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Lattice relaxation and tendency for crystallographic distortions
around a hydrogen impurity in the alkali series

F. Perrot
Commissariat a l'Energie Atomique, 8.I'. 27, 94190 Villeneuue-Saint-Georges, I'ranee

M. Rasolt
Solid State Dr'vision, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

and The Uniuersity of Paris XI at Orsay, Orsay, France
(Received 21 December 1981)

The spherical sohd model is applied to the calculation of lattice relaxations around a
single proton impurity in Li, Na, and K. A tendency towards a crystallographic distor-
tion in all three metals is observed, which is consistent with the transition from a bcc to a
NaCl structure occurring in the stoichiometric limit of the alkali hydrides.

I. INTRODUCTION

The alkali hydrides crystallize in a face-center-
ed-cubic lattice while the pure alkali metals have
the body-centered-cubic structure. The comparison
of measured densities indicates that the distance
between two metallic iona is much greater in the
pure metal than in the hydride' as can be seen
from Table I. These facts are explained by the fol-
lowing visualization of the hydration process, start-
ing from the pure metal: (i) trapping of hydrogen
atoms at the midpoint of each vertical bond be-
tween two alkali atoms (see Fig. 1), and (ii) expan-
sion of these bonds (for instance, h BC) and
simultaneous contraction of the horizontal lengths
(for instance, I =AB). When the perfect hydride
lattice is obtained, h and l are both equal to the
Nacl lattice parameter aH. These modifications
are considerable in magnitude, as shown in Table I:
The dilations range from 16% in Li to 8% in K,
and the contractions from 18% in Li to 24/o in K.

In this paper, ere report an attempt to demonstrate

by means of quahtative calculations that the relax-
ations of the metal ions around a single H impuri-

ty in an alkali-metal host are consistent with the
above picture,

We have applied here the model of lattice relaxa-
tion that we previously used for hydrogen in alumi-
num. 2* Let us first recall the basic features of
that model. A proton introduced in a metal is a
strong perturbation, so that methods where the dis-
placed electron density is obtained in linear
response (for instance, the lattice-static method )

are not applicable. The "spherical solid model" '

(SSM) as applied in Refs. 2 and 3 allows one to
overcome this difficulty by treating the proton po-
tential to all orders, together vnth the spherical
average (around the proton) of the metal ions po-
tential. The idea of the SSM is that the difference
in energy between the lattice with the proton and
the perfect lattice is accurately evaluated in spheri-
cal symmetry:

TABLE I. Lattice parameters and characteristic. ratios in the alkali metals and alkali hy-
dfldes.

Metal: a~

Lattice constant
(a.u.)

Hydride: aH

Distance of
two metal ions

Hydride Metal
Distance l

Metal
aH/h aH/l

Li
Na
K

7.72
9.22

10.79

6.63
8.10

10.03

5.46
6.52
7.63

5.74
7.01
8.68

9.38
11.46
14.19

1.16
1.14
1.08

0.82
0.80
0.76
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TABLE II. Pseudopotential parameters (a.u.) for the
alkali ions. 02—

0.1—
s

At Ao

---u& (q =5.5kF)—
u& (q =~)

— G,GGP.

0,001
O

1.658
1.670
2.255

2.78
2.33
1.99

I
I

I

~ I'll

r~
r

II

R2-Rc ~
~~w~» R~+Rc

(0

in the first shell, and decrease from I.i to K: The
bond h (Fig. 1) increases when the impurity is in-
troduced in the alkali metal, in qualitative agree-
ment with the values of the ratio aH/h in Table I.
In the second shell of atoms, the calculated A,'s are
all negative, and greater in magnitude than 1%,
corresponding to a contraction consistent with the
values of aH/I, smaller than one, shown in Table I.
Clearly, the relaxations due to a single impurity in-
dicate a tendency towards the change of crystal
structure. Of particular interest is the difference in
the relaxation of the second shell in the alkali
series as compared with that of AI-H, treated in
Refs. 2, 3, and 7 and tabulated again in Tables III
and IV. Before discussing these differences, the
qualitative nature of our results should be em-
pliasized. This is particularly true foi' two ieasolis.
The first one is the use of the spherical model for
shells containing only two and four atoms, a situa-
tion much less favorable than in fcc metals like
aluminum. Second, we have described lithium
with a simple local pseudopotential which cannot
simulate the strong p scattering me11 known in that
metal.

We now return to the comparison of Al and the
alka11 series. It must be p01nted out that the relax"
ation of the second shell in Al is an order of mag-
mtude smaller than in the alkalis. This is a strong
difference which has to be explained on physical
groundL In Eq. (7), the right-hand-side term S,
is given by the first-order terms of Eq. (4) (the ex-

-01--
2

r (a.u. )

FIG. 2. Profile of the density displaced by the proton
in lithium, and first-order variation of the pseudopoten-
tial (u2) for the ions in the second shell.

pansion of the perfect lattice Eo contains second-
order terms only):

a Z
s, = = — (ni —no)u~dr . (8)

n,

The diagonal matrix elements T„are always posi-
tive and much greater than the off-diagonal terms,
so that

A g ngsg /Tgg ~ (9

n, is the number of atoms in the shell at distance
R, from the proton. The physical meamng of s,
can be understood in the following way. I.et us as-
sume that the damping parameter qo in the pseudo-
potential' [Eq. (5)] can be considered as infinite, so
that V(q) is a true Ashcroft potential. The expres-
sion for u, becomes very simple:

V

1—,R~ —R~ (r gR~+R~ (10)
2R~

0, 8,+R, gr .

TABLE III. Lattice relaxation around a H impurity in the alkaH metals, in comparison
with aluminum. 8 ~ and R2 are the distances to the first two shells in the perfect lattice; A. ~

and A,2 are the relative variation of these distances, Note the slight difference in the lattice
constants of Tables I and III. Our calculations correspond to the parameters listed here.

R 1 (a.u. )
A, i g 100
R~ (a.u.)
A,&X 100

3.298
6A2
4.665

—1.51

3.850
3.28
5.445

—1.65

4.725
1.97
6.682

—2.07

3.819
2.41
6.615

—0.25
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TABLE IV. Analysis of the quantities which determine the relaxation of the second shell
of ions, and test of the approximation based on the charges displaced outside (Qq} and inside
(q2) the shell of ions.

R2
$2 appr.

R2
s2 exact

Li
Na
K
Al

—0.046
—0.042
—0.070
—0.011

—0.165 .
—0.220
—0.252
—0.046

0.341
0.297
0.325
0.163

—0.074
—0.075
—0.111
—0.015

—0.065
—0.076
—0.122
—0.013

(1/x)+(x/3) '
Rq

(14)

The density n
& no for lit—hium together with the

potential u2 are shown in Fig. 2. In Table IV are
listed the values of Qq, q2, p2 and s2, all charges

Restricting to the second shell, the variations of
1/r are small compared to the dimensions of the
ion, so that we can replace u„ in the second re-
gion, by its volume average. Finally, s, for the
second shell can be written as

Z 1

(Q2+ -, u2q» .
R2

s2 depends on two charges, Q2 and q2,

Qq
— (n—

~ no)4nr d—r+ , qq, —2

R~+R
R2+R

q, = I„'„'(n, n, )4 r-'dr . (13)

Q2 can be roughly interpreted as the charge dis-

placed by the proton outside a sphere of radius R2,'

q2 is the charge displaced within the spherical shell
where the iona are located. In Eq. (11) qq is
weighted by a factor p2 which characterizes the di-
mensions of the ion core:

are negative, so that the ions in that shell are
pushed away from the proton, in all materials.
The comparison between the last two rows shows
that the approximation of Eq. (11) is adequate. It
is clear that the small value of A,2 in Al is a conse-
quence of the size of Q2 and qz. These charges are
much smaller in Al than in the alkalis because the
screening by the valence electrons is stronger in the
former material. %e conclude that in addition to
different crystal structure an important feature
which differentiates the lattice relaxations for Al
hydrides and the alkalis, with the latter tending to
large crystallographic distortions, is the lower
valence density generally found in monovalent met-
als.
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sThe damping function exp[ —(q/qoi'], which may be

introduced without theoretical difficulty because the
behavior of the form factor. ,at large q is not accurate-

ly known, gives the practical advantage of making lat-
tice sums rapidly convergent. %'e use the value

q0=5 5


