
PHYSICAL REVIEW B VOLUME 25, NUMBER 12 15 JUNE 1982

Theory of ab initio pseudopotential calculations

M. T. Yin and Marvin L. Cohen
Department of Physics, Unioersity of California, Berkeley, California 94720

and Materials and Molecular Research Division, Lawrence Berkeley Laboratory,
Berkeley, California 94720

(Received 22 February 1982)

The ab initio norm-conserving pseudopotential is generated from a reference atomic
configuration in which the pseudoatomic eigenvalues and wave functions outside the core
region agree with the corresponding ab initio all-electron results within the density-

functional formalism. This paper explains why such pseudopotentials accurately repro-

duce. the all-electron results in both atoms and in multiatomic systems. In particular, a
theorem is derived to demonstrate the energy- and perturbation-independent properties of
ab initio pseudopotentials.

I. INTRODUCTION

Ab initio calculations of the structural properties
of solids are of fundamental importance in solid-
state physics. These calculations provide a testing
ground for well-developed theories such as the
local-density-functional (LDF) formalism. ' A re-
cent successful theoretical study of various struc-
tural properties of crystalline Si yields results in
excellent agreement with experiment and suggests
that theoretical predictions of some unknown
structural properties are possible within the LDF
formalism. In this paper, we will discuss the ab
initio pseudopotential approach used in the study.
In particular, we give reasons why the pseudopo-
tential approximation, in which the interactions be-
tween valence electrons and atomic cores are ap-
proximated by appropriate effective pseudopoten-
tials, yields results closely simulating the all-
electron results.

Two types of approaches have been developed in
ab initio calculations: the all-electron approach
and the pseudopotential (valence-electron) ap-
proach. In the all-electron approach where the
eigenvalues and wave functions of all the electrons
(including core electrons) are calculated, it has been

possible to obtain impressive results for the zero-
temperature equation of state of compressed solids
within the density-functional formalism. Some of
the methods in the all-electron approach, such as
the Green's-function method [Korringa-Kohn-
Rostoker (KKR)], the augmented-plane-wave
method (APW), and the linear muffin-tin orbital

method (LMTO), have shape constraints. The
spherical averaging procedure of the charge density

used in these methods is a good approximation for
the study of the equations of state of closed-packed
solids. However, for the study of geLeral structur-
al properties in which the angular dependence of
the charge density is important for the determina-
tion of small total energy differences between rath-
er different structures, the applicability of the
spherical averaging procedure is limited. The
linear combination of atomic orbitals method
(LCAO) has no shape constraints, but often the
limited basis set chosen is not sufficient to make
accurate structure comparisons. While there are
also no shape constraints in the plane-wave method
(PW), its usage in the all-electron approach is al-

most impossible because of the strong oscillation of
the wave functions in the core region. This would

require too large a basis set to be practical with
available computers.

There are two ways to improve these methods
for the study of general structural properties. One
is to remove the shape constraints in those
methods which are limited by their usage. This
task is complicated and difficult. Some attempts'
have been made in this direction. The other is to
transform the all-electron Schrodinger equations
into effective equations more suitable for the appli-
cation of the methods containing no shape con-
straints like the PW method, the LCAO method,
or the mixed-basis method using both PW and
LCAO basis functions. In particular, it is quite
useful to use an effective ab initio pseudopotential
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to simulate the interaction between the valence
electrons and the cores (nuclei plus core electrons)
such that no core wave functions have to be in-

cluded explicitly and the valence wave functions no

longer have strong oscillations in the core region.
This pseudopotential approach has its root in the
well-known fact that the valence electrons play the
dominant role in chemical bonding and has as its
goal the faithful simulation of the all-electron ap-
proach. The reason for the ultimate success of this
approach can be partly attributed to the observa-
tion that the valence and core states are well

separated not only in energy but also in real space
for many elements. '

In addition to the advantages of having to deal
with only the valence states and a relatively
smooth potential for fast convergence with respect
to the basis-function expansion, the pseudopoten-
tial approach facilitates a high-precision calcula-
tion of the total energy. The structural properties
are studied primarily through comparison of small
differences between the large total energies of vari-
ous systems. The total energies should be precise
enough to make structural comparisons meaning-
ful. For example, total energies are required to be
precise to about 10 mRy per atom for cohesive en-

ergies, 1 mRy for equilibrium lattice constants and
bulk moduli, and a tenth of 1 mRy for a frozen-
phonon calculation of vibrational frequencies. In
an all-electron calculation, the total energy is com-
pared to the configuration in which all electrons
and nuclei are infinitely separated. A typical value
of the calculated total energy for this physical sys-
tem is of the order of 1000 Ry per atom. In the
pseudopotential approach, the total energy is com-
pared to the configuration in which valence elec-
trons and the atomic cores are infinitely separated.
A typical value of the calculated total energy is of
the order of 10 Ry per atom which is about a fac-
tor of 100 smaller than the corresponding energy
in the all-electron calculation. As a consequence,
it is easier to achieve high precision in the pseudo-
potential approach.

In the following section, a brief review of the
I.DF formalism is given. In Sec. III, the ab in''tio

pseudopotential theory is presented with emphasis
on the accuracy of the pseudopotential approxima-
tion in reproducing the all-electron results in both
atomic and multiatomic systems. A theorem is de-
rived to demonstrate the energy- and perturbation-
independent properties of ab initio pseudopoten-
tials. In Sec. IV, some applications of the ab initio
pseudopotential method are mentioned to demon-
strate the usefulness and power of this method.

II. REVIE% OF THE DENSITY-FUNCTIONAL
FORMALISM

The adiabatic (Born-Oppenheimer) approxima-
tion" serves as the starting point for the formalism
to follow. In this approximation, the electronic
system is assumed to be in the ground state with
respect to the instantaneous nuclear positions. The
electronic ground-state energy as a function of nu-

clear positions is then the effective potential for
the nuclear motions. Detailed discussions of the
approximation can be found in Ref. 12. Using this
approximation, we concentrate on the ground-state
energy of the electronic system under the infiuence
of an external potential u(r) and the mutual
Coulomb repulsion. The external potential is just
the superposition of nuclear Coulomb potentials in
this all-electron case.

For such a system, a density-functional formal-
ism has been developed. Hohenberg and Kohn'
show that the ground-state energy is the variation
minimum of the energy expression

E[p]=Ju(r)p(r)dr+F[p],

+E..[p] . (2)

In this expression, F[p] is decomposed into three
parts: the electronic Coulomb interaction energy,
the ground-state kinetic energy T, [p] of a nonin-

teracting electronic system with electronic density

p( r), and a remaining part E„,[p] which is conven-

tionally defined as the exchange-correlation energy
of an interacting system with density p(r). The
next step is to approximate E„,[p] by a local densi-

ty functional,

E„,[p]=- fp( r )E„,{p(r ))d r,
where e„,(p(r)) is a function of p(r) and may be
interpolated from exchange-correlation energies
calculated for the systems of an interacting homo-

geneous electron gas with various densities. Thus,

where F[p] is a universal functional of the elec-
tronic density p(r). To facilitate the application of
this formalism to real physical systems, Kohn and
Sham' reformulated the energy expression (Ryd-
berg units are used throughout this paper). We
have

E [p]= fu(r)p(r)dr

& J 2p(r)p(r ')
d



the solving of the variational problem of Eq. (2}
can be transformed to the solving of the one-

particle Schrodinger equation:

[—V +U(r)+ &~(F)+ V„,(p)]g( F)=e;f;(r),

where

p(r)= gn; ) g;(F) )'

and n;, e;, and i';(r) are, respectively, the occupa-

tion number, the eigenvalue, and the wave function
of the one-electron state i .Vz(r) is the electronic
Hartree potential,

(~) fd~, 2p(r )

and V„,(p} is the exchange-correlation potential,

d (pe„,)
V„,(p) =

dp

In this way, the total energy of the interacting elec-
tronic system is obtained:

g, , = y n, fdF.y', (g~( . V')y (F)+ gn, fdr it';(F)U(F)gi(F)+ , fd-r p(F}VH(F)+fdr p(r}e,.(p}

Equations (4) and (8) constitute the backbone of
the all-electron approach to study the ground-state
properties of matter within the I.DF formalism.
Here we note that Eqs. (4) and (8) are applicable
for pseudopotential calculations in which the nu-

clear Coulomb potentials are replaced by pseudopo-
tentials, and the wave functions, eigenvalues, and
occupation numbers refer to valence states only. '

III. AS INITIO PSEUDOPOTENTIAI.
METHOD

The pseudopotential method based on the OPW
(Ref. 13) idea was first proposed by Phillips and
Kleinman' (PK). It has served as a theoretical
foundation for subsequent successful applications's
of pseudopotentials to studies of the electronic
structures of solids where major emphasis is placed
on the energy eigenvalues. In most of these stud-
ies, the pseudopotentials are generated by empiri-
cally fitting experimental atomic levels or bulk ex-
citation spectra instead of using the PK prescrip-
tion which involves a repulsive core-orthogonaliza-
tion term. If the prescription is carried out exact-
ly, the PK approach is equivalent to the all-
electron approach.

Schemes for pseudopotential generation follow-
ing the PK idea have been developed. ' ' They in-
volve basically two steps: (a) preparation of node-
less pseudo-wave-functions by mixing the all-
electron core wave functions into all-electron
valence wave functions for an appropriate atomic
con6guration, and (b) determination of the pseudo-
potential by inverting the pseudopotential
Schrodinger equation which has the prepared wave

I

functions and the corresponding all-electron eigen-
values as its eigensolutions.

%hile these schemes represent an important ad-
vance toward the goal of accurately simulating the
all-electron effects with pseudopotentials, they
suffer from an important drawback. The use of
the I'K idea that the pseudo-wave-function is a
linear combination of the true wave function and
core wave functions causes the pseudo-wave-
function and the true wave function to differ by a
constant factor outside the core region resulting
from the normalization condition. Carrying out an
accurate core-orthogonalization procedure for the
wave functions in actual calculations is extremely
difficult in practice. Significant errors may result
from the inaccuracy of the wave functions for the
studies of the structural properties of solids
through the small differences in total energy be-
tween structures.

The core-orthogonalization procedure can, in
fact, be avoided by preparing the nodeless pseudo-
wave-functions [step (a}] such that they are equal
to the corresponding all-electron wave functions
outside the core region. This idea has been em-
phasized in recent pseudopotential generation
schemes. ' 2 Despite the use of different
methods for the preparation of the nodeless
pseudo-wave-functions, these schemes basically re-
quire that, for a particular reference configuration,
the pselldopotelltlal satlsfiies tile colldltlolls that tlM

pseudopotential results agree with the correspond-
ing ab initio all electron results not only for (i) the
ualence eigenualues, but also for (ii) the ualence
iaaue functions outside the core region (norm con-
servation ). [These two conditions will be referred
to as conditions (i) and (ii) henceforth. ] It has
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been demonstrated numerically that these
norm-conserving pseudopotentials faithfully simu-
late the all-electron results both for the single-atom
and for the multiatomic systems. In the following,
we will give analytic reasons for the accurate simu-
lation of the norm-conserving pseudopotentials in
(1) the single atom and (2) the multiatomic sys-
tems.

A. Single atom

We want to show that although conditions (i)
and (ii) are required only for a particular reference
configuration in the pseudopotential generation,
these conditions are also satisfied for a wide range
of atomic configurations. In solving the Schrodin-
ger equation for an atomic configuration other
than the reference one to self-consistency, we may
employ an iteration method. For the initial itera-
tions of both the all-el+tron (AE) and the pseudo-
potential (PS) calculations, we adopt the following
procedure. Using the occupation numbers of the
new configuration and the wave functions f;(r)'s
of the reference configuration, we obtain the initial
guess for the total potential

l
l

I

R (a.u. )

FIG. 1. Ab initio core pseudopotential of Si generat-
ed (Ref. 20) using the reference configuration of
3s 3p '3d ' . The letters s, p, and d denote the nonlocal
pseudopotential for angular momenta 1=0, 1, and 2.
The dashed line denotes the Coulomb potential of a (fic-
titious) pointlike atomic core of Si.

V(r) —=v(r)+ VJi(r)+ V„,(r) he;= Jg,'(r)b V(r)g;(r)dr . (9)

for the new configuration. The difference b, V(r}
between this initial guess and the self-consistent to-
tal potential for the reference configuration may be
regarded as a perturbation to the Schrodinger
equation of the reference configuration. By pertur-
bation theory, the ith eigenvalue e; obtained in the
first iteration differs from that of the reference
configuration by he;, where b,e; is, to the first or-
der in EV(r},

Let us now compare the corresponding quanti-
ties involved in the initial PS interation with those
in the initial AE iteration. Since conditions (i) and
(ii) are required for the reference configuration in
the pseudopotential construction, the corresponding
total self-consistent potentials of the reference con-
figuration must agree outside the core region. Be-
cause of condition (ii}, the corresponding V(r) and

TABLE I. Comparison between the pseudoatomic (PS) and the all-electron (AE) eigen-
values in the self-consistent iterations for the 3s 3p'3d' configuration of the Si atom. The
iteration is initiated with the self-consistent wave functions of the reference configuration
(3s 3p '3d '). The results of all-electron frozen-core iterations are denoted by FC's in

parentheses.

Iteration
Eigenvalues of Si3s 3p'3d' (Ry)

3$ 3p 3d

First

Second

Third

Self-consistent

PS
AE (FC)
PS
AE (FC)
PS
AE (FC)
PS
AE (FC)
AE

—0.8479
—0.8422
—0.9935
—0.9910
—1.0611
—1.0596
—1.0794
—1.0780
—1.0784

—0.3558
—0.3523
—0.4840
—0.4825
—0.5437
—0.5428
—0.5562
—0.5552
—0.5555

—0.0078
—0.0078
—0.0363
—0.0363
—0.0572
—0.0572
—0.0586
—0.0586
—0.0586
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TABLE Ii. Eigenvalues and excitation energies of the pseudoatom for different atomic
configurations of Si. Energies are in rydbergs. The method iri Ref. 20 is employed to gen-
erate the Si pseudopotential using the 3s23p053do' reference configuration and Wigner
correlation (Ref. 26). The values in parentheses are deviations from the corresponding all-

electron results. The Vhgner form of exchange-correlation energy is used in {a). No correla-
tion energy is used in (b).

Configuration 3$

Eigen values

3p 3d Excitation energy (~„,)

(a) signer correlation
3$ 3p

3s'3p'

3s'3p "3d"

3$3p '3d'

3s'3p'

—0.7994
(—0.0014)
—0.8538

(—0.0008)
—1.0226

(—0.0008)
—1.4851

(0.0000)
—2.0948

(0.0028)

—0.3126
(—0.0006)
—0.3543

(—0.0004)
—O.S048

(—0.0006)
—0.9420

(0.0000)
—1.5154

(0.0024)

—0.0380
(0.0001)

—0.3364
{0.0000)

0.4932
(0.0006)
0.7030
(0.0009)
0.8774
(0.0010)
1.7640

(0.0005)

(b) No correlation
3$3p

3$13p3

$23p 0.53d 0.5

3s'3p'

—0.7118
(—0.0016)
—0.7743

(—0.0009)
—1.4064

(—0.0005)
—2.005S

(0.0021)

—0.2362
(—0.0005)
—0.2771

(—0.0004)
—0.8650

(—0.0002)
—1.4294

(0.0019)

0,2731
(0.0000)

0

0.4906
(0.0008)
0.7978
(0.0012)
1.5983

(0.0008)

K V(r) agree outside the core region under the as-
sumption that the valence wave functions do not
overlap with the core wave functions appreciably. '

From Eq. (9), it follows that the corresponding e,"s
will be very close. The agreement of the corre-
sponding e,"s and V(r) outside the core region
leads to the agreement of the corresponding resul-
tant wave functions of the first iteration outside
the core region.

By repeating the same arguments for subsequent
iterations while keeping the AE core orbitals
frozen in the reference core orbitals, we find that
the eigenvalues and wave functions outside the core
region agree quite well iteration by iteration be-
tween the AE (frozen core) and the PS cases. Be-
cause the core orbitals are well-localized around
the nucleus, the subsequent core relaxation in the
AE case has little effect on the valence orbitals.
Tlllls, we ieach tile coilclusioll tliat coiidltiolis (i)
and (ii) are satisfied for the atomic configurations
other than the reference one as well.

It also follows from the same reasoning that
even if the functional form of the exchange-

correlation energy is changed, conditions (i) and (ii)
will be satisfied. Thus, the quality of the ab initio
pseudopotential is, to a large extent, independent of
the choice of the reference atomic configuration
and the form of the exchange-correlation energy
used in the pseudopotential construction as long as
conditions (i) and (ii) are satisfied for that particu-
lar reference configuration.

Numerical examples for the Si atom are given in
Tables I and II. The ab initio pseudopotential of
Si is generated using the Hamann-Schluter-Chiang
scheme and the Wagner form of the exchange-
correlation energy. The reference configuration is
chosen to be (Ne core) 3s23po's3do's. The nonlocal
ab initio pseudopotential is shown in Fig. 1. All
three angular momentum components converged to
the Coulomb limit rapidly as the radial distance in-
creases. Table I demonstrates the agreentnt be-
tween the PS and the AE (frozen-core) valence
eigenvalues in the self-consistent iterations for the
3s 3p'3d' configuration initiated by the self-
consistent wave functions of the reference configu-
ration (3s 3p 3d ). It is interesting to note that
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the agreement becomes better as the iteration num-

ber increases. This is because a large portion of
the deviations in eigenvalues of the first iteration
comes from the small difference of b, V(r) between
the AE and the PS cases, which decreases in the
self-consistent iterations as a result of electronic
screening. The valence eigenvalues of the self-
consistent AE calculations with and without the
frozen-core restriction are shown in the last two
rows of Table L They differ by less than 1 mRy,
which demonstrates that the core-relaxation effects
on the valence orbitals are negligible. This point
has been discussed in detail in Ref. 27. We note
that the frozen-core approximation studied in that
paper is different from the pseudopotential frozen-
core approximation (or pseudopotential approxima-
tion for short) discussed here. In the former ap-
proximation, the core states are assumed to be
frozen, and the valence states still have strong os-

cillations in the core region while in the pseudopo-
tential approximation the interaction between the
core and the valence electrons is assumed to be
frozen and the pseudovalence states are smooth in

the core region.
Table II (a} illustrates the good agreement for

the eigenvalues and the excitation energies of the
pseudoatom with corresponding all-electron results
for a wide range of atomic configurations of Si.
The relative difference in the wave functions out-
side the core region between the AE and the PS
cases is less than 1% in general. Examples are
shown in Fig. 2. As shown in Table II(b}, similar

agreement is found when only the exchange energy
is used for the exchange-correlation energy even

though the ab initio pseudopotential is generated

using the Wigner form of exchange-correlation en-

ergy.

B. Multiatomic systems

sphere and serve as the boundary condition for the
Schrodinger equation in the interstitial region,

We now want to show that for a wide range of
energy values these logarithmic derivatives are ap-
proximately the same in both the AE and the PS
cases. Let us first introduce a theorem: Let X(r)
and X&(r)=X(r)+5X(r) satisfy, respectively, the
radial Schrodinger equations of angular momen-
turn I,

d l(l+1}+V(r)+ X(r)=eX(r),
dr r 2 (10)

d
z + V(r)+5V(r)+ z X~(r}

l(l+ 1)

=(e+5e}X,(r), (11}

for 0 & r &R with the boundary conditions

X(0)=0,
X)(0)=0 .

(12)

0.8

0.4

P 3s'3p 3d'

e —04-

l5
'a

0,4

It can be shown (see the Appendix) that to first or-

der,

In solving the Schrodinger equation of a multia-

tomic system, we may adopt a scattering wave ap-
proach and divide real space into an interstitial re-

gion and a region consisting of atomic spheres
around the atom with a radius 8 (larger than the
core radius) where the total potential is essentially

spherically symmetric within R. We solve the
Schrodinger equation [Eq. (4)] within the atomic
sphere in spherical harmonics and obtain the loga-
rithmic derivatives of the radial solutions as a
function of energy e; on the surfaces of the sphere.
These logarithmic derivatives contain all the infor-
mation about the total potential within the atomic

0, ,

—04—

y/ 3s 3p/j

1 2 3
R (a.u. )

FIG. 2. Comparison between the pseudo- (solid lines)

and the corresponding all-electron (dashed lines) radial
wave functions for the configurations 3s'3p 3d' and
3s~3p2 of Si. The ab initio core pseudopotential of Si is
generated using the reference configuration of
3s 3po. 3~0.s (See Fig. 1.)
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X (R)5 = —5c I X2(»)d»
X(&)

+ I X (»)5V(»)d». (13)

An important feature of this theorem is that the
change in the logarithmic derivative of the wave

function with respect to 5e and 5V(») depends on
the wave function itself and not on V(») explicitly.
Incidentally, by setting 5V(») =0 in Eq. (13), we

obtain

d X'(R) 1 "XI( )d
d~ X(R)

This equation has been used to demonstrate the
energy-independent property of ab initio norm-
conserving pseudopotentials in Ref. 20, where nu-
merical results were also given to show the agree-
ment of the logarithmic derivatives of the AE and
the PS radial functions for a wide range of e's.
Equation (13) derived above dcllioilstratcs tllc
perturbation-independent property of the pseudopo-
tential in addition to its energy-independent prop-
erty.

For a multiatomic system, we may again use the
iterative method to solve the Schrodinger equation
self-consistently. The initial guess of the total po-
tential for the AE (PS) calculation may be con-
structed from the nuclear Coulomb potential (core
pseudopotential) plus the Hartree and exchange-
correlation screening potential of a superposition of
atomic (valence) charge density of an appropriate
neutral atomic configuration. The initial guess of
the total potential within the atomic sphere is dif-
ferent from that of the chosen neutral atomic con-
figuration by 5V(»), which is assumed to be spheri-
cally symmetric for simplicity.

Since the wave functions of the chosen atomic
configuration agree beyond a certain core radius»,
between the AE and the PS cases, the first term on
the right-hand side of Eq. (13) also agrees for
R p r, . The same reason related to norm-
conserving properties gives that 5V(») outside the
core region agrees approximately between the PS
and the AE cases. In addition, a physical 5V(») is
slowly varying in the core region and the core re-
gion itself is a smaB portion of the atomic sphere.
Therefore, the second term on the right-hand side
of Eq. (13) is approximately the same for the AE
and the PS cases. It then follows that the loga-
rithmic derivatives (at R) of the radial functions

solved from the Schrodinger equation of the first
iteration for a range of energy are approximately
the same between the AE and the PS cases. This
demonstrates that the multiatomic wave functions
obtained in the first iteration are approximately the
same for the AE and the PS cases.

Using arguments similar to those given in the
previous subsection, we show that conditions (i)
and (ii) are approximately satisfied for a multia-
tomic system. This conclusion has been numerical-

ly demonstrated by calculating both the AE and
the PS electronic structures using the same band-
structure methods, for example, the linear APW
method ' or the LMTO method. The energy
eigenvalues are reproduced to an accuracy of a few
hundredths of an CV over a 20-CV range, and the
charge density is accurate to a few percent outside
the core regions. The PS electronic structures cal-
culated using the mixed-basis method or the
plane-wave method also give similar accuracy.

At this point we note that the density-functional
formalism' is developed for the ground-state prop-
erties of electronic systems and the energy eigen-
values are only intermediate parameters. The band
structure of these eigenvalues cannot be directly
used in the interpretation of excitation spectra.
For example, the indirect energy gap of crystalline
Si is 0.5 eV in both the all-electron and the
ab initio pseudopotential ' calculations, whereas
the experimental value is 1.1 eV. This discrepancy
implies that an extended density-functional theory
or an entirely new formalism has to be developed
to study electronic excitation spectra from first
principles.

The above discussions are concentrated on the
energy eigenvalues and wave functions. A theorem
has been derived ' stating that the eigenvalues are
the derivatives of the total energy with respect to
the occupation number of the corresponding orbi-
tals in the LDF formalism. The agreement of the
valcllcc clgcllvalllcs ovcl' R wide 1'Rflgc of Rtolllic
configurations for the AE and the PS cases leads
to the agreement of the atomic excitation energies
defined as the total energy differences between the
excited configuration and the ground-state configu-
ration (see Table II). The accuracy of the ab initio
pseudopotential method in reproducing the all-
electron eigenvalues and wave functions outside the
core region suggests that similar accuracy may be
found in the calculations of total energy changes of
a multiatomic system when the chemical environ-
ments are changed.

The accuracy of the pseudopotential total ener-
gies has been demonstrated in both molecular and
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crystalline calculations. In the former case, the
AE and the PS binding energy curves of the Si2 di-

mer calculated using the same LMTO method

agree well. In the latter case, both the AE and the
PS calculations were carried out for the close-

packed phases (bcc, fcc, and hcp) of silicon using

the I.MTO method. It was found that the pseudo-

potential approach is quite accurate in reproducing
the all-electron volume-dependent total energy
curves for the close-packed phases of Si.

C. Applications of the ab initio
pseudopotentia1 approach

Using the ab initio pseudopotential approach, an
extensive study of the structural properties has
been done for crystalline Si. The same plane-wave
band-structure method and the same ab initio
pseudopotential are used for various aspects of the
structural study. Both the qualitative and quanti-
tative results are in excellent agreement with exper-
iment. From a qualitative point of view, among
seven possible crystal structures, the theory is able
to single out the diamond structure as the most
stable phase and the P-tin structure as the final

phase when the diamond phase undergoes a
pressure-induced solid-solid phase transformation.
The quantitative results include the static proper-
ties such as the equilibrium lattice constant, bulk
modulus, and cohesive energy, the transition
volumes and pressure of the diamond-P-tin phase
transformation, and the lattice dynamical proper-
ties such as the phonon frequencies and mode-

Gruneisen parameters at high-symmetry points in
the Brillouin zone. In general, the calculated
values differ from experiment by only a few per-
cent. Successful structural studies have also been

done for other semiconductors such as Se (Ref. 33),
Ge (Ref. 34), Sn (Ref. 35), GaAs, and A1As (Ref.
36), for metals such as Mo and W (Ref. 37) and Al
(Ref. 38), and for insulators such as C (Refs. 39
and 40). The overall results are in quite good
agreement with experiment despite the material
differences.

Besides the structural properties of perfect crys-
tals, the structural properties of defects, impurities,
and surfaces represent important and challenging

problems. In this kind of structural study, the
forces experienced by the individual atoms are use-

ful properties to explore in the search for the most
stable structural configurations. The direct calcu-
lation of atomic forces can be done through the
Hellmann-Feynman theorem. ' In the all-electron
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APPENDIX

Using the same notation as in the text, let us

consider the integral

X,(r) + e V(r)—d l (1 + 1)
0

XXi(r)«. (A 1)

From Eq. (10), we have to first order in 5X,

approach, the atomic forces are too sensitive to
small errors in the calculation of the core orbitals
to be useful in practical calculations. Since the
core orbitals have been omitted by the use of the
pseudopotential approach, the atomic forces calcu-
lated in this ab initio method are quite accurate as
demonstrated in the Si phonon calculation.
Armed with this advantage, a structural recon-
struction study of the Si(001)-(2X1) surface has
been carried out. A buckled-dimer geometry has
been found to be the most stable configuration.
Recent experimental evidence strongly favors this
geometry. A similar approach has been extended
to the spin-polarized version to study the Si(111)-
(2X 1) surface. An interesting (2X 1) antifer-
romagnetic nonbuckled surface is found to be ener-

getically stable against 2)& 1 buckling distortions.
The bonding geometries of Al deposited on the
GaAs(110) surface have also been studied" which

helps to resolve questions about this chemisorption
process.

In view of the studies mentioned above, the
ab initio pseudopotential theory is an accurate and
viable method for the study of the structural prop-
erties of solids. It is expected that this technique
will be widely used to further the understanding of
the structure and cohesion of materials and to
predict the properties of structures not yet known
experimentally.
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R d2 l (l + 1)I= r +e—V r-
dr2 r

X5r(r)dr

Combining Eqs. (A2) and (A4), we have to first or-

der,

X'R
X (R)5 = —5e f X (r)dr

X(&) o

= [X(r)5X'(r) 5X—(r)X'(r)]
~ o . (A2) + f X (r)5V(r)dr .

X'(& )

X(R)
(A3)

On the other hand, using Eq. (11),Eq. (Al) be-
comes

I = f Xi(r)[ 5e+5V—(r)]X,(r)dr . (A4)

On one hand it follows from the boundary condi-
tion [Eq. (12)] that

(A5)

We shall mention one minor point in this proof;
X(r) and Xi(r) are determined only to within a
multiplicative constant. To make 5r(r)
[=Xi(r)—X(r)] bona fide first order, an auxiliary
boundary condition should be imposed such as
X(R)=Xi(R) or Xi(r)IX(r) =1+0(r) for small r
The final result of Eq. (A5), in which the multipli-
cative constant can be factored out, is independent
of the auxiliary boundary condition.
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