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The spherical solid model is applied to the calculation of lattice relaxations around a
single proton impurity in Li, Na, and K. A tendency towards a crystallographic distor-
tion in all three metals is observed, which is consistent with the transition from a bcec to a
NaCl structure occurring in the stoichiometric limit of the alkali hydrides.

I. INTRODUCTION

The alkali hydrides crystallize in a face-center-
ed-cubic lattice while the pure alkali metals have
the body-centered-cubic structure. The comparison
of measured densities indicates that the distance
between two metallic ions is much greater in the
pure metal than in the hydride' as can be seen
from Table I. These facts are explained by the fol-
lowing visualization of the hydration process, start-
ing from the pure metal: (i) trapping of hydrogen
atoms at the midpoint of each vertical bond be-
tween two alkali atoms (see Fig. 1), and (ii) expan-
sion of these bonds (for instance, h =BC) and
simultaneous contraction of the horizontal lengths
(for instance, | =AB). When the perfect hydride
lattice is obtained, 4 and [ are both equal to the
NaCl lattice parameter ay. These modifications
are considerable in magnitude, as shown in Table I:
The dilations range from 16% in Li to 8% in K,
and the contractions from 18% in Li to 24% in K.

In this paper, we report an attempt to demonstrate
by means of qualitative calculations that the relax-
ations of the metal ions around a single H impuri-
ty in an alkali-metal host are consistent with the
above picture.

We have applied here the model of lattice relaxa-
tion that we previously used for hydrogen in alumi-
num.>3 Let us first recall the basic features of
that model. A proton introduced in a metal is a
strong perturbation, so that methods where the dis-
placed electron density is obtained in linear
response (for instance, the lattice-static method*)
are not applicable. The “spherical solid model”>-®
(SSM) as applied in Refs. 2 and 3 allows one to
overcome this difficulty by treating the proton po-
tential to all orders, together with the spherical
average (around the proton) of the metal ions po-
tential. The idea of the SSM is that the difference
in energy between the lattice with the proton and
the perfect lattice is accurately evaluated in spheri-
cal symmetry:

TABLE 1. Lattice parameters and characteristic ratios in the alkali metals and alkali hy-

drides. :
Lattice constant Distance of
(a.u.) two metal ions Distance / ay/h ay/l
Hydride: ay Metal: ay, Hydride Metal Metal
Li 7.72 6.63 5.46 5.74 9.38 1.16 0.82
Na 9.22 8.10 6.52 7.01 11.46 1.14 0.80
K 10.79 10.03 7.63 8.68 14.19 1.08 0.76
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FIG. 1. Positions of the metal and H ions in the bec
structure before the lattice relaxation. The plane ABCD
will become a face of the cube in the NaCl hydride lat-
tice.

E\(R}}=(E;{R}}—Eo{R}})ssm+Eo{R}} .

(1)
In Eq. (1) the indexes 0 and 1 refer to the solid
with and without the proton, respectively. The

V4

vectors R} give the positions of the ions around
the origin where the proton sits in the impurity
case. Equation (1) is assumed to be valid even
when the R are not the positions in the perfect
lattice, but the relaxed positions, provided that a
high degree of symmetry is kept, as is the case for
H at the octahedral site in a fcc lattice. The re-
laxed positions of the ions are assumed to be of the
form

R;=(1+1,)K;, ¥)

(i.e., the displacements are radial) with A; equal for
all the atoms in the same shell around the proton.
The values of the A’s are obtained by minimizing
E {R; } expanded up to A? using second-order
perturbation theory. The variation of the average
({ ) means spherical average) ionic potential due

to relaxation is as follows:

AV(r)= 3 (V(F—R,—AR,)—V(T—R))) ,
=3 Mu(r) +5A20(r) 3)

so that, to second order in A (Refs. 2 and 3),

AE—Eglssu= 3, o~ (=M +AD+ 3 [ (ny—no) My +5M0)dT+5 S Ay [ (py—pou;dT. @)
i i ij

R;

Z is the valence of the host ions, ny and n; are the
density profiles obtained in the SSM for the perfect
and nonperfect solids, respectively,’ and py; and py;
are the electron densities induced in these two sys-
tems by the perturbation ;. Additional details of
Eq. (4) may be found in Refs. 2, 3, and 7. The en-
ergy of the perfect lattice Eq{R; } [last term in Eq.
(1)] is expanded to order A? in standard pseudopo-
tential theory, the structure factor being the only
quantity which depends on the {R;}. A pseudo-
potential of the smoothed Ashcroft form is used:

_ 2
Je 979" 5)

AnZ
Vig)=— 220 cos(gR,

0

The expansion of AE; in the lattice displacements
A4 is written as

AE; =— 3 ASi+5 33 Ay Tap (6)
a a b

which reaches its minimum for:

zTab}"b=Sa ) a=1,2,. e e : (7)
b

II. RESULTS AND DISCUSSION

We carried out the calculations for the alkali
metals Li, Na, and K, using the pseudopotential
parameters given in Table II. These parameters
were fitted in order to reproduce the bottom of the
conduction band computed using the augmented
plane wave (APW) band-structure method. This
procedure is approximately equivalent to a fit of
the phase shift for the momentum /=0 at the Fer-
mi level. A good convergence of the relaxation
displacements was obtained by taking into account
four shells of atoms. The A’s for the first two
shells are shown in Table III. They are all positive
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TABLE II. Pseudopotential parameters (a.u.) for the
alkali ions.

Rc qo
Li 1.658 2.78
Na 1.670 2.33
K 2.255 1.99

in the first shell, and decrease from Li to K: The
bond A (Fig. 1) increases when the impurity is in-
troduced in the alkali metal, in qualitative agree-
ment with the values of the ratio ay /A in Table I.
In the second shell of atoms, the calculated A’s are
all negative, and greater in magnitude than 1%,
corresponding to a contraction consistent with the
values of ay /I, smaller than one, shown in Table I.
Clearly, the relaxations due to a single impurity in-
dicate a tendency towards the change of crystal
structure. Of particular interest is the difference in
the relaxation of the second shell in the alkali
series as compared with that of Al-H, treated in
Refs. 2, 3, and 7 and tabulated again in Tables I1I
and IV. Before discussing these differences, the
qualitative nature of our results should be em-
phasized. This is particularly true for two reasons.
The first one is the use of the spherical model for
shells containing only two and four atoms, a situa-
tion much less favorable than in fcc metals like
aluminum. Second, we have described lithium
with a simple local pseudopotential which cannot
simulate the strong p scattering well known in that
metal.

We now return to the comparison of Al and the
alkali series. It must be pointed out that the relax-
ation of the second shell in Al is an order of mag-
nitude smaller than in the alkalis. This is a strong
difference which has to be explained on physical
grounds. In Eq. (7), the right-hand-side term S,
is given by the first-order terms of Eq. (4) (the ex-
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FIG. 2. Profile of the density displaced by the proton
in lithium, and first-order variation of the pseudopoten-
tial (u,) for the ions in the second shell.

pansion of the perfect lattice E, contains second-
order terms only):

S. Z

n "R, f (ny—nglu,dr .

g (8)
The diagonal matrix elements T, are always posi-
tive and much greater than the off-diagonal terms,

so that
Aa=ngSe /Ty, .

9)

n, is the number of atoms in the shell at distance
R, from the proton. The physical meaning of s,
can be understood in the following way. Let us as-
sume that the damping parameter g in the pseudo-
potential® [Eq. (5)] can be considered as infinite, so
that V(q) is a true Ashcroft potential. The expres-
sion for u, becomes very simple:

V4
ia—, r<R,—R,
z R,
Ug= 2R, l—-“‘r—' , R‘,——Rc<r<Ra-i-Rc (10)
0, R,+R.<r.

TABLE III. Lattice relaxation around a H impurity in the alkali metals, in comparison
with aluminum. R; and R, are the distances to the first two shells in the perfect lattice; A,
and A, are the relative variation of these distances. Note the slight difference in the lattice
constants of Tables I and III. Our calculations correspond to the parameters listed here.

Li Na K Al
R, (au) 3.298 3.850 4.725 3.819
A1 X100 6.42 3.28 1.97 2.41
R, (au) 4.665 5.445 6.682 6.615
A2X 100 —1.51 —1.65 —2.07 —0.25
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TABLE IV. Analysis of the quantities which determine the relaxation of the second shell
of ions, and test of the approximation based on the charges displaced outside (Q,) and inside

(gq,) the shell of ions.

R2 R2
Q, q2 —Z—s2 appr. 7s2 exact
Li —0.046 —0.165 . 0.341 —0.074 —0.065
Na —0.042 —0.220 0.297 —0.075 —0.076
K -—0.070 —0.252 0.325 —0.111 —0.122
Al —0.011 —0.046 0.163 —0.015 —0.013

Restricting to the second shell, the variations of
1/r are small compared to the dimensions of the
ion, so that we can replace u,, in the second re-
gion, by its volume average. Finally, s, for the
second shell can be written as

Z
S2=E(Q2+‘;‘/12‘12) : (11

s, depends on two charges, Q, and ¢,:
0,= fR;R (ny—no)dmridr+5q,,  (12)
R2+R:
G2= [o_p (ny—nomwridr . (13)
27 %

Q, can be roughly interpreted as the charge dis-
placed by the proton outside a sphere of radius R;
q, is the charge displaced within the spherical shell
where the ions are located. In Eq. (11) g, is
weighted by a factor u, which characterizes the di-
mensions of the ion core:

1 R,

M= m+x3) " TR, 14
The density n; —n, for lithium together with the
potential u, are shown in Fig. 2. In Table IV are
listed the values of Q,, g5, u, and s,; all charges

are negative, so that the ions in that shell are
pushed away from the proton, in all materials.

The comparison between the last two rows shows
that the approximation of Eq. (11) is adequate. It
is clear that the small value of A, in Al is a conse-
quence of the size of 0, and g,: These charges are
much smaller in Al than in the alkalis because the
screening by the valence electrons is stronger in the
former material. We conclude that in addition to
different crystal structure an important feature
which differentiates the lattice relaxations for Al
hydrides and the alkalis, with the latter tending to
large crystallographic distortions, is the lower
valence density generally found in monovalent met-
als.
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