) and (7) it can be seen that when

the f'ull lattice and defect anisotropg are included
in evaluating a defect flow vector J in a complex
strain field, it may affect the defect drift via local
changes in the anisotropy of the diffusivity tensor.
For studying this effect we shall assume that, in
addition to the dislocation field, a homogeneous
strain field corresponding to uniaxial stress is ap-
plied to the crystal,

ext ext extE'~ =6', Eye =6~ = —VE' . (25)

Two different orientations of this field with respect
to the dislocation are studied: The x direction (I}
parallel to the [110]Burgers vector and (II) perpen-
dicular to it and to the dislocation line. For the
sake of numerical accuracy and in order to en-

hance the effect, a relatively large field of @=10
was used for the numerical calculations in the
discrete approximation. The flux lines and deplet-
ed zone boundaries for the vacancy migration are
plotted in Figs. 2(a) and 2(b), respectively. Figure
2(b), when compared to Fig. 1, shows that there is
a net change in shape and magnitude of the deplet-
ed zones as a function of the orientation of the
external field.

In Fig. 3, the depleted zones and flow lines for
the interstitial drift are plotted. For the case of
the interstitial drift, there are several effects in-

cluded in the calculation that makes it diverge
from the CB analytic solution for point-defect dif-
fusion in a dislocation field. These effects are as
follows: (i) the defect equilibrium and saddle-point
symmetries are included in the diffusivity constant,
which has a tensorial character, (ii} the correspond-
ing defect dipole tensors are both anisotropic, (iii}
the thermal equilibrium distribution of interstitial
orientations (3) is assumed at a given site, and (iv)

for a given orientation of the interstitial at a site
only eight nearest-neighbor sites can be reached via
a single jump (see DS).
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FI(y. 2. Same as Fig. 1 but with an external uniaxial stress field with strain e=o„/E=0.01. Solid line; flow front
(depleted zone boundary). Dashed line: Aow line. (a) Orientation I with the x direction parallel to 1 and perpendicu-
lar to the dislocation line vector g. (1) Orientation II with the x direction perpendicular to 1 and to g.

V. STEADY-STATE SOLUTION AND
SINK STRENGTH CALCULATION

A. Hollow cylinder sink strength

"=-V.J+E,
where J is now the defect fiow towards any sink

(26)

When studying different problems such as aging,
recovery, radiation damage, etc., it is valuable to
determine the dislocation's defect capture efficien-

cy or ~hat is commonly defined as capture radius
or, equivalently, the sink strength. Any of these
parameters allows replacement of the real medium

with a discrete distribution of dislocations by an
effective or lossy medium where the defect sinks
are smeared out and their capture efficiency is ade
quately weighted. The whole concept of lossy
medium is reviewed by Brailsford and Bullough'
in a recent paper to which me refer the reader.

In a medium under irradiation there is a time-
dependent production of defects. If the production
rate is assumed to be constant (K), Eq. (9) trans-
forms into

in the crystal and e is the interstitial or vacancy
concentration. If there is more than one sink in
the medium, but all are of the same type, say,
dislocations, Eq. (26) can be replaced by the effec-
tive medium equation."'=Dk, &, &+X. (27)

Here, (c ) is the space-averaged concentration
value, D the isotropic diffusivity, as in Eq. (7) for
a stress-free crystal, and kD is the dislocation sink
strength. In several problems of technological in-
terest, steady state may be assumed, i.e., Bc/Br =0
(see, however, Rauch and Simon~). Equation (27)
provides then a way of calculating kii as

kii —— (28)
D c

For a periodic or random array of dislocations, Eq.
(26) is consistently solved for the steady state, and
the calculated concentration is averaged over an
appropriate volume. If a periodic array of disloca-
tions is assumed, each dislocation must be along
the center axis of a cylinder of radius
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m (a.+n

(a) (b)

FIG. 3. Same as Fig. 2 but for the dumbbell interstitial and e=0.01. Dash-dot line (———~ ) is the flow front

(depleted zone boundary) for the interstitial under a zero external field and t/to ——540.

where pii is the dislocation density. Periodicity

imposes the condition

. J(gext) 0 (30a)

An extreme simplification of the problem is ob-

tained by neglecting the defect-dislocation elastic
interaction of Eq. (8). Then the dislocation is
simulated as a hollow cylinder of radius r, cen-
tered at the dislocation line +here

c(r)=0 if r &r, .

The sink strength so obtained is

2 (1—a )
kg) —2'pa

( —1na ——+a —-a }

(30b)

c(R'"')=co . (32)

However, Eq. (32) will only be appropriate for a
random distribution of dislocations, and cp should

be related to the defect production rate and the

where n=r, /It '*'

Some authors replace the boundary condition of
zero flux at R'"'by the condition

geometry of the problem. If the sink strength of
Eq. (28) is evaluated for the concentration ob-

tained, assuming that the condition of Eq. (32) is
valid, it yields

If the point-defect —dislocation interaction is in-

cluded in Eq. (26), even at steady state the problem
becomes much more difficult to solve, and no com-

plete analytic solution seems to exist. Several au-

thors (Burke and Nix, ' Ranch and Simon, Wolfer
and Ashkin, and Margvelashvili and Saralidze }
have solved the diffusion equation by choosing ap-
propriate boundary conditions at r =8'"'. Brails-
ford et al. also suggested simulating the drift term

by a net flux increment near the dislocation core,
and the same authors' recently proposed an ap-
proximate solution %'hich inc1udes the interaction
field. However, this solution is valid only under
certain conditions, e.g., it would be valid for inter-
stitials in Cu only if they produced spherically
symmetric distortion field.
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8. Numerical solution

Given a flow vector J ( r), Eq. (26) can be solved
numerically for the steady state

~M+~M+12 2

{RM&8N )
2

' 1/2
~N +X+1

2

within a finite difference scheme. For the case of
diffusion in a straight dislocation field, cylindrical
coordinates (R,8) and a mesh of nodal points are
chosen as shown in Fig. 4. For this coordinate

is the position of the geometrical center of an ele-
ment (RM M+1,8N N+1), where M runs over the ra-
dial nodes and N over the angular ones; Eq. (34) is
then vvritten as

[J.(RM+l 8N)RM+l &.(RM 8N)RM](8N+l 8N)—+l~s{RM 8N) &s(R—M 8N+l)l(RM+I —RM)

=Z (R'„—R ), (»)ew+1 ~N

2'

where the flow vector is expressed in cylindrical
coordinates J =J„c,+Jses. The flow vectors of
Eq. (1), needed to evaluate Eq. (35) in the discrete
Rpproxll11Rtloll, ca11 bc cxprcsscd Rs R hncar fllllc-

tion of the concentrations c(RM,8N). Ttus is done

by assuming an equilibrium defect lattice site lo-

cated at the position where J is to be evaluated,
that is, at the (R,8) positions of Eq. (35), and
linearly interpolating the concentration at this lat-
tice site and at its neighbor sites [c(R;) and c(RJ)
in Eq. (1), respectively] from the concentrations

c{RM,8N) associated with the center of the six
(36)M+1 + M

for the radial nodes. For all the calculations the
conditions of Eq. (30) are adopted where R'"' is
taken as a radial node and p~ is determined by us-
ing Eq. {29). The first radial node is always taken
at R l 7b and the——boundary condition of Eq. (30b)
is imposed at r, =2b.

The solution for the concentration must satisfy
the linear system of equations, and the total num-
ber of defects must be conserved, that is,

j:~(R'"' R', )=g Z„(R„—8„)R,a8, (37)

I

nearest elements. By the above procedure, Eq. (34)
is reduced to a system of linear equations in the
concentrations at the center of the elements. These
concentrations with the appropriate boundary con-
ditions can now be solved by matrix inversion.

An appropriate nodal spacing must be chosen
for ensuring convergency in a finite-difference
method. %e have divided a circle centered at the
dislocation by an integer number of angular nodes
separated by an angle 58 and applied the recursive
formula

R)-7b

ext
R

FIG. 4. Mesh of cylindrical coordinates and Aow
vectors used for numerically solving Eq. (34) by finite
differences.

(38)
M~

&r g (RM+l RM)—
where the sum runs over the geometrical centers
{RM,8N) of the Mz Nznet elements l.ocated in the
region bctmen 8 ~ and E.'"'.

where N runs over all the angular increments b,8,
for 8=0,2n.. The average concentration necessary
for evaluating ka in Eq. (28) is calculated by

g (RM+1 —RM ) g C(RM 8N )

( )
M=1 X=1



7436 C. N. TOME, H. A. CECATTO, AND E. J. SAVINO 25

C. Vacancy and interstitial concentration

By using the numerical method previously
described, the steady-state vacancy and interstitial
distribution around an edge dislocation with line
and Burgers vector g ~ ~

[112]and b
~
([110]in a

crystal either externally strained or unstrained was
calculated in the discrete approximation of Eq. (1).
Boundary conditions of Eq. (30) are adopted.

In Figs. 5(a) and 5(b), the concentration at 300
K of vacancies and interstitials around the dislo-
cation in a crystal free of external stresses is
sketched. In these calculations the MM dipole ten-
sors are used for the point defects. The concentra-
tion distribution for the vacancy is nearly indepen-
dent of the angle and resembles the one of the hol-
low cylinder. For the interstitial the steady-state
concentration is enhanced on the tensile side of the

dislocation near the core and, conversely, depleted
at the compressive side. Also for both types of de-

fects the concentration is nearly independent of the
angle at r=R'"'.

D. Dislocation sink strength
in a stress-free crystal

The steady-state defect distribution around the
edge dislocation in a stress-free crystal, which was
obtained by finite differences, is used, together
with Eqs. (28) and (38) to calculated the sink
strength. Some results for kDlpn are plotted in

Fig. 6 as a function of the dislocation density. The
MM dipole tensor is used for the point defects, and
calculations for 300 and 900 K are reported. The
discrete approximation results are compared with
(i) the same approximation but taking the interac-
tion at the vacancy saddle point as zero, and (ii)
the hollow cylinder models with Eqs. (31) and (33)
for different dislocation capture radii r, . The fig-
ure shows that, for the same capture radius r„ the
numerical discrete approximation gives larger sink

strength than any of the others. Within a hollow

~~rc =12b
w (xGK)

~voc {P=o)
rc= 2b

FIG. 5. (a) Vacancy concentration contour; (b) Inter-

stitial concentration contour around the dislocation for
the steady state and for e'"'=0 (arbitrary units). MM

sets of dipole tensors (Ref. 13) is used, T=300 K.

6
Vfj){10 A)

FIG. 6. Dislocation sink strengths in units of disloca-
tion density, k~/pD, vs p~ . Solid line ( ): MM set
of dipole tensors (Ref. 13) are used for the vacancy and
interstitial in Eq. (1) and for 300 and 900 K. Dashed
line (———): vacancy case with a saddle point dipole

tensor equal to zero; it gives temperature-independent
results. Dash-dot line (———): hollow cylinder sink

strength with boundary conditions of Eq. (30) and r,
values as indicated. Dash-double-dot line —"—"—):
hollow cylinder sink strength with the boundary condi-

tion c(R'"')=co.
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cylinder approximation and boundary conditions of
Eq. (30}or (32) a relatively large capture radius of
r, =7b and r, =5.5b, respectively, must be adopted
for obtaining agreement between the kz calculated
with this model and with the discrete one for the
vacancy case.

The fact that, for this case, perfect agreement in
the curve shape dependence is obtained proves that
the sink strength is mainly determined by the dif-
fusive and not by the drift term. Also, the discrete
approximation is the only one that gives a tem-
perature-dependent sink strength. This dependence
arises from the inclusion of the saddle-point
vacancy-dislocation interaction energy in Eq. (1).
This can be seen by comparing the full discrete ap-
proximation with that in which the interaction at
the saddle point was not included and which shows
no temperature dependence. This result is in ac-
cordance with the theoretical prediction of DS in
the sense that, for stationary conditions, the jump
rate of point defects across the saddle-point energy

barrier only depends on the height of the barrier

and not on its relative height with respect to the

valley. In Fig. 6 it is also seen that in the discrete

approximation the dislocation bias for the intersti-

tial is, as expected, much larger than for the va-

cancy. If at 300 K we want to fit the sink
strength by an effective capture radius in the hol-

low cylinder approximation, a very large one must
be chosen (that corresponding to r, =12b is shown
in Fig. 6). Also, for interstitials at that tempera-
ture the dependence of the sink strength on the
dislocation density cannot be approximated by a
hollow cylinder model. These facts prove that in-

cluding a relatively large drift term within the
discrete approximation affects both the value of
the sink strength and its parametric dependence on
sink density.

E. Dislocation sink strength
in a strained crystal

If a continuum approximation for the diffusion
flow is used, Eq. (6},and lattice effects are not in-
cluded in the diffusivity constant of Eq. (7), the
dislocation sink strength for a paint defect is only
affected by a uniaxial external strain when terms
of order higher than the first considered in Eq. (8)
are included in the interaction energy. We shall
see that this is not the case in the discrete approxi-
mation. We shall always use the first-order equa-
tion (8) for the interaction energy of the defect
with any strain field at the crystal. For the edge
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FIG. 7. Dislocation sink strength as a function of the
external strain field e, (a) for vacancies, (b) for intersti-
tials. MM dipole tensors are used, T =. 300 K. Disloca-
tion densities: p~ ——2.5 X 10' /cm, p2

——9.5&(10' /
cm, p3

——35.6X 10' /cm . Orientations I, II, and III as
described in the text.

dislocation with g ([112],b ( ~[110]we shall con-
sider the crystal to be strained as described by Eq.
(25). Three different orientations of the x direction
for the strain field are studied:

(I) parallel to the [110]Burgers vector,
(II) perpendicular to it and the dislocation line,

and
(III) perpendicular to it and parallel to the dislo-

cation line.
The sink strength dependence on the strain field

orientation and magnitude is not simple. We plot
in Fig. 7(a) the dislocation sink strength for the
MM vacancy dipole tensor as a function of the
uniaxial strain value for the three strain orienta-
tions previously described, taking the dislocation
density as a parameter. Calculations for external
strains e in Eq. (25), varying between 0 and
5)&10 are reported. It can be seen in Fig. 7(a)
that for orientations II and III the sink strength in-
creases as a function of the strain, with the
strength for case III being always larger than that
for case II regardless of the dislocation density.

For orientation I, where. the axis for the uniaxial
stress responsible for e is parallel to the Burgers
vector, the calculated sink strength remains ap-
proximately constant for small strain values (it
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may even decrease somewhat) and then shows a
large increase for larger strains, until finally the
line for this orientation crosses the one correspond-
ing to orientation II at strains between 3 and
4X 10 . For the interstitial (simulated by MM
dipole tensors), the dislocation sink strength is
plotted in Fig. 7(b) as a function of the strain
value. Here it is seen that for orientations I and
II, there is a clear sink strength increase as a func-
tion of strain, while for orientation III there is a
decrease. Also, the increment is larger for, orienta-
tion II than I. This is contrary to what Savino
has assumed, based on a much simpler model and
also contrary to the prediction of Bullough and
Willis, "which considers second-order elasticity for
the point-defect —dislocation interaction energy.

5-

F. SIPA-AD creep 0
0.)
E (4k )

0.3 0.4

From the technological point of view, it is in-

teresting to see if the stress-induced preferential at-
traction due to anisotropic diffusion (SIPA-AD) of
the radiation produced defects may generate a net
dislocation climb and a permanent strain rate
(creep) under a constant applied uniaxial stress.
This question is answered in the affirmative, and
the creep effects are planned to be discussed in a
forthcoming paper. '

In this paper we shall only advance that, as pro-
posed by Bullough and Hayns' with a simplified
model that only includes network dislocation as
point-defect sinks and no recombination between

interstitials and vacancies, the crystal strain rate in

the external stress direction will depend on the sink

strength for interstitials and vacancies as

(39)

where

and

k +k +k"I "II "III

and k; and k„stand for the dislocation sink

strengths for the interstitial and vacancy with the
crystal strained in orientation L (L=I,II,III).
Equation (39) is plotted in Fig. 8 as a function of

FIG. 8. Creep strain rate per unit defect production
rate against external strain field e=cr/E produced by an
uniaxial stress cr in the x direction. The sink strengths
of Fig. 7 plus the equivalent ones at 900 K are used fo'r
the calculations. l, 2, and 3 stand for pI, p2, and p3,
respectively.

the external strain value using the sink strength
shown in Figs. 7(a) and 7(b) and also those corre-
sponding to 900 K. It can be seen that a finite
creep rate is predicted by the model proposed
above.

VI. SUMMARY AND CONCLUSIONS

We have studied in this paper the problem of va-

cancy and interstitial migration due to the drift
produced by a dislocation elastic strain field. Our
main aim has been to show the infiuence of includ-

ing explicitly in the diffusion equation the full de-
fect symmetry both at equilibrium and at the ac-
tivated state. The diffusion model for point de-
fects in a strain field proposed by Kronmiiller
et al. , Savino, and Dederichs and Schroeder is
used. This model and the expression for the in-
teraction energy have been reviewed in Secs. II and
III of this paper. Even for an isotropic spherically
symmetric point defect, the inclusion of the in-
teraction with a dislocation into the diffusion Eq.
(26) makes that equation rather complex to be
solved analytically. As discussed in the paper this
equation has been solved for the steady state by
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neglecting the diffusion term (Cottrell and Bilby'0),
or with a Bessel series expansion (Ham' and Rauch
and Simon ). If the full point-defect symmetry at
the equilibrium and saddle-point configurations is
considered, an anisotropic diffusivity tensor (7) re-
sults for the diffusion equation and the problem of
migration in a dislocation field must be solved nu-

merically. We have solved in Sec. III the problem
of vacancies and interstitial diffusion in an exter-
nally strained crystal a@thin the discrete approxi-
mation for the diffusion of point defects in a dislo-
cation field and using a pure drift approximation
equivalent to the one used by CB within the con-
tinuum approach. There, the flow lines and flow
fronts for the zone depleted of defects are com-
pared for both kinds of defects and different orien-
tations of an externally applied uniaxial stress
field. It is evident from Eq. (6) that in the contin-
uum approximation of CB,' Ham, ' etc., the dif-
fusion equation is not affected by the orientation
of the external field unless terms of order higher
than the linear ones are considered in the interac-
tion field (Wolfer and Ashkin and Bullough and
Willis" ). The local anisotropy in the diffusivity
tensor is the main effect that the "discrete ap-
proach" introduces for the diffusion of vacancies
and interstitials in a strain field. This means that
the defect flow changes for different orientations
of the external field via a coupling between this
field, which affects the anisotropy of the diffusivi-
ty, and the gradient of the dislocation interaction
field. The strain orientation influence can be clear-
ly seen in Figs. 1—3 by comparing the cases with
and without external strain fields. When the va-
cancy field is spherically symmetric in equilibrium,
the external strain field only affects the dislocation
drift via the interaction energy at the saddle-point
configuration. The (100) dumbbell interstial in a
fcc crystal is not only anisopic in equilibrium, but
it can take three different orientations with dif-
ferent interaction energy with a strain field. We
have assumed that, on the average, equilibrium
with regard to orientations is attained instantane-
ously, and Eq. (3) was adopted throughout the
work. In this case, Eq. (6) is valid for any defect
symmetry.

The drift contribution considered in Sec. IV may
only dominate the diffusion at very short times.
In order to calculate the dislocation strength for
interstitials and vacancies we have therefore solved
Eq. (34) for diffusion at steady state in a disloca-
tion field including the concentration gradient, the
defect —strain-field interaction, a defect production

term, an external strain field, and appropriate
boundary conditions. The influence of the drift
term, as included in the model, on the dislocation
sink strength is clearly shogun in Fig. 6, where the
numerical results are compared against the hollow
cylinder approximation, which only considers the
dislocation as a cyhndrical, perfect sink, but
neglects any interaction field. We found that for a
weak interaction field (vacancy), or a large interac-
tloll field (llltcl'stltlal), hilt Rt lllgll tcnlpcratulcs
(T)900 K), the hollow cylinder approximation
sink strength approximately agrees with the nu-
merical calculation if an appropriate capture radius
is chosen. The effect of the interaction field is
only to increase the effective capture radius. This
is not the case for a large interaction field (intersti-
tial at 300 K in Fig. 6); although a big capture ra-
dius that approximates the numerical result for a
given dislocation deQslty can be chosen tlM

strength dependence on sink concentration cannot
be fitted satisfactorily by the hollow cylinder
model.

In Sec. V, a crystal containing a periodic distri-
bution of equivalent edge dislocations is taken and
uniaxially stressed in three different directions: (I)
parallel to the dislocation Burgers vector, (II) per-
pendicular to it and the dislocation line, and (III)
perpendicular to the Burgers vector and parallel to
the line. The calculated sink strengths are strongly
dependent on the external strain. It is interesting
to see in Fig. 7 that a large effect of the strain ap-
pears ill orlcll'tRtloll III, R11d thc stl'cllgtll kill 111-

creases for the vacancies and decreases for the in-
terstitials. This can be easily understood by look-
ing at the symmetry of the saddle-point configura-
tion for either defect and remembering than for the
strain orientation III the crystal is strained-in ten-
sion in the dislocation line direction, while in per-
pendicular directions it is uniformly compressed.
Then the vacancy diffusivity on the perpendicular
plane is always increased by this external fie1d, so
(c„) is decreased, and the interstitial diffusivity is
decreased, so (ci ) is increased. For orientations I
and II, the analysis is not so simple but significant
effects seem to take place mainly for interstitial.

Finally, the calculated sink strengths in the pres-
ence of an uniaxial homogeneous stress field are
used to evaluate the creep rate in a lossy medium
vnth a single sink type: a homogeneous distribu-
tion of edge dislocations. It is seen in Fig. 8 that
for this very simplified model, which does not in-
clude either recombination or other sinks, sensible
values (i.e., larger than the experimental ones) for
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the irradiation creep are obtained. This subject is
planned to be discussed in a forthcoming paper. '

Here, we want only to stress that we have demon-
strated the feasibility of a SIPA-AD of point de-

fects in a dislocation field. Furthermore, the
SIPA-AD mechanism does not depend on a
second-order contribution to the interaction energy
which involves parameters difficult to evaluate
such as the change of elastic constants due to point
defects. In contrast, our proposed mechanism in-

cludes a lattice effect that seems not to depend on
the detailed numerical values for the defect dipole
tensor (as can be inferred from the results obtained

using the three sets of dipole tensors reported by
Schober' }but on the defect lattice symmetry in

the equilibrium and the saddle-point configuration.
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