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A hydrodynamic model of collective motion at a metal surface is presented which

treats ion and electron degrees of freedom on the same basis. In order to examine modes

at a surface, the bulk equations of motion must be supplemented by additional boundary

conditions. It is argued that at a free surface, continuity of surface tractinn is more ap-

propriate than continuity of normal current density. The acoustic-phonon modes for

several model systems are determined. Both the surface-mode dispersion and the bulk-

and surface-mode external coupling to a charged probe show considerable sensitivity to

the choice of boundary conditions. The implications of these results for electron-loss

spectroscopy are discussed.

INTRODUCTION

This paper is concerned with the collective
motion of ions and electrons at a metal surface.
Our interest in such motions was stimulated by the
rapidly growing field of low-energy electron loss

spectroscopy. ' In particular we are intrigued by
the relative strength of various loss processes. If
one allows only a single mechanism —the long-

range Coulomb coupling between the external elec-

tron and the electric field fluctuations associated
with the sample's collective modes —then a unified

overview is possible. In an earlier paper Schaich
presented a semiclassical, dielectric-function for-
mulation of this overview. Besides treating the
well-studied cases of surface plasmons, optical sur-

face phonons on ionic crystals, and adsorbate vi-

brations, he also discussed within a simple model

phonons at metal surfaces. Further work by us on

this model indicates that his particular solution, al-

though correct in mathematical detail, is inap-

propriate in physical content.
The body of this paper presents our arguments

in full, but here we wish to make clear what is at
issue. In order to determine the strength of cou-

pling to an external charge, one must formulate a
description of collective modes which retains the
possibility of external electric fields associated with
the modes. To satisfy this severe constraint and to
still have a tractable model, we consider a hydro-
dynamic description of electron and ion motion,
i.e., we postulate a set of differential equations re-

lating charge and current densities to electric fields
and stress gradients. These equations apply in
bulk material and have several possible solutions;

e.g., plasmons and phonons, with the latter being
either longitudinal or transverse. Our method of
finding. surface collective modes is to form linear
combinations of the bulk solutions, fixing coeffi-
cients by the imposition of boundary conditions at
the surface, where the medium changes abruptly to
vacuum. The subtlety of the problem lies in the
choice of boundary conditions. It is a disadvan-

tage of our phenomenological model that the ap-

propriate boundary conditions are not obvious.
This dilemma is not academic since the physical
implications of various choices are widely dif-

ferent, even to the extent of determining whether a
mode is or is not possible. In other words, an im-

portant part of the physics of the model lies in the
choice of the boundary conditions. It is this diffi-
culty that proves to be the major challenge of a
quantitative analysis.

In Sec. II we describe our basic model, quoting
the bulk equations of motion and listing possible
choices of boundary conditions. We also discuss
qualitatively the physical justification for some
choices. Part of these arguments are relegated to
an appendix, where it is shown how they contrast
with an earlier discussion by Forstmann. Then in
Sec. III we outline our mathematical methods for
calculating the collective mode dispersion and
external coupling. Two basic techniques are used:
One involves the calculation of an effective surface
dielectric function and the other requires a second
quantization procedure. Finally in Sec. IV we
present some numerical results that illustrate possi-
ble solutions. %e discuss their implications, both
in the context of electron loss spectroscopy and
more generally.
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II. MODEL

We consider the metal to be a continuum, and
treat the electron and ion motion on the same foot-
ing. In equilibrium there is a charge density pp of
ions and —

pp of electrons. The deviations from
equilibrium are described by displacement fields
which depend on position and time: g;(x, t) for
the iona and g, (x,t) for the electrons. Hence in

linear order the current densities for the ions and
electrons are j;=Pp(d/dt)g; and

j,= —pp(B/Bt) g„respectively; while the charge-
density deviations (derived from the equations of
continuity) are 5p;= —ppV g; and 5p, =ppV'g„
respectively. The displacement of charge induces

an electric field E where

V E=4mppV (g, —g;) .

If we neglect retardation E is longitudinal and

completely determined by (1). The ions and elec-

trons are driven not only by the long-range E but
also by short-range forces. The explicit equations
of motion for the displacement fields are in linear

order taken to be

at
' =(Q,'/4 )E+pp[ci V(V.g;)

—cr Vx(Vxg;)],

=(top/4n)E pp[.P V—(V g, )] .

Here, Q~/@r=ppQ/M, where Q is the charge and

M the mass of an ion and similarly tpz/4n
= —ppe/m, where e & 0 is the charge and m the

mass of an electron. The short-range forces are

parametrized by the c's and P, all of which have

the units of velocity.
The physical origin of these parameters in a

solid is different for ions and electrons. The c's

derive from elastic restoring forces between near

neighbors in a lattice, while P is a measure of sta-

tistical repulsion among electrons. Note that only

the ions experience transverse forces, via cz.
If we set cr to zero, Eqs. (1)—(3) may be written

in terms of E, j 's, and 5p's alone and one has an

approximate continuum description of a plasma

(with no magnetic field) or alternatively of the col-

lective oscillations of two groups of electrons with

different effective masses. Thus by suitable

parameter choices the model equations have a wide

range of qualitative validity. On the other hand, in

any particular case, the model is quite crude since

it neglects damping (of either Ohmic or Landau

type), ignores any background polarization of core
electrons, imposes linearization and isotropy, and

assumes the validity of a hydrodynamic continuum

limit. We shall ignore these defects and focus on
how to solve (1)—(3) in bulk and at a surface. For
us the overriding advantage of these equations is

that they treat ions and electrons as separate de-

grees of freedom and retain the induced electric
field.

Before attacking (1)—(3) at a surface, we first
consider their implications in bulk. There one can
characterize solutions as either longitudinal or
transverse, which amounts to solving separately for
V g or V X g. Assuming all linear deviations

from equilibrium are proportional to a plane-wave

factor e" q ' " ", we find two possible longitudi-

nal modes,

(pii ~i —Piq. q)(1 —Qp CL q—'q)=cppQp,

and two degenerate transverse modes,

N =cpq'q .

(4)

The latter modes have no induced charge density

and, with our neglect of retardation, induce no E.
The former modes correspond to plasmons and

phonons and both induce electric fields. From the
structure of (4) one sees that these modes arise
from the coupling of the electron and ion plasma
oscillations. A qualitative picture of the two solu-

tions to (4) is shown in Fig. 1. We have consider-

ably reduced the ion-electron mass ratio from its

physical value of 10 —10 in order to show the

two branches. Both tp&/Q~ and Pi/CL are propor-
tional to this ratio, but in Fig. 1 they have each

been set equal to 5. It is interesting that the sound

speed of the phonon mode, i.e., dna/d
~ q ~

on the

lower branch, tends as co—+0 to

Ut = (ct +cg ) (6

with c, the Bohm-Staver sound speed

c, =PQp/happ Qp/kg, —

where we have introduced the electron-screening
wave vector k, =co~/P. As

~ q ~
grows through

k„ the electron-screening effect on the ions de-

creases and the sound speed decreases smoothly
fi'oili UL, to CL, .

Next consider collective modes near a surface.
We use the method of partial waves, writing a gen-

eral solution as a linear combination of particular
solutions consistent with the good quantum num-

bers and boundary conditions. The good quantum
numbers are co, the mode frequency, and Q, the

two-dimensional mode wave vector parallel to the
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surface. Particular solutions adapted to the surface
are then obtained by replacing e+' q '

in the just
obtained bulk solutions by, for example, e' ~ '

e
Here X is the projection of x in the plane parallel

to the surface and x is the coordinate normal to
the surface with the metal in x &0. The quantity

Q follows by replacing q. q in (4) or (S) by

~ Q ~

—Q . In terms of Fig. 1 one draws a line of
constant e and denotes its intersections with the
bulk dispersion curves by qs qb's T. hen the Q
for eachyartial wave is the algebraic difference be-

tween (Q~ and qb qs F.or Q &0, Q is real and

the partial wave may be localized at the surface;
while for Q &0, Q is pure imaginary and the par-
tial wave propagates into the bulk. Inside the ma-
terial there is one othergartipl wave that must be
included at a surface: V(e' ~ ' e@'). It does not
appear via (4) or (5) because it is formally neither
longitudinal nor transverse: It has zero divergence
and zero curl. Still, substitution in (1)—(3) shows
that such a variation of E and the j 's provides a
solution for any co. We call it a Coulomb wave.

The general solution for a surface mode of the ion
displacement field is then

g;(x, t;Q,co}=—e" '" "8(—x}[ao( Qi QO) e+a (Q,iQ, O)e

+a+(Q+,iQ, O)e + +ar(Q, iQr, 0)e r ], (8

where 8 is the unit step function and the (+)'s label the two longitudinal waves from (4} and ( I) labels the
relevant transverse wave from (5). The triplets of numbers give Cartesian components in the coordinate sys-

tem determined by x, Q, and t =x X Q Thus .in (8) we have only retained p waves —those partial waves

whose polarization lies in the plane of surface normal x and the wave vector Q. We have found in our
model that the s waves, whose polarization is along t and which are purely transverse, never couple to p
waves or form surface modes or lead'to external E fields. Hence we will mention them no further.

Given the form of g; one can use the equations of motion to determine g, and E. They are

2

g, (x,t;Q,co)=e" q "8(—x) 2 ao(Q, iQ, O)e+a 5 (Q, iQ,O)e '+a+6, +(Q+,iQ, O)e +

Qp

E(x,t;Q,co)=
4n ei( Q ~ x —~t)t8( x)[ao(Q iQ 0)eg*+a y (Q jQ 0}e +a+—y+(Q+ jQ 0)e + ]

Op
+8(x)[A( Q, iQ,—O}e ~"]J, (10)

where

b, + (co Q~ ct.Q +——ct, Q—+—)IQ~,

y+ ——(1+6+)QpIco (12)

Note that in (10) we have also allowed for a finite
E outside the metal, x & 0. Only a Coulomb wave
is possible there. In order that Eqs. (8)—(10)
represent a surface collective mode, all the Q's, Q,
Q+, and Qr, must have positive real parts.

In writing these equations we have introduced
five unknowns: ao, a+, aq, and A,, which must be
determined by the boundary conditions. A similar
problem arises when one considers the surface part
of a bulk mode, or the response of the metal to an
external probe. Thus we need to examine what
boundary conditions are appropriate. This effort,
as discussed in the Introduction, requires a further
extension of the model: The boundary conditions
are not determined by Eqs. (1}—(3}. We feel that

I

the following conditions are appropriate for our
model of a free-metal surface: continuity of
mechanical traction and parallel electric field' plus
discontinuity in the normal electric field. Let us
define and discuss these in turn.

The main controversial point is the choice of
boundary conditions for the displacement fields.
They represent the additional boundary conditions
(ABC's) made necessary by the inclusion of disper-
sion (c's snd P) in the bulk equations of motion
and their general necessity and controversy has
been appreciated for some time. s Yet for a few
physical problems there has developed an apparent
consensus as to what is appropriate. For instance
to describe the surface response of electrons alone
(with the ions held static), the near-universal ABC
within a hydrodynamic treatment, such as (3), has
been to require continuity of normal current densi-

ty; i.e., at a free surface j, x =0.9 On the other
hand, to describe lattice oscillations at a surface
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q q/k,
FIG. 1. Bulk dispersion for longitudinal modes. The

two solutions of (4) are plotted in reduced units, co /Qp
and q q/k„ to suppress some of the arbitrariness of
parameter choices. The upper branch is plasmonlikc [at

~ q ~
=0, re=(co~+A~)'~2], while the lower branch is

phononlikc (co-UI.
~ q (

for
( q ~

-0). We plot both pos-
itive and negative values of q q to show how to deter-
mine surface wave vectors. See text for further discus-
sion.

within the continuum model of elasticity, such as

(2) with E=O, the ABC chosen is continuity of
face traction'; i.e., 0=T; =™o';x, where cr; is the
stress tensor vvhose gradient leads to the short-

range forces.
Our dilemma arises from treating the ion and

electron motion on an equal basis. We have both

j„j;and T;,T„where

T;= po I (ct, —2cr )2( 7 g )

+cT[(x V)gg+V(g; x)]I, (13)

(14)

We believe that at a free surface one should require

both I; and T, to vanish, even though this implies

that j;Wand j, x will be finite there. Only if
the medium is clamped by some external means, '

e.g., capacitor plates confimng a plasma, would the

condition of zero ~ormal ion and electron current
density be appropriate. Our rationale for these.

choices is not really a proof but rather an assertion

that the physical justification given for continuity
of surface traction is more compelling than that

for any other condition. The basic argument is
that one wishes to avoid having a finite force act-

ing on a vanishingly small mass. This argument

applies equally well to the iona and to the elec-
trons. They sense different stresses so one obtains
potentially four conditions from (13) and (14). On
the other hand, when one argues for continuity of
normal current density, he ls either imagining an
infinite barrier that forces specular reflection of all
incident particles or attempting to avoid an ap-
parently infinite charge density at the surface. The
former picture is invalid in the absence of some
external constraint and the latter concern is un-

necessary. A finite value of, for example, x. j, on
the metal side of the surface need not imply a fin-

ite amount of charge at x =0, but instead only a
shift of the true surface location. The physical
plctllrc is thc sanlc as for watc1 WRvcs: x g is flli-
ltc Rtx=0, wlllcll IlicRns t11at t11c sllrfacc 1s undu-

lating.
Once one adopts this viewpoint, then not only

the surface traction conditions but also the electric
field conditions become easy to understand. The
standard pillbox argument for the boundary condi-
tion on the normal electric field" must take into
account the undulating surface. At every X and t
there are large charge densities, either po or —po,
extending a small bit, x j(x =O,X,t) or
x g, (x =O,X,t), respectively, beyond x =0. We
include these extensions inside our pillbox and
derive in linear approximation

6[x E(x =O,X,t)]=4n[p(g j;(x =O,X,t)

—pox g (x —OX t)] (15)

where hC denotes the jump in C around x =0; i.e.,
from above to below the surface corrugation. The
quantity in the square brackets on the right-hand
side plays the role of an effective surface charge
density, but derives from integrals of bulk charge
densities over the amplitudes of surface oscillation.
If the same idea is applied to the contour integral
argument for the boundary condition on the paral-
lel electric field, "one finds in first order

b,
i Q E(x =O,X,t) i

=0, (16)

i.e., no evidence of the surface motion. If we in-

clude retardation a similar result is found for the
other electromagnetic field components: Only x E
is discontinuous in a linear theory because only it
has inside the pillbox or contour a quantity, +pa,
of zeroth order whose integral is first order.

In the Appendix me discuss the boundary condi-
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tions further, showing their generalization to lay-
ered media and demonstration their consistency
with the conservation of energy.

III. METHODS OF SOLUTION

In this section we outline the methods we have
used to solve our model. The partial-wave coeffi-
cients are to be determined by applying boundary
conditions. We have already listed our preferred
choice for these conditions as well as some alterna-
tives. The number of nontrivial equations that
need to be simultaneously satisfied for p waves is,
in general, five. The electric field conditions (15)
and {16}and the surface traction conditions, setting
(13) and (14) to zero, give five equations, if we ig-
nore the possibility of s waves. For special cases
we will set one or both of the c's to zero, which
simultaneously reduces the number of bulk modes
(hence partial waves) and the number of boundary
conditions. Further, in Sec. IV, we will examine
the numerical effect of changing boundary condi-
tions. We describe our solution methods here at a
qualitative level which is independent of such par-
ticular cases.

We have used two basic methods. The first
delivers the external coupling more easily. The
idea behind it is to consider not individual collec-
tive modes but instead simply the linear response
of the metal surface at each Q and co to an exter-
nal probe. One may use Eqs. (8)—(10) with the
single change that the electric field outside the
metal is now written as

only if both c's and P are zero. It is e that deter-
mines a host of physical properties. For example,
the differential scattering probability of electron-
loss spectroscopy can with the neglect of impact
scattering and the use of semiclassical arguments
be written as

2

I'(Q, co)=
ir fiQ Q u +(Q V —co)

(19)XIm
—1

1+@(Q,co}

where the velocity v =(u, V) describes the incoming
external electron which will lose energy fico and
parallel momentum triQ in scattering from the sur-
face. One may also express static and dynamic im-

age potentials in terins of e as well as the nonre-
tarded van der Waals interaction between the metal
and a neutral molecule. ' Indeed e(g, co) is the
nonretarded analog of the surface impedance, com-
pletely characterizing the external response of the
system.

We end our conclusion of this method by noting
two technical points. In solving for A, or e, the
scheme is not modified when one of the inside Q 's

changes sign. The functional form of Eqs.
(8)—(10) for x &0 is always the same, with the
sole constraint that each Q as a complex number
lies in the fourth quadrant. For our simple model
(1)—(3) this nmans that e is a complex number if
one can couple to bulk excitations but a real num-
ber otherwise. Surface collective modes are deter-
mined by the condition A,~ 00, or

e(x)E(x,t;Q, co)
e(g, co)= —1 . (20)

4 2

ei( Q x —mt)[(g &g 0)e+Qx
Qp

+A, ( —Q, iQ, O)e ~"] .

(17)

The additional partial wave in {17)represents the
external perturbation at each Q and co. The rela-
tive effect outside the metal of the system's linear
response is determined by A,. To make this claim
more suggestive we define an effective surface
dielectric constant F(Q, co) by

(18)

Its definition and symbol are chosen because when
the metal response may be described by a local
bulk dielectric function e(co), then e(g, co) =e(co).
However, this simple result holds in our model

The other point we mention is that if one has a
system where specular reflection is the appropriate
ABC, then F(Q,co) can be expressed as an integral
of the bulk longitudinal dielectric function e(q, co):

e '(Q, co)=—I dq e '(q, co}, (21)
Q2+q2

with q =(q,g). A recent derivation is given by
Fuchs and Barrera. ' The relation holds for any
e(q, co), allowing one the option of considerable
generalization beyond our hydrodynamic model,
yet it only applies when specular reflection is the
ABC. When one requires, as we do here, alternate
ABC' s, then (21) is irrelevant.

The other basic solution method we have used is
to explicitly construct at each Q and co all the pos-
sible collective eigenmodes, orthonormalizing them
by the technique of second quantization. Thus we



7370 Vf. L. SCHAICH AND C. SCH%ARTZ

get more information than with the first method,
but the scheme is harder to apply and to general-
ize. If all the Q's are real one may use Eqs.
(8)—(10) as written to find the surface modes.
However, when one chooses Q and co that allow

coupling to propagating partial waves, then he
must include further partial waves in (8)—(10) that
represent incident bulk partial waves. This means
physically that a bulk mode contains both incident
and reflected partial waves. The subsequent alge-
bra of reduction is not very transparent. Since
similar analyses have beenyublished for purely
elastic systems' (no E or g, ), we forego a detailed
description. Suffice it to say that the results for
the dispersion and external coupling of the totality
of the modes is the same as found via e'(g, co), with
the additional advantage that one can dissect the
coupling into individual-mode contributions.

IV. NUMERICAL RESULTS AND DISCUSSION

Having outlined our solution methods we next
present some numerical results. Since our basic
equations (1)—(3) are a crude description, we do
not attempt to fit parameter values to any material
but instead look for qualitative features in the
theory. %e expect in a metal that all the c's

(cr, ,cT,cs) are roughly comParable, subject to
cL &2c,' and that ~,'~~0,'.

In Fig. 2 we plot a sequence of mode dispersions
in the phonon regime, showing both bulk- and
surface-mode results. The electronic plasmons are
off the vertical scale. For the bulk modes we show
at each Q just the lower limit of the possible co

values. Only for the panels in the first row is
there a natural upper limit Qz for the bulk band.
For the other cases one would have to impose a
Debye cutoff of some sort. The surface modes, if
they exist, lie at each Q below all the bulk solu-
tions. This ensures that every Q in their partial-
wave decomposition is real.

The panels are distinguished by what particles
are allowed to move, what forces they are subjected
to, and v hat boundary conditions the solutions
must satisfy. The first two aspects are explained
in the caption of Fig. 2; we will concentrate on the
last one. For all the panels we have required the
electric field conditions (15) and (16). The varia-
tion comes in whether for the iona or the electrons
we can or do require continuity (vanishing) of T;,T„j;.x, or j, x at the surface. When a surface
traction condition is imposed we apply thp label S
(for stress), while a normal current density condi-

ions alone ions and electrons

FIG. 2. Mode dispersions for various models. In
each case the lower limit of a bulk band is a solid line,
the upper limit is a dotted line, and surface modes are
dashed lines. All the ordinates are co/Op, the single tic
is at a value of 2. All the abcissae are Q/k„ the single
tic is a value of 2. In the first column of panels the re-
sults apply when ions alone are present. The remaining
two columns show the effect of adding the electrons
under various boundary conditions (see text). In each
row of panels the parameter choices are fixed. In the
bottom row c, /eL, ——3 and eT/cL, ——3. In the middle

two rows c, /cL, ——3 and eq ——0, while in the first row
cL ——O=er. For all the panels ~q/Qq ——10. Except for
the first two panels in the last row, the modes formally
exist for all Q or not at all.

tion is labeled by C (for current). The first label in
a pair refers to the iona, the second to the elec-
trons. The absence of a label means that neither
condition can be applied.

The main purpose of Fig. 2 is to show the ex-
treme sensitivity of the surface-mode dispersion to
boundary conditions. In contrast the bulk-mode
dispersion is independent of boundary conditions.
It depends only on what particles are interacting
via what forces in the bulk. The primary changes
for the bulk modes are that the electrons push the
ion plasma oscillations down to phonons as Q~O
and a transverse mode appears when cT+0.

Let us now discuss some particular details. Case
(,C) in the first row is the one treated earlier by
Scha1ch and others. An 1mtlal a1m of our work
was to generalize this case to finite cr, and cr. To
do so requires a change in the boundary conditions
since a (C,C) condition is insufficient to determine
collective modes with all c's and P finite. At-



tempting an (S,C} condition is also unsatisfactory
since the resulting surface mode only exists above a
certain Q. The only satisfactory treatment comes
from the (S,S) case in the last row where one finds
a surface (Rayleigh) mode for all Q. The propaga-
tion speed of this mode in the low-frcquency hmit
is the same as that produced by the theory of elas-
ticity' with the use of UL, and cz. At higher fre-
quencies, as Q becomes greater than k„ the mode's

propagation speed decreases to that appropriate to
and cy ~

To make alternate comparisons between the S
and C conditions we have considered models with

c~——0. Then the S condition reduces to a single
equation requiring that the appropriate hydro-
dynamic pressure vanish at the surface, or
cquivalciltly tliat V'g; or V'g vailisll tllcrc.
These models, which He in the middle two rows of
Fig. 2, correspond to warm plasmas or liquid met-
als. If one imagines that there is an external con-
traint forcing all normal current densities to vanish
at the surface, then case (C,C} applies and one
finds a surface mode extremely close to the bottom
of the bulk band. Removing the constraint should
switch one to case (S,S) in the third row for which
there is no surface mode, certainly a radical
change. The same effect occurs when CL, also is
zero: first row, (,C} vs ( Q. Two hybrid cases,
(C,S) and (S,C), are also shown, more as a demon-
stration of mathematical sensitivity than as a claim
of physical relevance.

The external coupling of the collcx:tive modes
also shows a sensitive dependence on boundary
condition. We reported previously the variation of
the surface-mode coupling'; here we concentrate
on the bulk-mode coupling. In Pig. 3 the quantity

B(Q,a)) =Im
—1

1+c(Q,co)
(22)

is plotted for several of the cases of Fig. 2. Aside
from the wide variety of predictions, one should
especially note that 8 is greatly reduced whenever
an S condition is imposed on the electrons. In fact
for the (S,S) case with cr =0, 8 is identically zero.
For the (C,S) case with cr ——0 and the (S,S) case
with cr +0, the size of 8 is set by Q~/cot =10
The same feature is present in the surface-mode
coupHng. ' If one includes damping in the model,
by adding, for example, j,/v, to the left-hand
side of (3), then 8 acquires a lower limit of roughly
ailro~r„which for the parameters of Fig. 2 and

mz~, ——100 makes 8 & 10 . This bound is certain-
ly much larger than the results shown in Fig. 2

0.5.- (o }

(C,S)x(0.5 x lO )

OA 0.8 Q/ks

en Te =0» but st ~s stj,ll small Since we earner
argued that the S condition is the appropriate ABC
for a free surface, it appears that the Coulomb
coupling to the modes at a metal surface is negligi-
ble.

There are, however, at least two ways in which
experimental consequences of this lack of coupling
in our model might be avoided; both involve alter-
nate coupling schemes. The first is to suppose that
impact scattering will allow significant coupling.
ReaHstic calculations of the strength of such a
scattering mechanism have only recently ap-
peared, ' ' and have been primarily directed to-
ward adsorbate vibrations rather than towards
modes of the clean surface. Although an analytic
expression for the scattering strength is not avail-
able, it is clear from the calculations and several
reported observations with adsorbates 2 that im-
pact scattering can be sigmficant.

The second alternate coupling scheme we consid-
er involves going beyond a linearized treatment.
Even within our hydrodynamic model such an ex-
tension is a difficult task. However, some esti-
mates have appeared of the coupling due to non-
linear Coulomb interactions, ' calculated within

0 0.4 0.8 l.2

FIG. 3. External Coulomb coupling of bulk modes.
In each case 8(g, co} is plotted vs Q/k, at fixed
co/Qp ——0.5. The finite parameter choices and curve la-
bels are as in Fig. 2 and both ions and electrons can
respond. In (a) cr——0, while in (b} cT+0. For the (S,C}
case in (b), the sharp rise of 8 to 11.7 has been cut off.



still simpler models. We focus on the work of
Rahman and Mills, who estimate the coupling of
an external charge to a Rayleigh mode by calculat-
11lg tllc challgc 111 'tllc llnagc potcn'tlal to flrs't order
in the surface ripple. The latter amplitude is readi-

ly found from elasticity theory, and indeed the
theory can be applied not only to surface phonons
but also to bulk phonons, which ripple the surface
too. To lllllstl'Rtc tllc csscllcc of tllls coupling
scheme, consider an external charge q fixed at
(R,X) above the (flat) metal surface. The simplest
image interaction of this charge is given by
—q /4R. If one allows the surface to be rippled
by a phonon of wavelength 2n./Q much greater
tlla11 R, hilt of amplitude f (X) nilich less than R,
then the ncw 1magc potcntlal 1S well appfoxilIlatcd
by —q /4(R —g ). Hence the change in the image
potential ls, to first order 111 g;,

(q'/4R'—)g;(X)= (q'/4R'—g',.c' o "

TIlis I'csult 18 to bc contrasted to ouf prediction
which involves the electrostatic potential
Ip(E= —V'4) of the surface phonon:

I'=qe(R, X)=qC'e'q xe ~a,

Note that 4o is linear in (;, but independent of q.
From our point of view the result (23), which

agrees with the more general formula of Rahman
and Mills in the limit QR ~&1, follows from a
nonlinear interaction between the surface plasmon
modes (which are primarily responsible for the im-

age potential), the surface-phonon modes, and the
external charge. Its calculation directly from our
IDodel would not bc CRsy, Rnd onc might 1IDRg1nc

the appearance of additional nonlinear terms. Still
the formula (23) is not unreasonable for metals,
Rnd onc should cst11Ilatc 1ts scRttcf1ng stfcngtIl.
Fof clcctfon-loss spcctfoscopy even th1S task 1S

quantitatively difficult because of the singularity in

(23) at R ~0. We earlier made a rough estimate'

and in terms of the 8 used here, we found a
scattering strength comparable to the (S,C) case in
the lower part of Fig. 3; i.e., this scattering
mechanism is much stronger than what we believe
1s t11c best cstBIlatc, tllc case (S,S of tllc liilcal.

coupl1ng. In the absence of further detailed calcu. -

lations, it is difficult to say whether there are qual-

itative differences between the linear and nonlinear

spectra aside from overall strength that could be

p1obcd cxpcf1mentally.

We can only offer the following qualitative argu-
ment to suggest that the linear coupling is negligi-
ble. Focus on the suppressed value of 8 in our
model. It derives from the equation of motion for
the electrons. From their viewpoint the screening
of phonons is nearly an adiabatic process, which
IIlcaIls 111 'tc1111S of (3) that oilc 111Ry lgIlorc 8 j ~/BI
when I0 & 0&. In this approximation, (3) reduces to
the static Thomas-'Fermi equation, which if we use
the electrostatic potential 4 instead of E, may be
expI'csscd Rs

5p, = (kg/4n—)4.

Now notice t'e.g., (14)] that 5p, also determines the
electron stress of pressure. Hence when one re-
quires zero stress for the electrons at the metal sur-

face, (25) implies 4 is zero just inside the metal.
Then continuity of 4—an equivalent statement of
(16)—rcqll11'cs 4 'to VRIlis11 olltsidc tllc BlctR1. Ill
terms of an c(g,co) calculation, one deduces that
A, = —1 in (17), or c=—oo in (18), or finally 8 =0
in (22). By this argument a finite 8 via linear cou-

pling when T, =0 is only a measure of nonadiabat-
ic effects, which diminish when the electron-mass
fRt10 docs. Ouf QUIDcfical fcsults al c conslstcnt
with tll1S conclus1on.

Thus the theoretical situation may be summa-

rized as follows. The coupling scheme that we
have developed here combined with the favored
boundary condltlons leads to ncgl1glMc 1ntcfact1on
between surface phonons and external charges. Al-
ternate choices of boundary conditions or alternate
coupling schemes can lead to significant interac-
tion but further calculations are necessary to care-
fully quantify these other schemes. On the experi-
mental side, we know of no reported observations
of acoustic-phonon losses at flat, clean metal sur-

faces via electron-loss spectroscopy. There have
been several cases where bulk-phonon losses were
observed with the aid of either steps or special ad-
sorbate layers, but ouf model is probably too
crude to bc applied to these sltuatlons. The ab-
sence of acoustic-phonon observations on Aat,
clean metal surfaces would imply no coupling, but
such experiments are difficult and too few cases
have been examined with sufficient resolution to
justify any conclusion yet. Certainly more loss
data wouM bc welcome. IQ thc saIDc scnsc, ther-
mal diffuse scattering spectra at low incident elec-



tron energies would be helpful.
To recapitulate the effort of this paper, we have

examined the collective-mode dispersion and exter-
nal (linear) coupling of a simple hydrodynamic
model of a metal surface. The results, as illustrat-
ed in Figs. 2 and 3, are remarkably senA'tive in the
range of phonon frequencies to the choice of ABC.
We have given arguments in support of a particu-
lar choice of ABC' zero surface traction for both
iona and electrons —that has not been used before.
This ABC leads to a prediction of negligible long-
range Coulomb coupling in linear order to both
blllk- Slid sllrfacc-pho11011 Inodcs. Howcvcr, lt is as
yet not clear whether experiment or more sophisti-
cated theory support or contradict this prediction.
Alternate coupling mechanisms have been suggest-
ed but their detailed quantitative implications
remain to be explored. Further work is certainly
required, but it should be done with a cautious eye
on the sensitivity of results to surface boundary
conditions.

This work was supported in part by the NSF
under Grant No. DMR 78-10235.

APPENDIX: FURTHER BOUNDARY
CONDITION ARGUMENTS

We consider several extensions of our model and
their implications for the boundary conditions.
First include retardation and allow for several in-
terfaces between uniform layers. Within each layer
the bulk equations (1)—(3) still apply, with param-

eters that are layer but not position dependent. '

The electric field now has transverse components,
which Illllst be determined consistently from the
full set of Maxwell equations, i.e., {1)must be sup-
plemented with

4

V x(fxE)-(~'/e')E= ( j;+ j.»
C

where c is the speci of hght. In a linear theory the
I

induced magnetic field 8 does not appear in the
equations of motion.

We imagine that the displacement fields in ad-
joining layers are in perfect contact, which leads to
the requirement that components of g; and g, be
continuous. The normal components are always
continuous, while the parallel coinponents of a
species need by continuous only if there are trans-
verse forces on that species. These conditions im-

ply discontinuities in the normal current densities,
that in turn imply an oscillation of the interface lo-
cation. Retaining only first-order terms, the elec-
tromagnetic boundary conditions are that all field
components are continuous except the normal com-
ponent of E for which (13) holds. Finally we re-
quire that the surface traction on each species be
continuous in order to avoid an imbalance of
forces across a boundary.

One might imagine other ways to generalize our
model, but the above prescription is at least reason-
able and allows us to examine energy conservation.
To this end we adapt the analysis of Forstmann. '
One starts from the Poynting theorem,

I'

i + ~jcijki~kk ~
C}t

(A3)

where an Einstein summation convention is
presumed, j;=+pc(B/Btg; depending on the sign
of q, and

~ljkI =~jikl ~Ijlk =~klij

Equations (2) and (3) are specific examples of (A3).
We solve for

=—fd x j E, (A2)

where j is the total current density, and using
equations of motion for j rewrites the right-hand
side. To generalize and simplify this analysis we
use in the remainder of this paragraph subscripts
to denote cartesian components and let 8;a mean
Ba/Bx; and u mean da/Bt Rather tha. n discussing
ions and electrons separately we study the general-
ized equation of motion for a single species,

1 a . . legal
Ji i 2f g (JiJi ) f~

8
~jcjkidkk

I

1 a . . leal a leal= 2. ~
(J'Ji)+

2 ~ ~ (~i4jeijkl'4kl) f~ d;(k~&ijki4k) (A5)



%. L. SCHAICH AND C. SCHWARTZ

Before substituting back into (A2) introduce the stress tensor

(rij =ctjkt')kk

and note that for both ious and electrons
~ q(oo

~
IfM = l.

Now use superscripts to distinguish iona and electrons; e.g., f"=Qt I4n and f(e)=tot I4tr. Substitute the
appropriate (A5) for each species into (A2) to find

I

~
I

e

~ ~

~

~ ~
~

~

~ I
~

~ ~

~ ~ ~

~

~I
~

~I ~ ~
2 ~~ JI ~

~ I

~

i!

~

~~ ~
~ ~

~ ~
2

3 () E B + B B + 2& (i). ~ (i)+ 2& ~ (e). ~ (e)+ ~ s(i) (i) ~ x(i)+ ~ ~(e) (e) ~ s(e)

8+ 8~ O2 2

1 e

+ P, c (IXB) g
(i).~&(t)

g
(e).~&(e) O

4v

Compared to (A2) we llave acqllil'ed llew ternls 111

the energy density and energy current density. The
latter is defined by

(BgB) g
(i) ~~ (t)

g
(e) ~ (e)

4n.

and contains both electromagnetic and mechanical
contributions. From the explicit form of (AS) it is
clear, if one imposes the boundary conditions listed
above, that the normal component of S is continu-
ous through each interface, which has the desired
interpretation that the boundaries act as neither a
source nor a sink of energy. This criterion has not
always been met in previous theories. ' ' '

Although Forstmann also concludes that S x
should be continuous between layers, he requires in
addition that j "and j "' be continuous. Conse-
quently the surface tractions are discontinuous in
his modd. We are presently studying the quantita-
tive implications of this difference. Note that it
only matters in a layered medium since at the in-

terface between metal and vacuum the mechanical
part of S is continuous if either one of j or T van-

ishes. Finally we remark that a similar discussion
of boundary conditions at a free surface or between
layers in a hydrodynamic model of electrons alone
has recently appeared. The authors, Boardman
and Ruppin, also criticize Forstmann and argue for
the boundary conditions favored here.
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