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%e continue our study of the acceleration of a single sine-Gordon (SG) sohton kink
wave by an externa1 field [cf. G. Reinisch and J. C. Fernandez, Phys. Rev. B 24, 835
(1981),hereafter referred to as paper I]. We exhibit, both quahtatively and quantitatively,
the basic physical process which prevents the kink dynamics to be a pnori Newtonian:
the self-consistent interaction between the small linear oscillations (phonon waves) excited

by the external field about the kink profile, and the kink itself. In order to evaluate the

importance of this interaction, and therefore build a kink wave mechanics, we define a
kink momentum P= (m/4—)(B/Bt)I u (r/4)(d—/'dt) f u dx and check that it

measures, in an acceptable sense, the momentum of a particle associated with the kink
center, having a mass equal to the energy of the kink. This enables us to recover our
previous results (paper I), obtained within the framework of the (rather severe) adiabatic
assumption (consisting in retaining only the small-wave-number phonon waves), and
correct them by taking into account the whole phonon spectrum. As a mattef of fact, we

obtain an important correction, of the order of 20%, of the kink dynamics in presence of
an cxtcrnal field, and verify that it leads to a bcttci flitting with thc nunMrlcal i'csults of
paper I. %e show that the above-mentioned kink wave mechanics is based on the
existence of a general force equation of the type (d/dt)P =:"[t(z],where " is a linear

operator and gq is the phonon spectrum. This equation shows that the phonon dressing

of SG kinks may lead to first-order (with respect to the perturbation function) dynamical

effects concerning the kink, when the phonon-soliton interaction is coherent, i.e., when

the characteristic interaction time is comparable with the time of coherence of the excited

phonons.

I. INTRODUCTION

In two previous papers, ' we studied the specific
dynamics of a single driven sine-Gordon (SG) kink
satisfying the (dimensionless) SG equation includ-

ing a constant field X:

term is the perturbation function t(~ and describes
the evolution of the kink profile and its dynamical
properties. As is usual in perturbation techniques,
the function P is always assumed small compared
with the kink amplitude:

utt uxx+siiiu =X .

(Here subscripts mean partial derivations. The
variables x and t, respectively, measure the one-
dimensional space and the time. ) This study,
which uses standard perturbation techniques, 3*~ de-

scribes the solution u (x,t) of Eq. (1) as

u(x, t)=4tan 'e +i'(x„t).

Adding a small viscous term (—I'u, ) to the right-
hand side (rhs) of (1) was shown to lead to some
minor quantitative changes ln the sohton dynam-
ics. Therefore we discard such a damping effect
and coI18ider the conservative situation descriSExi

by (1}. This equation may be derived from the fol-

lowing Hamiltonian density5:

H(x, t) p'[ , u, + , u, +1—cos—a—

The first term of expression (2) is the well-known

kink (a=+1) or antikink (a= —1) solution of the
unperturbed K=O} SG equation. The second
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uo(x)=4tan 'e (5)

0.1&X&& . (7)

The specific kink dynamics can be understood in

terms of coherent and/or incoherent coupling pro-
cesses between the solitons and the phonon modes
[which build the continuum spectrum of the
Schrodinger-type operator, d'= —8 /Bx +1
—2sech x, obtained by linearizing the driven SG
equation (1) about the exact kink solution ' (5)].
Comparing the characteristic time r (proportional
to X ') of the soliton acceleration with the time of
coherence of the excited phonon waves seems a
better physical approach than asking if the devia-
tion of the kink dynamics from Newton's law is-
or is not—an artifact of the initial conditions.

by use of canonical equations relating the general-
ized variables Ipu; pu, ]. The parameter p will be
described below. Note that the total mass Mo of
the system is conserved:

Mo ——f H( xt)dx=const=8@ . (6)

The physical interest of this study was mentioned
in Ref. 2. There are several extensive reviews of
the literature devoted to the subject (see, for in-
stance Refs. 4 and 6—11). Here we only recall
that Eq. (1) plays an important role in the pro-
pagation of "fluxons" accelerated in long
Josephson-junction transmission lines, which are
being given considerable attention at the present
time for the application of this device for transmis-
sion, storage, and processing of information. We
note with historical interest that the idea of using
the relationship between the solitary waves and
moving domain walls in order to build a memory
device was suggested as early as 25 years ago. '

Although the following is not directly related to
the physical situation described by Eqs. (1)—(4),
we also wish to mention recent theoretical develop-
ments in the statistical mechanics of the SG
chain' ' and in the long-term behavior of its
equilibrium. ' These works focus on the statistical
mechanics of dynamical properties of the SG
chain, and therefore seem the natural continuation
to SG-kink gas theory of the single-kink dynamics.

In Refs. 1 and 2, we showed that, as long as in-

equality (3) is satisfied, the dynamics of the SG
kink is not Newtonian, i.e., the kink acceleration is
not proportional to the field amplitude X.' Here
we show that this departure from Newtonian

dynamics is all the more important as X becomes
"large, " i.e., typically' '

fk(x) ~ exp[i (kx+Hk )]

may occur when the SG kink comes under the in-
fluence of the external field X [we assume

P(x,0)—=0]. As a consequence, it starts moving as
Xt, instead of Xt (Newton's law).

This coupling is all the more important as the
phonon-soliton interaction significantly develops
within the time of coherence of the excited phonon
waves. In situations described by (7), we have

cok 4 7 g(kcok
—1 —1

where

Nk = 1+k

is the phonon wave dispersion relation and hook is
the spectral width of the phonon spectrum. Hence,
in terms of standard nonlinear optics, the interac-
tion is strongly coherent. Important phase effects
then explain the non-Newtonian kink dynamics.

On the other hand, the quasi-Newtonian kink
dynainics related to the presence of very weak
external fields in the system (X &p0. 1) is due to the
random-phase aspect of the phonon-soliton interac-
tions, since v increases now to such an extent that
it becomes larger than the time of coherence b,cok

'

of the phonon waves.
The outline of this paper is as follows. In Sec.

II, we define a kink momentum. This is not as
simple as it seems, since we show that the soliton
response to the field X is not adiabatic, i.e., the
kink does not keep the same profile as it moves
under the influence of this field. We adopt the
rather natural definition'

T

f xu~dx
V„]———f" u„dx

",f" xu—„dx (10)

related to the picture of a particle associated to the
kink and located at its "center" defined as the

As was shown in Ref. 2, an efficient coupling
process between the so-called translation (or Gold-
stone) eigenmode of operator d'

BQO
fb(x) ~ -sechx

Bx

and the phonon modes
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point of steepest slope in the kink profile. One
must bear in mind that other definitions could also
be adopted. In particular the so-called field
momentum

(12)

since we have

—H(x, t)= (u, u„)
dt Bx

(13)

II(t)=—I u, u„dx

refers to the velocity of the center of mass V, of
the whole system constituted by both the particle
and its cloud of phonons

00

xH x,
8tt2 (jt

P, =f dk:[Pk]+const, (18)

where = is a linear operator, depending on the
wave number k. Formula (18) shows that the
translation (Goldstone) mode fb(x) disappears
from the dynamical description of the (particlelike)
soliton motion, and that this motion is controlled
entirely by the soliton wave functions ft, (x)
through the generalized forces =[fk].

In Sec. III, we correct our previous results ob-
tained in Refs. 1 and 2 by using the momentum
(15}. We show that the so-called adiabatic velocity
obtained in Refs. 1 and 2 is as a matter of fact
erroneous by a factor 8/n, and we have, instead

1

of V„i—— „anX—t—,

[cf. Eqs. (3) and (4)]. Its time variation is given by
Newton's law:

an't
sol— 3~

(19)

II(t)= 2mp—nXt ,. (14)
for small values of t. The correction due to the
factor 8/e improves the fits to the numerical

Equation (14) is an exact relation between II, as
defined by (11),and t, and is obtained without any
approximation directly from the basic equation (1)
once an initial kink profile is assumed. Since it is
not relativistically covariant, the field momentum

(11) is not a physically acceptable choice of the
system momentum. It is possible to show by
geometrical arguments based on a "tail effect" re-

lated to the term X(u —uo} in (3) that both veloci-

ties (8) and (10) are related in such a way that (10)
still defines a relativistic (particle) velocity, while

this is not the case for (12) (see Appendix 8).
Hence we obtain an additional argument favoring
the particlelike definition (10).

We show that the ldnk velocity (10) is simply re-

lated to the generalized impulse

simulations given in Refs. 1 and 2 (see Fig. 1). We
show that this is due to the nonzero-wave-number
phonons that were neglected.

As a conclusion, we point out that SG phonon-
soliton interactions are not always a second-order
process. Indeed, for intermediate field amplitudes

[Eq. (7)], the coherent (fixed-phase) interaction
leads to first-order corrections with respect to the
expected Newtonian dynamics of the kink, as seen
from formulas (15)—(19}. In contrast, random-
phase phonon-soliton coupling due to weaker fields
should lead to second-order dynanlical effects simi-
lar to those described in Ref. 21.

II. PHONON-INDUCED KINK DYNAMICS

P= —
~

um'

We calculate this momentum in terms of the pho-
non spectrum fk(t) defined, as usual, "'9 by the ex-

pansion of the perturbation function P(x, t):

p(x, t) =pb(t)fb(x)+ f dk pk(t)fk(x) .

Owing to the coupling between the translation
mode and the phonon modes, described by the
completeness relation

I dk fk(xi)ft, (xl) =5(xl —xl) —fs(xi)fb(x2),

(17)

we obtain a formula of the type

A. Inappropriateness of the translation mode
for the description of the initial kink dynamics

(P,fs(x)}=I fs(x)dx = n (20)

(the bold parentheses indicate the scalar product of

As already pointed out in Refs. 1 and 2, the
translation mode fb(x) is a somewhat ambiguous

tool in order to describe the motion of the ac-
celerated kink. Indeed, consider the addition of a
collstallt fllllctioil, say Q= 1, fo tile pure killk pro-
file (see Fig. 2). This leads to the uniform amplifi-
cation shown in the left-hand side (lhs) of Fig. 2.
Now project P on the translation mode fb(x). The
result is
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y Q

Q o e a ~

FIG. 1. Theoretical kink velocity vs time in the adiabatic approximation [formula (53): 0] and when taking the
whole phonon spectrum into account [formula (55) 4]. The numerical simulation obtained in Ref. 2 leads to the lowest
line: + .

P and fb).
According to Refs. 3 and 4, this value should

measure the displacement of the soliton due to the
addition of /=1 to uo(x) (see the rhs of Fig. 2).

This is clearly an erroneous statenmnt. Now note
that this misleading dynamical interpretation is
due to the neglect of the dynamical effect of the
phonon spectrum which clearly appears in the fol-

L,= u.,+I,
U

(U,]&LL„]
x x

X

FIG. 2. Illustration of the danger of considering always the projection of the perturbation function g on the transla-
tion mode fb as a measure of the kink motion. Indeed, if tb=e=0.5, we do not obtain a shift of the kink over a dis-
tance (I/2V 2)f efb(x)dx =e I4, as seen when looking at the derivatives (uo)„and (u ~)„.
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terized by V»~ —, n—at.(see Fig. 3). Here the con-

stant a plays the role of a force. To recover the
linear dynamics still requires the account of the
continuum phonon spectrum (see Appendix A).

B. Definition of the kink momentum

(22)

Consider the generalized impulse associated with
the Hamiltonian density (4):

P=p f gdx,

sol ( b)

00 g0 4
0 +

0 +
00+

00 + ~ y ~ ~ ~

~ s

~Inst.
'

p ~

00~0
Dog.

0

0 tt

00 t
+

0-
+

BQo
f = —~s.i

clx
(23}

and assume that it should at least describe the
correct (particlelike} kink momentum when the
kink is simply shifted over a distance M = V„~t
Taylor expanding to first order the new solution

u(x, t)=up(x —V„~t),we obtain [cf. Eq. (2)]:

FIG. 3. (a) "Screw effect" for a =0.6. o: theoreti-

cal adiabatic linear dynamics V„&———mat.

theoretical nonadiabatic linear dynamics V„~——2at/m.

++: numerical results in the case &=0.3. ~ . . nu-

merical results in the case +=0. ———:numerical re-

sults of Ref. 2 for the case+=0. 3, a =0, given here for
comparison. The important point is that the addition of
constant a to the kink profile destroys the non-

Newtonian start of the motion. (b) Remarkable
resonant effect (Ref. 25) in the case a =+=0.3 (the dot-

ted line still means a =0.3, +=0 for comparison). We
note an excellent agreement with the theoretical linear

dynamics (t"'Newton's law"), even for large time values.

which shows that the Goldstone mode

fb(x) 0: t}upit}x must be a solution of the system
(1) and (2) with X=0. We obtain from (22):

P= —2maV„)p (24)

~o~s01=8p ~012

where Mp is the kink mass (6), leads to
1p= —
4 as

and therefore

(25)

(26)

(a = + 1 for kinks, a = —1 for antikinks). Equat-

ing this expression to the particlelike kink momen-

tum

P = , amf——g,d. x . (27)

lowing equation:

f dk A(r)fb(x}=f «(4 fk)fk(x)

=1— - fb(x) ~

v'2
(21)

We must now relate this generalized impulse P to
the particlelike kink momentum derived from (10)
and (25):

P„)=~O V„)——4 a~— xu„dx .4 dt

The second term on the rhs of (21) exactly cancels

the projection of 1( on the translation mode fb(x).
If we were able, by an artifact, to perturb the

balance between these terms, the coefficient of
fb(x) then would not vanish and we would recover

a translation motion described by this coefficient.
This happens when, for instance we add, at t =0, a
constant function P(x,0)—=a to the kink profile.
We obtain a Newtonian soliton dynamics charac-

(2&)

Integrating the rhs of (28) by parts and using de-

finition (2), we obtain

P„~ , am lim (x—f,) —— lim (xt/i, ) =P .
Z~+ CO Z —+ —00

(29)

Therefore we have a simple relation between P and



P ~. In particular, when the boundary effects
described in the large parentheses of (29) may be
neglected or vanish, the generalized impulse P de-
fined in (27) is indeed the particleHke kink momen-

tum (28).
Consider now the usual expansion (16) of the

kink wave function 1t in the eigenfunctions fs(x)

and fi, (x) defined as' 4

fq(x) = sechx,
I
2

1k'
fq(x)= (k+itanhx) .

2%NI'C

We let y =kx and obtain

1 +~+~,„(+4+y/x
lim (xP, )= hm dy e'" i i i/i Qt(y, x,&),

&+)
'

~ (+) 2ir -~+~~ (1+y'/x')'/' (31)

f,(y,x,t}=g,(k, t) .
Assuming that we may now proceed to the limit x~(+ ) oo inside the integral, {31)leads to

( y }i +(+)m
lim (xf, )= dy Q, (y, ao, t)eS'.
(+)~ 2m -~+&~

The projections fs(t) and gs(r) defined in (9) are

fs(&)= AX&'+/st(0)i+ps(0),
2 2

sBlfOpg 1 cosd)si-
4a«) =Pa(0)coseiar+fat(0) +X i I fs(x}dx

GPg 40

gX X= gX X=

With the hypothesis that the initial phonon spectrum fs(0) and its time derivative /st(0) are regular for
vanishing wave numbers k~0, formula (33) becomes

i)x (X . +&+)~e'~
Hm {xf,)= sin—t dy

x-+(+)oo -(f)eo

hm {xA}—»m (xA)= lie 2lx IX»nr=lXsini
x~+4o x~—40 )x I ~oo

(38)

where I.is the length of the system.
Note that we recover our previous result lim„+„/=X(1-cost)obtained by. assuming that the u~ term

in (1) was neghgible for x~+ ce. And indeed, limit (33) results in selecting the zero-wave-number pho-
nons. As a consequence, when we consider (say) a phonon wave packet [fs]» i, (in the case where X=O),
there is no term related to boundary effects in (29) and

P i-—I' (X=0)

In the picture of a chain of weakly coupled pendulums modehng the driven SG lluation {1)pthe "boun-
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dary term" (38) describes the rotational degree of freedom of the chain considered as a rigid body, while P~&
describes the translational degree of freedom of the soliton wave.

Formulas (16) and (27) lead to

1I'= ,—nm—~Qb, + dk p»tc0» 2sk5(k}—
v2 2g 00 sinh —mk2

Using (34)—(36), this becomes

{40)

' 1/2 . 2

P, = , an't——2 n X+ — f dk, f»+Xf dk f f»(x)dx v2—irlimk|tt»
sinh —n.k —00 . 00 k~O

2

The third term on the rhs of (41) is written, by use of the completeness relation (17},

,a—tt—Xf dx f dx' f dk f»(x)f»(x')= —
4 attX f dx f dx'[5(x x') f—b(x)f—b(x')]

=—4am'+ —,am 71

(41)

(this is just the Parseval-Planckerel formula in the
functional space spanned by the eigenfunctions

Ifb,f» }). Therefore (41) gives

' 1/2
1 1I' =——mnt 2 2 2

dk
sinh-, irk

' 1/2

+—XI—
2 2

limkg»
k~O

We recover (18) in which

Nk

sinh —,mk

—2k5(k) (P»),

(44)

1

and the constant is ( 4)maXL-
As already pointed out, the interest of (43) and

(44) is mainly theoretical. The kink moves, ac-

cording to its particlelike trajectory (10) determined

by (29), under the influence of a "phonon force"
given by (44). The translation mode component

gb(t)fb(x) has disappeared from the kink dynam-

ics,2 due to its relation to the phonon modes f»(x)
through the completeness relation (42). Formulas
(43} and {44}therefore describe the phonon-induced
kink dynamics (if we focus our attention on the ex-
cited phonon spectrum g» that interacts with the
kink} or, equivalently, the kink wave mechanics.

Note that, for small time values, the constant
( —, hrXal. is el—iminated from the description of
the kink dynamics. Indeed, (29), (38), (43), and

(44) give, for t &0,
+M

(45)

and the above identification of:-(g») with a pho-
non force acting on the particlelike kink becomes
CVidCnt.

In formulas (43) and (¹4),the operator = has a
strong singularity for k ~0. It is possible to ob-

tain an equivalent formula in which the kernel of
the linear operator dealing with the phonon spec-
trum Q» is regular for all k, but the price we have

to pay is the reappearance of the translation mode
component pb(t)fb {x)

Equations (43) and (9) lead to

k 2ttk5(k)
to»sinh 2 n k tt» s18h 2 Kk

and, according to (40), we obtain

—am'/' 00 k'
I'gg+I'= ~ v nlrb, +f dky»,

Nks18h 2 vk
(47)
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There is an alternative proof of (47) given in Ap-
pendix C.

III. NONADIASATIC KINK DYNAMICS
IN THE PRESENCE

OF AN EXTERNAL FIELD

our previous results' by taking into account the
above phonon-induced dynamics described by for-
mula (47).

Starting with an initially static kink, formula
(47) becomes, for small time values,

Assume X~, and consider the onset of the per-
turbation: t &0. In this section we wish to correct

I

~~~ =Ti+ T2+ T3,
where [by use of (34}—(36)]

(48)

fb, = , an—X—t,3

4 2 (49}

k'[2n'k5(k) —n sinh ' —nk]T2+ Ts = dk Pkt i
———

8
an'Xt dk4~2 "

cob sinh —,nk aik sinh , nk—. (50)

Hence
I

correcting the adiabatic particlelike kink velocity
(53):

T2 = , art X—t —f dk, =0, (51)
toksinh-, nk 8 adiab —aXt 3

I'Ioi = ~ I'soi
3m'

(55)

T,= ,
' SXtf-" dk

(1+k }sinh2 —,n k

8
TJ 21r

(52)

Formula (48) describes the kink dynamics in-
duced by all phonons whose wave number ranges
from —oo to + 00. If we decide to select a mono-
chromatic wave packet of frequency teak

=—1, i.e.,
k =—0, as we did in Ref. 2, we recover the adiabatic
velocity of Ref. 2:

ygdiab anXt—3
801 24

Indeed, the rhs of (48) reduces in this case to
Ti + T2 (since there is no singularity in Ts for
k =0},i.e., to Ti [cf. (51)]. Since [cf. (29) and
{38)]

(53)

d P~1P„= for t&0,t' (54)

and since the soliton rest mass is Mo ——AM, = —,2
[cf. (6) and (26)] the equation Jp„=Tileads to (53).

Formulas (48)—(52) enable us to calculate the
nonadiabatic correction to formula (53) due to the
account of all other phonons of wave number k&0
interacting with the kink. Since T2 ——0 [cf. (51)],
Eqs. (54), (48), (49), and (52) lead to a factor 8/ir

In Appendix D we give an alternative "direct"
proof af this formula. We note that it leads to
better fits of the numerical results af Ref. 1 (see
Fig. 1).

In canclusion, we summarize the three above-
mentioned SG kink dynamics in presence of an
external field X [see (8)].

(i) For very weak amplitude X, leading to
random-phase phonon-soliton caupling effects, the
kink dynamics is "classical"—i.e., Newtonian—
since the phase effects of all phonon modes gen-
erated at the onset of the perturbation may be ig-
nored in its description. The equation af motion
therefore reads [cf. (40) and see also Ref. 18]

—am~=
4~2 4b~

or [cf. (34)]

V;,'i"—— —,anXt, —
(56)

when the kink is assumed static at t =0. '

(ii) For larger field amplitude, X & 0.1, a rough
approximation of the dynamical interaction of the
phonon gas with the kink consists in selecting
small-wave-number phonons [see formulas (35}and
(36) and Ref. 2]. The monochromatic assumption:
k -0 leads to the so-called adiabatic kink velocity
{53).
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(iii) The exact procedure consists in taking into
account the interaction of all phonon waves, gen-
erated by the external field X, with the kink. It
leads to the rather important correction of about
20% of formula (53).

Note added in proof

There has recently been some controversy about
the concept of a Newtonian kink dynamics (Refs.
24—26}. Therefore, we here emphasize that the ti-
tle and the content of Ref. 1 are related to the
basic statement developed in Refs. 3 and 4, namely
the soliton motion is measurtxl, for all time (no
matter how short or large), by Eq. (34). This state-
ment is clearly erroneous on short time scales, as
shown by Refs. 1 and 2, and by the present paper.
Since it first introduced the concept of a Newtoni-

an kink dynamics, we adopted in Ref. 1 the oppo-
site view to it. Now we do recognize that "may"
should be more appropriate to our recent
knowledge of the problem than "do," in the ex-

pression of the title of Ref. 1.
The present paper is an effort to go beyond this

discrepancy in the definitions and to present new

effects in the frame of an appropriate time scale,
comparable to the time scale defining coherent
wave-wave coupling effects in nonlinear optics or
in plasma physics. On the contrary to an elemen-

tary time scale obtained by considering the time to
required for a typical signal to cross the width of a
soliton (Ref. 26), our time scale takes into account
the efficiency of the perturbation in. deforming
and/or accelerating the soliton during (roughly) a
characteristic period of the excited phonon waves.

As an example, consider the case of a weak (g- I)
periodic force X(t)=Xcostoot (cf. III in Ref. 2).
%e numerically checked that the characteristic
time in which the soliton deviates from a Newtoni-

an law [i.e., from a motion described by (34)] is
much larger than to (by at least a factor of 10,
since to is of order unity), as soon as the forcing
frequency coo becomes "great" (i.e., coo & 1}.

APPENDIX A: THE "SCREW EFFECT"

Consider the following initial condition:

g(x, 0)=const=a «2m,

g, (x,0)—=0 . (A2)

Then Eq. (16) gives

ao

fb(0)=a fb(x )dx = fra,

Pb(0) =a I fk(x')dx' (A4)

and Eqs. (34)—(36) read

1 —cosNk t
1//b(t)= a cosNkt+X

Nk

X J fb(x')dx'. (A6)

Then, for t & 0 and in the adiabatic approximation
cob-I (cf. Ref. 2):
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By use of the completeness equation (17), we ob-

tain

2

f(x, t) = a+ , (X—a—)t + fb(x) .
t~0 2 2

(A9)

This result clearly shows a modification of the pro-
file, described by both first terms on the rhs of
(A9), and a shift, at least for small times and
within the adiabatic approximation, leading to an
error of about 20% (cf. Sec. III). The shift of the
solitary wave according to the third term of (A9)
leads to a trajectory which is indeed of the
Newtonian type since the velocity of the wave is

field does not obey Newtonian dynamics in the
coherent phonon-soliton coupling regime.

(ii} A uniformly amplified SG solitary wave does
obey Newtonian dynamics in which the force ap-
pears to be the amplification constant

f(x,O}—=a .

Both of these results are a direct consequence of
the coherent interaction between the translation
mode fs(x) and the phonon modes fk(x), described
by the completeness relation (17).

APPENDIX B: INAPPROPRIATENESS OF
THE FIELD MOMENTUM (11) FOR THE
DESCRIPTION OF THE PARTICLELIKE

KINK DYNAMICS
1V= —
4 ruat . (A10) Consider

The comparison between the theoretical trajectory
and numerical results is shown in Fig. 3. %e see
that they agree within the 20% error limit due to
the adiabatic assumption (A7}. Including the 8/n.
factor due to the nonadiabaticity of the initial kink
dynamics [see (55)] leads to V»i 2at/——ir, which
fits the numerical results well.

Note that the real force X disappeared from this
kinetic description and has been replaced by the
constant a. Hence, even when +=0, the addition
of the perturbation function (Al) and (A2) to the
kink profile shifts the kink according to the veloci-

ty (A10). When using the very simple and sugges-

tive illustration of the SG kink as a particular con-
figuration of a pendulum chain, result (A10)
means that the kink moves ahead when 'the whole

chain is turned according to an angle equal to a.
This suggests the mechanism of the screw.

In the case where X+0 and a =X, Eq. (A9)
shows that the profile remains time independent
and the velocity (A10) is Newtonian. This remark-

able resonance between the effect of the field X and
the effect of the initial perturbation function

P(x,0)=X has been described in Ref. 25 and ex-
plained as being due to the presence of the far
wings of the solitary wave in the fundamental en-

ergy level P(x,O)=sin 'X=X (for small X). The
new object—the SG solitary wave defined by (Al)
and (A2) in which a =X—does then follow a
Newtonian dynamics, but it is no longer a soliton
[see Fig. 3(b)].

Therefore, within the framework of the linear
perturbation theory, we obtain the following
complementary results.

u« —u~+sinu =X,
u(x, O)=u0 ——4tan '(e"),

u, (x,O) =0 .

Define a Hamiltonian density (see Fig. 4)

(81)

(82)

(83)

H = , u„+—,u, +—(1 cosu—)—X(u —u0), (84)

f Hdx=8 .

Define

Hdx= —E .

(85)

(86)

Then

f Hdx=8+E . (87)

00

xHdx . (88)

It can be shown [cf. (11)—(14) and Ref. 5]:

dI
4 7T+ 0

dt2

However, this is not the motion of the cross-
hatched soliton part (see Fig. 4). Define

a
Xs= f xH dx8+8 —oo

for the soliton and

(89)

(810)

oo

XT—— f xH dx (811)

for the tail. Then

Now look for the center-of-mass motion for this
solution, related to the field momentum (11):

(i} An exact SG soliton accelerated by a constant X= , [( E)XT+(8+E—)Xs—] . (812)
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iL(x, t) U.,(x)

X

H(x, t;)

X,

X
I

I r X

FIG. 4. Hamiltonian density (B4) for a kink at time t.

Now approximate Integrate (819):

so

XT——,Xs,

X= —,( —,E+8)Xs .

(813)

(814)

dXs

dt
—W

= ——mX(1 —w~) i2,
dt 4

(820)

(821)

Now

so

Xs (815)
Xs —0,

Therefore

dXs =m=0 at t =0.
dt

(822)

and

X=(1—
8 mXXs)Xs ~

d X d Xs &
— i dXs

, (1——,~XXs)——.~&
dt dt~

(816)

(817)

4 ~XXs =

Integrate (818):

dXs

dt
=W ~

2 1/2

1— dxs
dt

(823)

(824)

Thus dN

dt 4
1 —N 2

XXs
(825)

(818)

This can now be compared with the relativistic

equation

Xs
4 1 ——,@XX

wdw
21 —w

(826)

d'Xs
~X

dt

' 2 3/2
dxs1—
dt

(819)
1n(1 ~nXXs) = ———, 1n(1 —w2)+c,

(827)
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Xs ——0, m=0 at t=0,
therefore

(828) implies

P«+P= .—&—~ff.i 1:==+"

—
2
lxB' fgsech x dx . (Cl)

Xs= I

' 2 1/2
'

dXs

l&
(829)

We recover formula (823), which describes the tra-
jectory of a relativistic particle. Therefore the par-
ticlelike definition (810), similar to definition (10)
of the present paper since it deals with the picture
of a particle associated to the kink and located at
its center, leads indeed to a relativistic dynamics,
while this is obviously not the case for the dynam-
ics related to the center of mass (88), (89) re-
lated to the field momeIitum (11}.

lim f„,-(+) =0,2X sint5(1)
x (+) "' ix [

wllere 5(J&} ls tile Dllac flllictioll. Now we llse

both of the following identities:

00

sech'x dx =—,
00 2 '

00
e'~sech'x dx

=f coskx sech xdx

(C2)

(C3)

The first term on the rhs of (Cl) can be treated as
in Eq. (31) and following. We obtain

APPENDIX C: ALTERNATIVE DIRECT
CALCULATION OF THE KINK EQUATION

OF MOTION (47)

mk

sinh —,uk
(C4)

The linearized driven SG equation f«+ P(g) =X
(cf. Introduction), together with definition (15),

Then we write, by use of the definition (30}of
the phonon modes fk(x),

Integrating by parts,

f sech xfk(x)dx= I2 .
2 21FCOk

Using now Eqs. (16) and (Cl) —(C6), we obtain

—am'"P„+P= v nQsi+ f dk Qt«
k

1

Q)kslnh 2 Kk

and we recover Eq. (47).

r

f sech xfk(x)dx = Iq f e'~— (sech x )dx
00 21tcok 2k ~ dx

(C6)

(C7}

APPENDIX D: NONADIABATIC KINK
VELOCITY AT THE ONSET

OF THE INTERACTION

The equation f«+ 8'(l() =X gives for t & 0 the
second-order solution with respect to the small
parameter t:

]2 ]4
P'2)(x, t)=g —— +—Xt sech x .

12

(Dl)
This equation shows that, as already pointed out in

Sec. III, the dynamical response of the kink to the
external field g is not adiabatic. Indeed, such an
adiabatic reaction would require a second term on
the rhs of (Dl} proportional to Buo/Bx-sechx, in-
stead of sech x. Hence, the nonzero wave number
phonons, which are responsible for this nonadiaba-
ticity, as already explained in Ref. 2, will play an
important role.

This effect is illustrated in Pq. (55).
derive it from (Dl), we first calculate the general-
ized momentum P defined by (2'7) and assocjated
witli tile solutloil (Dl). It becomes
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(D2)
Note that definition (10) directly leads to formu-

la (55) when (Dl) is used. We have indeed

Identifying the first term on the rhs of (D2) with

(38), Eq. (29) shows that I'»i X——rr—at l6, which
leads to formula (55) when the mass deduced from

(6) and (26) is taken into account.

uXt d
V»i = x (sech x )dx

—an't 3

3m'
(D3)
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