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A detailed numerical analysis is made of the analytic results presented in paper L.
Numerical results are presented for the mass of the Feynman polaron, parallel (M) and
perpendicular (M) to the magnetic field, and for the following thermodynamic quantities:
the magnetization, the susceptibility, the internal energy, the entropy, and the specific
heat. Those quantities are studied for different values of the electron-phonon coupling (),
temperature (T), and magnetic field strength (). We found that an ideal gas of polarons
undergoes a phase transition. In the physical parameter space (1/a,1/57,T ) the points
of first-order phase transition define a two-dimensional surface which is circumscribed by
a line of second-order phase transitions. At the transition point the polaron transforms in
the direction perpendicular to the magnetic field, and with increasing magnetic field
strength, from a polaron state (M| ~M,) to an almost frec Landau state (M| >>M, ~1).
This transition can be viewed as a magnetic-field-induced two-dimensional stripping of
the polaron. The experimental consequences of this phase transition on the
thermodynamic quantities and the magneto-optical absorption spectrum are discussed.

I. INTRODUCTION

In the preceding paper! (hereafter referred to as
I) we derived an approximate expression for the
polaron free energy (F), which is valid for all
values of the magnetic field (#°), the temperature
(T), and the electron-phonon coupling strength ().
This expression was obtained by extending
Feynman’s polaron theory? to include (1) an exter-
nal magnetic field and (2) an anisotropic effective
electron-phonon interaction. According to
Feynman’s conjecture the free energy as derived in
I is an upper bound to the exact free energy. The
explicit form of the free energy depends on four
variational parameters. The variational calculation
has to be performed numerically except for certain
limiting cases where analytic results could be ob-
tained (see Sec. V of paper I). In the present paper
(hereafter referred to as II) emphasis is placed on
the numerical study of the analytical results
presented in paper I. After the numerical varia-
tional calculation we obtain results for the free en-
ergy that depend on three physical parameters: a,
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T, and w, =e°/mc (e is the electron charge, m
the electron band mass, and ¢ the velocity of light).
From the free energy we calculate the magnetiza-
tion .# = —OF /0%, the susceptibility

X = —3*F /39¢?, the entropy S = —9F /3T, the
internal energy E =F + T3S, and the specific heat
C =—T9?F/3T? Figures of these quantities are
presented for different values of a, T, and w,.

To the best of our knowledge, the present paper
constitutes the first detailed study of the different
thermodynamic functions of an ideal polaron gas
for arbitrary a, T, and w,. Most of the previous
studies on the thermodynamic properties of the po-
laron system are confined to the calculation of the
ground-state energy. There exist a few calculations
of the polaron susceptibility in the small magnetic
field limit. Namely, Hellwarth and Platzman? cal-
culated the polaron diamagnetic susceptibility for
small magnetic fields and low temperature by us-
ing Feynman’s path-integral formalism and by us-
ing the same (“symmetrical”) trial action as in
Feynman’s polaron theory.? Recently, Saitoh*> re-
visited this calculation and used a more general tri-
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al action to calculate X for small magnetic fields
and arbitrary temperature. The calculations in
Refs. 3 and 4 are intended to be valid for arbitrary
a. In Ref. 5 Saitoh extended his calculation to ar-
bitrary magnetic field strength. Only analytic re-
sults were presented; no numerical analysis was
made in Ref. 5.

The numerical study of the problem reveals in-
teresting phenomena. Namely, for certain values
of a, T, and o, the ideal gas of polarons undergoes
a phase transition. At the phase-transition point
the polaron transforms in the direction perpendicu-
lar to the magnetic field, and with increasing mag-
netic field strength, from a polaronlike state with
M) =M, to an almost-free-electron state with
M” >>M, ~m [here M” =(v|,/w,| )? and
M, =(v, /w,)* are the masses of the Feynman po-
laron, respectively, parallel and perpendicular to
the magnetic field]. Thus at the phase-transition
point the effective electron-phonon interaction in
the direction perpendicular to the magnetic field
changes abruptly. Parallel to the magnetic field no
large changes in the effective electron-phonon in-
teraction (and thus in M))) are found at the transi-
tion point. As a consequence of this phase transi-
tion the thermodynamic functions .#, X, E, S, and
C exhibit a discontinuity at the transition point.
Those discontinuities, found in the derivatives of
the free energy, are a property of our model calcu-
lation and may or may not exist in the exact result.
However, the exact result, of course, is not known.

Previously, we reported® briefly on the existence
of the phase transition of the ideal polaron gas in
the special case of zero temperature. For T =0 the
phase diagram consists of a curve of first-order
phase transitions that starts in the “critical” point
(¢=4.20+0.01,0, /09=2.24+0.01) where a
second-order phase transition occurs. Increasing a
(a>4.2) increases the critical magnetic field at
which the transition occurs. For a <4.2 no phase
transition is found at zero temperature. In this pa-
per we extend the previous results to arbitrary tem-
perature and found that the line of first-order
phase transitions at zero temperature is extended to
a two-dimensional surface in the three-dimensional
space a,T,0.. The critical point at zero tempera-
ture becomes a critical curve which circumscribes
the plane of first-order phase transitions.

In the past several investigators’~!? have
claimed,'® or suggested, that the polaron would ex-
hibit a transition at a specific a value for T =0
and o, =0. The polaron would transform from a
free to a self-trapped state. We have reviewed the

status of this problem in Ref. 14, where we
showed numerically that the Feynman polaron
theory gives a smooth transition (dE /da and

9E /3a? are continuous ) between the weak and
the strong electron-phonon coupling region, while
the approximation of Refs. 7— 12 lead to a discon-
tinuous behavior of 3E /da and/or (depending on
the approximation considered) 3°E /da? as a func-
tion of a. Although the Feynman polaron theory
provides lower values for the polaron ground-state
energy than the approaches of Refs. 7 and 9—12,
the above reasoning does not prove that the exact
polaron ground-state energy would have continuous
derivatives.

If the polaron also interacts with acoustical
phonons, Toyozawa!® showed that the above-
mentioned localization-type of phase transition is
possible. Contrary to the phase transition predict-
ed by Toyozawa (involving acoustical phonons) the
phase transition reported here is induced by the ap-
plication of a magnetic field. Of course it is con-
ceivable that other external fields, e.g., an electric
field, might also induce a change of polaron state.
The phase transition studied in the present work is
tentatively ascribed to the “stripping” of a polaron.
Namely, if the velocity of the polaron becomes suf-
ficiently large, the polarization cloud surrounding
the electron will no longer be able to follow the
electron and will be stripped off. The polaron then
transforms to a free electron. In the problem
under study the stripping of the polaron occurs
only in two dimensions, namely in the direction
perpendicular to the magnetic field.

The present paper is organized as follows. The
first two sections deal with the zero-temperature
case. In Sec. II the behavior of the polaron masses
M, and M), the magnetization and the susceptibil-
ity, is studied as a function of the magnetic field
for small and intermediate values of the electron-
phonon coupling strength. A detailed numerical
comparison between different theories is presented.
Sec. III deals with the phase transition of the ideal
polaron gas occurring if a >4.2. Thermodynamic
quantities are studied in the vicinity of the critical
point. A phase diagram is plotted and an order
parameter is defined. In Sec. IV the magnetic
field is taken equal to zero (thus M, =M)) and the
polaron mass, the internal energy, the entropy, and
the specific heat are studied as a function of the
temperature for different values of @. In the
specific heat a peak is found to occur at T/Tp
=0.20+0.01 (with Tp="%wy/kg; kg is the
Boltzmann constant) whose position turns out to
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be a independent. The combined influence of tem-
perature and a magnetic field on the phase-transi-
tion behavior of the polaron is studied in Sec. V,
first as a function of the magnetic field and subse-
quently as a function of temperature. It is found
that the critial point (a=4.2,0, /w,=2.24) shifts
to smaller a and smaller w, values if temperature
increases. A plot of the three-dimensional phase
diagram is presented. In Sec. VI concluding re-
marks are presented. We comment on the differ-
ence between the present approach and a mean-
field-type approach. The experimental implica-
tions of the present theoretical results are critically
discussed. The units used in the present paper are
such that fi=m =wy=1.

II. SMALL- AND INTERMEDIATE-COUPLING
BEHAVIOR OF THE IDEAL POLARON GAS
AS A FUNCTION OF THE MAGNETIC FIELD
(ZERO TEMPERATURE)

A. Polaron ground-state energy,
the magnetization, the susceptibility,
and the mass of the Feynman polaron

In Fig. 1 the ground-state energy (solid curve) of
one polaron is plotted as a function of the magnet-
ic field for a=1. For comparison we plotted the
ground-state energy of a free electron (dotted
curve) in a magnetic field. The influence of the
electron-phonon interaction on the electron can be
understood as follows. First, the electron-phonon
interaction results in a binding energy which, at
@, =0 and for small a is proportional to —a.
This shifts the dotted curve to the dashed curve in
Fig. 1. Second, the quantum states to be studied in
a magnetic field are those of a quasiparticle—the
polaron—with mass m*. This results in the
dashed-dotted curve in Fig. 1, which corresponds
to the effective-mass approximation to the polaron
ground-state energy. Larsen!® has shown that the
effective-mass approximation is only valid for
small magnetic fields. Figure 1 confirms Larsen’s
statement. With increasing magnetic field the
effective-mass approximation breaks down because
the polaron can no longer be considered as a rigid
particle with a well-defined mass.

The mass of the Feynman polaron perpendicu-
lar, M, = (v, /w,)* , and parallel, M}| = (v /w);)?,
to the magnetic field is shown in Fig. 2 for dif-
ferent values of the electron-phonon coupling con-
stant a, namely a=1, 2, and 3. As discussed in
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FIG. 1. Polaron ground-state energy (solid curve) as
function of the magnetic field for a=1 and at zero tem-
perature. The lowest unperturbed Landau energy level
(dotted curve) and the same shifted with the polaron
binding energy at zero magnetic field (dashed curve) are
drawn for comparison. For small magnetic field values
the polaron energy follows closely the lowest Landau
level of a particle with mass m* (o, =0) (which is the
polaron mass at zero magnetic field) shifted with the po-
laron binding energy at zero magnetic field (dashed-
dotted curve).
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FIG. 2. Masses of the Feynman polaron perpendicu-
lar, M, =(v, /w, )%, and parallel, M| =(v|;/w)|)?, to the
magnetic field for a=1,2,3 and at zero temperature.
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paper I, the masses M, and M| are a measure of
the effective interaction between the electron and
the phonon field. To understand Fig. 2 it should
be realized that two interaction mechanisms, which
impose a different symmetry on the electron wave
function, are involved in the problem. The interac-
tion of the electron with the magnetic field im-
poses axial symmetry, while the electron-phonon
interaction has spherical symmetry.

In the absence of a magnetic field the electron
wave function is spherical symmetrical and thus
M,=M). Applying a magnetic field results in a
decrease of the radius!’ of the electron wave func-
tion perpendicular to the magnetic field. Conse-
quently, as a function of . the electron tends to
localize in the direction perpendicular to the mag-
netic field; this results in an increase of the effec-
tive electron-phonon interaction and therefore in
an increase of M, with increasing w,. Parallel to
the magnetic field the radius of the electron wave
function also decreases with increasing w, because
of the electron-phonon interaction, which tries to
restore the spherical symmetry. Consequently, the
effective electron-phonon interaction parallel to the
magnetic field will also increase with increasing
., and correspondingly M| also increases. From
the intuitive picture one expects that the radius of
the electron wave function decreases more rapidly
in the direction perpendicular to the magnetic field
than in the direction parallel to the magnetic field.
The result is that M, increases faster with the
magnetic field than M|;. Our numerical calcula-
tion (see Fig. 2) displays such a behavior if
o, /oy<<1 [see also Egs. (72a) and (72b) in paper

I].

To understand the high magnetic field
(0, /@g>>1) behavior of M, we present the follow-
ing tentative interpretation. First, consider the sit-
uation without electron-phonon interaction. Then,
perpendicular to the magnetic field the electron
behaves as a harmonic oscillator with frequency
.. The phonons are also harmonic oscillators but
with a different characteristic frequency w,. When
the electron-phonon interaction is switched on, the
phonon oscillators will try to follow the electron
oscillatory motion, resulting in the polarization
cloud. If @./wy>>1 the electron oscillates so rap-
idly that the phonon oscillators can no longer fol-
low the electron motion, and the polarization cloud
vanishes. In other words, for w,/wy>>1 the effec-
tive electron-phonon interaction decreases with in-
creasing .. This means if w,— o then v, — w,,
or M, — 1, as is apparent from Fig. 2.

To summarize, we note that in the direction per-
pendicular to the magnetic field two mutually op-
posing effects are operative. First, there is an in-
creasing localization of the electron with increasing
magnetic field which, for small magnetic fields
(0, /wy << 1), accounts for the increase of the po-
laron masses M, and M| with increasing o..
Second, the magnetic field induces an oscillatory
motion of the electron which, for high w,, prevents
the phonons from interacting in an efficient way
with the electron. This results in a decrease of M
with increasing .. Parallel to the magnetic field,
no oscillatory motion is induced by the magnetic
field, and thus M) keeps increasing for large mag-
netic fields.

The above intuitive explanation for the magnetic
field behavior of M, and M || can be made more
explicit by a direct calculation of the induced po-
larization charge density. This is done in the Ap-
pendix.

The magnetization,'® .# =.# —.#,, and the sus-
ceptibility X =X —X,, of the polaron referred to the
electron magnetization (.#,) and the electron sus-
ceptibility (X,) are plotted, respectively, in Figs.
3(a) and 3(b) as a function of the magnetic field for
the electron-phonon coupling constants a=1, 2,
and 3. At T'=0 the electron magnetization and
susceptibility are given by’ .#,=—0.5 and
X, =0.0 (dimensional units), respectively.

The derivatives OF /3¢ and 8°F /397 are calcu-
lated numerically here because, except in limiting
cases, the free energy F is only known numerically.
Two independent numerical procedures where used
to calculate the derivatives.

(1) A smoothing procedure?® based on spline
functions was used. This procedure gives, besides
the free energy interpolated between the numerical-
ly calculated values, also the first and second
derivatives of F.

(2) A procedure based on the method of differ-
ences.?!

The magnetization of a free spinless electron is
—0.5. As is apparent from Fig. 3(a) the electron-
phonon interaction reduces the absolute value of
M,or | M| <0.5 (but 4> —0.5). This is under-
stood as follows: For relatively small electric
fields the effective-mass approximation for the po-
laron is valid'® and thus .# = —0.5m /m* (m* is
the polaron mass) in the zero magnetic field limit.
Consequently, the contribution of the electron-
phonon interaction to the zero magnetic field mag-
netization, .# =0.5(1 —m /m*), increases with in-
creasing a (because m* increases with increasing
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FIG. 3. (a) Magnetization .# and (b) susceptibility X of the polaron, shifted, respectively, with the free-electron
values —0.5 and 0.0 for a=1,2,3 and zero temperature. Thus .# and X are entirely a consequence of the electron-

phonon interaction.

a). For small electron-phonon coupling and small
magnetic fields this can also be demonstrated
analytically. From Egs. (67) and (73) of paper I
one obtains for the electron-phonon contribution to
the magnetization per polaron (for a << 1 and

o, /wy<<1)

1

M= a[l——llgwc-}-O(wz)]

— 5 [1+0(0,)]+0(a%) , 1)

which results in the zero magnetic field values

# =0.0820, 0.161, and 0.238, respectively, for
a=1, 2, and 3. Note that these values for .#
agree very well with the numerical results [see Fig.
3(a)]. This is rather surprising because the deriva-
tion of Eq. (1) was restricted to a << 1.

The two regimes apparent in the curves for M,
(see Fig. 2) are also present in the magnetization _
curves [see Fig. 3(a)]. For high magnetic fields, .#
decreases more slowly than for low magnetic fields.
The transition region between the “low” and

“high” magnetic field behavior of .# is the same
as the magnetic field region in which M, exhibits
its steepest decrease (see Fig. 2). In the high mag-
netic field limit .# tends to the free-electron value
—0.5, or A& — 0 for w,/wy— o as is apparent
from our numerical calculation [see Fig. 3 (a)].
For small electron-phonon coupling this can also
be shown analytically because in paper I we calcu-
lated the asymptotic form of the free energy for
large magnetic fields [see Eq. (76) of paper I].
This results in the magnetization

a

M=
20,

+0((lnw,)/0¥?) . )

The susceptibility curves [Fig. 3(b)] show two
structures. For small w, the susceptibility X de-
creases as a function of the magnetic field. A lo-
cal minimum is reached for a magnetic field value
such that @, /wg< 1. The position of this mini-
mum shifts to smaller magnetic fields with increas-
ing electron phonon coupling. This minimum is
typical for the weak- (intermediate-) coupling re-
gion. As will become apparent later on, for a >4
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B. Comparison with other theories
and the importance of the anisotropy
in the effective electron-phonon interaction

no such local minimun appears for v, /wy< 1. For
increasing w, the susceptibility reaches a local
maximum at o, /wo> 1. This maximum appears
at the magnetic field value where the steepest de-
crease of M, is found (see Fig. 2). With increasing
electron-phonon interaction the maximum in the
susceptibility becomes more pronounced, and
furthermore, the position of the maximum shifts to
higher magnetic field values. In the asymptotic
limit of high magnetic fields, and for small

In Table I and in Fig. 4 the polaron ground-state
energies obtained by different theories are com-
pared as a function of the magnetic field for
several values of the electron-phonon coupling con-
stant. The Rayleigh-Schrddinger perturbation
theory (RSPT) expression derived by Larsen in

Yo 22
electron-phonon coupling, the suceptibility becomes Ref. 8'and _the result of Lepine and 12\'3Iatz and of
the adiabatic theory of Evrard et al.*> (EKD) have
[see Eq. (76) of paper I}
been evaluated numerically. Kartheuser and
- (22 +0((Inw,)/ wz/z) ) 3) Negrete?* (KN) used the adiabatic approximation.
@, to calculate the ground-state energy (and the longi-

=

TABLE I. For two values of the electron-phonon coupling constant, a=1 and a=3, numerical results are presented
for the polaron ground-state energy of the following theories: Evrard, Kartheuser, and Devreese (Egxp), Larsen’s
Rayleigh-Schrédinger perturbation theory (Erspr), Lépine and Matz (Eyy), and the present result for a symmetrical
(Ey) and an anisotropic (E ) effective electron-phonon interaction. The mass of the Feynman polaron corresponding to
the energy E, is given by ( /w)’. In the case of an anisotropic effective interaction two masses can be defined, namely
(vy /w;)* and (v} /w), 2.

@/ Egxp Egspr Eim Ey w/w)? Eq wi/w)? ) /wy)?
a=1
0.0 —0.23164 —1.00000 —1.00000 —1.01303 .17 ~ —1.01303 1.17 1.17
0.2 —0.216 60 —0.91648 —0.91806 —0.92918 1.18 —0.92920 1.18 1.18
0.4 —0.17879 —0.83251 —0.83545 —0.84490 1.19 —0.84492 1.20 1.19
0.6 —0.12758 —0.74804 —0.75209 —0.76012 1.20 —0.760 15 1.21 1.21
0.8 —0.068 06 —0.66302 —0.66799 —0.674 84 1.21 —0.674 88 1.22 1.22
1.0 —0.002 87 —0.57747 —0.58317 —0.58907 1.22 —0.589 14 1.21 1.23
12 0.066 45 —0.49140 —0.497 69 —0.502 80 1.23 —0.50300 1.16 1.25
1.4 0.13891 —0.404 83 —0.41158 —0.41609 1.23 —0.41648 1.13 1.26
1.6 0.21388 —0.31778 —0.32491 —0.32894 1.24 —0.32957 L.11 1.28
1.8 0.29088 —0.23029 —0.23771 —0.24137 1.24 —0.24232 1.09 1.30
20 0.36958 —0.14237 —0.15003 —0.15341 1.25 —0.15442 1.05 1.33
3.0 0.781 14 0.30271 0.294 48 0.29135 1.27 0.28806 1.04 1.39
5.0 1.6552 1.2132 1.2051 1.1995 1.35 1.1930 1.02 1.46
10.0 3.9589 3.5547 3.5479 3.5298 1.71 3.5201 1.00 1.74
a=3
0.0 —1.346 —3.000 —3.000 —3.133 1.79 —3.133 1.79 1.79
0.2 —1.343 —2.949 —2.978 —3.080 1.86 —3.080 - 1.85 1.84
0.4 —1.333 —2.898 —2.943 —3.025 1.92 —3.025 1.92 1.91
0.6 —1.316 —2.844 —2.900 —2.969 1.98 —2.969 1.98 1.98
0.8 —1.293 —2.789 —2.853 —2.912 2.03 —2.912 2.02 2.04
1.0 —1.265 —2.732 —2.803 —2.853 2.09 —2.853 2.04 2.11
1.2 —1.232 —2.674 —2.749 —2.793 2.14 —2.793 2.02 2.18
1.4 —1.195 —2.615 —2.692 —2.732 2.18 —2.732 1.93 2.25
1.6 —1.154 —2.553 —2.633 —2.669 2.22 —2.671 1.75 2.32
1.8 —1.110 —2.491 —2.572 —2.606 2.26 —2.609 1.52 2.39
2.0 —1.062 —2.427 —2.510 —2.542 2.30 —2.546 1.37 2.47
3.0 —0.7894 —2.092 —2.179 —2.207 2.44 —2.231 1.11 3.02
5.0 —0.1301 —1.360 —1.455 —1.490 2.39 —1.558 1.05 4.25

10.0 1.817 0.6640 0.5264 0.4575 4.29 0.3141 1.01 7.20
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FIG. 4. Comparison between the polaron ground-
state energy of different polaron theories for a=4 and
zero temperature. We compared the results of
Kartheuser and Negrete (KN, Ref. 24), Evrard,
Kartheuser, and Devreese (EKD, Ref. 23), Larsen’s
Rayleigh-Schrodinger perturbation calculation (RSPT,
Ref. 8), Lépine and Matz (Ref. 22), and the present re-
sult with a symmetrical (sy) and an anisotropic (as) ef-
fective electron-phonon interaction.

tudinal polaron mass) of a polaron in a magnetic
field. They obtained lower results than EKD be-
cause correlation effects between the electron and
the phonons were taken into account.

To investigate the importance of the anisotropy
in the effective electron-phonon interaction we also
calculated the polaron ground-state energy in the
case of a symmetrical effective electron-phonon in-
teraction. For that purpose a numerical variational
calculation was performed using Eq. (60) of paper
I with v=v, =v); and w=w, =w);. Only two,
rather than four, variational parameters then
remain. The results obtained with the symmetrical
effective electron-phonon interaction are indicated
with the symbol sy, those for the anisotropic effec-
tive electron-phonon interaction with the symbol
as. For a=1 and 3 the results are tabulated (see
Table 1), while for @ =4 where the differences be-
tween the different theories become quite large
they are plotted (see Fig. 4). The corresponding re-

0.5 a=b
i [\ (a) T=0
|
\ —— present work (as)
A \ ——~ present work (sy)
'\ "'._.: —— Lepine and Matz
Y —-— Larsen [RSPT)
\ "-..‘_. —— 74|

j —— present work (as)
-DZ-I ———- present work ( sy )
- I —-— Lepine and Matz

—-~ Larsen (RSPT)
| EKD

FIG. 5. Same as Fig. 4 but now we compared (a)
magnetization and (b) susceptibility of the different
theories.

sults for the magnetization and susceptibility for

a=4 and T=0 are plotted in Figs. 5(a) and 5(b).
From the numerical results presented in Table I

and in Figs. 4, 5(a), and 5(b) we can conclude the
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following.

(1) The large difference between the adiabatic
theories?>?* and the other approaches presented in
Table I and in Fig. 4 are understood as follows. In
the adiabatic theories only one trial wave function
is used, while the other approaches use of a com-
plete spectrum, and consequently a complete set of
wave functions, to simulate the electron motion.
Note that the region of numerical validity of Refs.
23 and 24 is limited to large magnetic fields
(w0, /®g> 1) and small and intermediate values of
the electron-phonon coupling. However, the main
significance of Ref. 23 is methodological. Further-
more, in Ref. 23 the rigorous asymptotic form for
the polaron ground-state energy for w./wy>>1 and
a << 1 was obtained.

(2) The present result gives the lowest values for
the ground-state energy of a polaron in a magnetic
field obtained so far. Only for zero magnetic field
have Larsen®® and Adamowski et al.?® obtained re-
sults that are slightly lower. Note that the differ-
ence between the polaron ground-state energy ob-
tained with a symmetrical effective electron-
phonon interaction (E,y) and the polaron ground-
state energy obtained with the anisotropic effective
interaction (E,,) is very small for &, /wy<1. The
same is true for the magnetization and the suscep-
tibility of the symmetrical and anisotropic effective
electron-phonon interaction. This is because, as we
already noted, M, =(v, /w,)? and M) =) /w )2
are nearly the same for o, /wo < 1 (see Fig. 2 and
Table I).

(3) For the intermediate-coupling region the
small magnetic field behavior of the ground-state
energy of the various theories differs strongly.

This is apparent from Fig. 4. For example, the
small magnetic field behavior of the present result,
E, and E, is given by (curve B ia Fig. 4)

(0]

* +0(0}) @

1
E 3V, Y
) w)+2 ma

with Ep the Feynman? polaron ground-state energy
and my the polaron magnetic mass (see Fig. 4 of
paper I). The analytic expression for my has been
given in Ref. 27. For a=4 one has Er= —4.256
and my =2.58. The RSPT result, as obtained by
Larsen,? gives (curve 4 in Fig. 4)

Ep(0)=—a+50,(1—a/6)+0(w?) 5)

from which we obtain the perturbation result for
the polaron mass: 1/(1—a/6). For a=4 one has
1/(1—a/6)=3. The ground-state energy of the
Lépine-Matz approximation and the adiabatic

theories EKD and KN do not have such a linear
term in the magnetic field [see Figs. 4 and 5(a)].
The first nonzero correction term is quadratic in
.. Such a small magnetic field behavior for the
polaron ground-state energy is unrealistic. Indeed
from the effective-mass approximation, which is
valid'® for o, /oy << 1and all @, one obtains the
following linear magnetic field correction to the
polaron ground-state energy: %wc /m*, with m*
the polaron mass. One can show that the Lépine-
Matz ground-state energy contains a term linear in
o, if a <3.8. It should be noted that EKD and
KN are high-field approximations and are, in prin-
ciple, not applicable in the small magnetic field re-
gion.

(4) For small magnetic fields (o, /wy< 1) the
difference between the ground-state energy of the
Lépine-Matz approximation and that obtained here
decreases with increasing magnetic field strength.
However, when the anisotropy in the effective
electron-phonon interaction starts to become im-
portant (i.e., for o, /wy> 1), the difference between
E, and Epy and between E,  and E, increases
with increasing o, (see Table I and Fig. 4). Note
that for high magnetic field values the Lépine-
Matz approximation to the polaron ground-state
energy, the magnetization, and the susceptibility is
close to the result of the present work, in the case
of a symmetrical effective electron-phonon interac-
tion [see Figs. 4, 5(a), and 5(b)].

(5) The incorporation of the anisotropy in the ef-
fective electron-phonon interaction drastically
changes the behavior of the susceptibility [see Fig.
5(b)]. For example, the peak structure in X is en-
tirely a consequence of this anisotropy [compare
the curves as and sy in Fig. 5(b)]. This observation
leads to the conclusion that the detailed simulation
of the electron motion, by the trial action, is of
crucial importance. Note that the susceptibility as
obtained from Larsen’s RSPT calculation shows a
minimum. As mentioned before, this is a conse-
quence of the weak-coupling nature of RSPT.

III. STUDY OF THE PHASE TRANSITION
OF AN IDEAL POLARON GAS
IN A MAGNETIC FIELD
(ZERO TEMPERATURE)

It should be noted that for each value of a and
o, (here we take T =0) we must find the
minimum of the expression for the polaron
ground-state energy [see Eq. (59a) of paper I] in
the four-dimensional parameter space
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(vy,wy,v),w)). A numerical calculation shows
that this energy exhibits one minimum if a <2.4.
This is true for all magnetic fields if T=0. In this
coupling region (a <2.4) the polaron state evolves
continuously from the small to the large magnetic
field behavior [e.g., see Fig. 2 and Figs. 3(a) and
3)].

If @ >4.2, and for a certain range of magnetic
field values the polaron ground-state energy has
two local minima in the four-dimensional space of
variational parameters. This is illustrated in Fig. 6
for the special case a=5. For simplicity we

477}
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FIG. 6. Polaron ground-state energy as function of
the inverse of the mass M, =(v, /w,)? for a=35, zero
temperature, and for different values of the magnetic
field. The energy was calculated along a straight line in
the four-dimensional parameter space. This line was de-
fined by v, =aw, +b and (v);,w)) was taken fixed. The
set of constants (a,b,v),w))) are, respectively, equal to
(0.865,3.03,4.17,1.73) for w,/wo=2.64,
(0.876,3.03,4.17,1.71) for w./wy=2.70,
(0.883,3.03,4.17,1.70) for w./wo=2.76,
(0.901,3.09,4.21,1.66) for w./wo=3.06, and
(0.915,3.15,4.26,1.63) for w./wo=3.38. The arrows
pointing upward indicate the position of the local mini-
ma.
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present in Fig. 6 only the energy values as calculat-
ed along a certain line in the four-dimensional
parameter space. This straight line is defined by
v;=aw, +b and (v, w)|), where the values for aq,
b, v)|, and w)|) are chosen such that it connects
both minima approximately. The resulting energy
is then plotted as function of the inverse of the
Feynman polaron mass perpendicular to the mag-
netic field, namely 1/M, =(w, /v,)%. For w, /o,
<2.64 (a=>5) the polaron ground-state energy has
only one local minimum in the four-dimensional
space of variational parameters. With increasing
magnetic field a second local minimum appears at
a smaller value of M, (see Fig. 6). As is apparent
from Fig. 6 the second local minimum becomes
more and more pronounced with increasing mag-
netic field strength. For w,/wy<2.76 the
minimum corresponding to the largest M value is
the lowest one, and this minimum will correspond
to the stable polaron state, while the second
minimum corresponds to the metastable state. At
. /wy=2.76 the energy corresponding to both
minima are the same. For still larger magnetic
field values the local minimum at the smallest M
value is the lowest one and will correspond to the
stable polaron state, while the other minimum now
characterizes the metastable state. This means
that, for a polaron in a magnetic field, the polaron
state changes discontinuously at o, /wy=2.76 (for
a=5 and T=0). This transition is a first-order
transition. At the transition point the mass M
changes discontinuously and consequently also the
effective interaction between the electron and the
phonons.

Now we examine the electron-phonon coupling
region around a=4.2 as function of the magnetic
field. In Fig. 7 the masses of the Feynman po-
laron are plotted as function of the magnetic field
around the onset of the phase transition. Two
main features are apparent from Fig. 7.

(1) The small and high magnetic field behavior
of the polaron are connected in a continuous way
if @ <4.2 (see also Fig. 2). There is a finite transi-
tion width, or there is a transition region. For
a < 4.2 the transition occurs at a well-defined tran-
sition point. The transition region for a <4.2, or
the transition point if a > 4.2, shifts to larger o,
values with increasing electron-phonon coupling.
The effect of the transition on M, and to a lesser
extent on M| I becomes larger with increasing a.

(2) For a > 4.2 the Feynman polaron mass paral-
lel to the magnetic field M) also exhibits a jump,
which, however, is much smaller than the jump in
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FIG. 7. Mass of the Feynman polaron in the direc-
tion perpendicular, M, =(v, /w,)? and parallel,
M =(v);/w)) )%, to the magnetic field (inset of figure),
for a=4,4.1,4.2,4.3. The temperature is equal to zero.

M,. For magnetic fields above the transition the
slope of M is larger compared to the slope of M,
before the transition. Furthermore, note that for
o, > wg the anisotropy in the effective electron-
phonon interaction starts to increase drastically
with increasing magnetic field as is apparent from
Fig. 7.

In Figs. 8(a) and 8(b), respectively, the magneti-
zation .# and the susceptibility X of the polaron
(referred to their value at a=0) are plotted in the
neighborhood of the transition region. Figure 8(a)
shows that the electron-phonon contribution to the
magnetization is largest for the polaron state with
smallest mass M. For large magnetic field values
the magnetization asymptotically decreases to zero.
Note that for a <4.2 the magnetization is a con-
tinuous function while for a > 4.2 it has a discon-
tinuity at a certain critical magnetic field, which
indicates that a first-order phase transition®® takes
place.

The peak in the susceptibility, which was already
present in Fig. 3(b), becomes more pronounced as
a increases. At a=4.2040.01 the susceptibility
diverges at w./wg=2.24+0.01, which implies that
a second-order phase transition takes place (because
in this point the magnetization .# is still continu-
ous). For a > 4.2 the susceptibility has a discon-

tinuity for the same magnetic field as .#, M|, and
M.

%or larger electron-phonon coupling, a=35, 6,
and 7, we plotted the mass of the Feyman polaron
perpendicular [Fig. 9(a)] and parallel [Fig. 9(b)] to
the magnetic field, the magnetization [Fig. 10(a)],
and the susceptibility [Fig. 10(b)]. The solid curves
in these figures indicate the value in the stable po-
laron state, while the dashed curves give the value
in the metastable state. For M, M ||» and # the
different effects around the phase-transition point
become more pronounced for increasing a. In con-
trast the jump in the susceptibility at the phase-
transition point becomes smaller with increasing a.

Now we can construct a phase diagram of the
ideal polaron gas as a function of the physical
parameters, which for T'=0 are the magnetic field
. /0y and the electron-phonon coupling strength
a. Such a plot has already been reported in Ref. 6.
It turns out to be more interesting to plot the
points, at which a discontinuous change takes
place, in a 1/a—wy/w, plane. An elementary ver-
sion of such a plot has been presented in Ref. 29.
In Fig. 11 we have extended this plot to higher a
and o, values. The solid curve in Fig. 11
represents the points at which a first-order phase
transition takes place. The curve ends at the point
(¢=4.2040.01,0. /®y=2.24+0.01). This point, at
which a second-order phase transition takes place
[see Figs. 8(a) and 8(b)], is the critical point.?® In
the region between the dashed curves metastable
states can exist.

In what follows, the difference between the
weak- and strong-coupling behavior of the phase
transition is discussed. For small a, the polariza-
tion cloud will follow the electron adiabatically
(see, e.g., the discussion of Allcock in Ref. 30 on
the dynamic or high-frequency approximation).
For magnetic fields such that o, < @ the polariza-
tion cloud will still be able to follow the electron.
However, for o, > @, the electron oscillates so rap-
idly that the phonons can no longer follow the
electron adiabatically. In the direction perpendicu-
lar to the magnetic field the polarization will then
diminish, which gives rise to a decreasing polaron
mass M, with increasing magnetic field. This
stripping of the polaron occurs for o, /wg~1. It is
a continuous process as function of the magnetic
field (see Fig. 2).

For large a we are in a totally different situa-
tion. The electron will now follow the polarization
changes adiabatically. The electron moves in a
self-induced potential well, which is built up by the
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FIG. 8. (a) Magnetization and (b) susceptibility of the polaron (referred to the value of a free electron in a magnetic
field) around the transition region. For a=4.20+0.01 the susceptibility diverges at w./wo=2.24+0.01.

highly correlated motion of electron and phonons
(the latter can be treated as almost static®). The
correlated electron-phonon motion induces an elec-
tron oscillatory motion with a characteristic fre-
quency v that is proportional to a?w,. The mag-
netic field, on the other hand, imposes an oscillato-
ry motion with frequency w.. As long as o, <,
the electron can still move in a correlated way with
the phonons, and this implies that M||=M,. An
increase of the magnetic field so that o, > v will
destroy the correlated electron-phonon motion.
The electron oscillatory motion induced by the
magnetic field is so rapid that there no longer ex-
ists any correlation between the electron and the
phonons in the direction perpendicular to the mag-
netic field. The electron-phonon interaction be-
comes inefficient, and a reduction of the polaron
mass M, results, i.e.,, M| >>M, ~1. The transition
to this symmetry-breaking state occurs when w, ~v
or . /wg~a?. For large a, the line of first-order
phase transition behaves like 1/a~(wy/w,)'/?,
which is in agreement with Fig. 11.

Until now nothing has been said about the order

parameter. Because there are four variational
parameters in the problem, it is not trivial to de-
fine one order parameter. Nevertheless, we will
suggest one. Note that in this section M| has been
considered as the crucial parameter in identifying
the phase transition. The mass of the Feynman
polaron perpendicular to the magnetic field is a
measure for the effective electron-phonon interac-
tion. The magnitude of the discontinuity in M,
indicates how drastic the effect of the phase transi-
tion is on the polaron state. At the transition
point we define the quantity A(1/M,) as the
difference between 1/M, calculated in the
symmetry-breaking polaron state with M| >>M,
~1 and 1/M| calculated in the normal polaron
state with M, ~M,|. The quantity A(1/M) is
plotted in Fig. 12 as function of 4.2/a. For illus-
trative purposes we plotted the order parameter in
the case of an ideal Bose gas (dashed-dotted curve)
and in the case of the three-dimensional Ising
model (dashed curve). For an ideal Bose gas the
order parameter is given by No/N=1—(T/T,)*?,
with No/N the relative number of condensed parti-
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FIG. 9. Masses of the Feynman polaron (a) perpendicular and (b) parallel to the magnetic field for a=5,6,7 and

T =0.

cles and T /T, the temperature T, (see, e.g., Ref.
31, p. 248). As is well known the Ising model,
treated in the molecular field approximation (see,
e.g., Ref. 31, p. 302), leads to the following equa-
tion for the order parameter:

X =tanh(XT,./T) ,

with X=M,/M ., where M, is the spontaneous
magnetization and M the magnetization at T=0.
Two remarks are in order. First, in the above
analogy between the present order parameter and
the order parameter for the ideal Bose gas or the
Ising model, 4.2/a corresponds formally to T/T,.
This is in agreement with earlier suggestions to in-
terpret formally 1/a as an effective temperature if
one is dealing with phase transitions in the polaron
problem.'>!* Second, the behavior of the order
parameter around the critical point defines a
critical exponent 32 B resulting from A(1/M )
~(1—4.2/a)P. The present numerical analysis
gives $=0.63+0.01. Owing to numerical accuracy

problems it was not possible to determine the other
critical exponents, which are connected, e.g., with
the susceptibility and the specific heat.

IV. THE TEMPERATURE DEPENDENCE
OF THE POLARON PROPERTIES
AT ZERO MAGNETIC FIELD

In the absence of a magnetic field the effective
electron-phonon interaction is isotropic and thus
v, =v) =V, w, =w| =w, which implies M, =M
=M =(v/w)?>. The temperature dependence of the
polaron mass M has been studied by Osaka®? in the
limit of small electron-phonon coupling. We have
extended this calculation to arbitrary a (see Fig.
13). For low temperature the effective mass M in-
creases with 7. As explained in Ref. 33 this in-
crease can be attributed to the nonparabolicity of
the polaron conduction band. At higher tempera-
ture the uncorrelated motion of the phonons be-
comes an important factor. It results in a decrease
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FIG. 11. Phase diagram for the polaron ground state
[solid curve, which is extrapolated to very large @ and
very large w, values (thick-dashed curve)]. Metastable
states can exist between the dashed curves.

M, =(v;/w,)* and M|;=(v);/w))* are the masses of the
Feynman polaron, respectively, perpendicular and paral-
lel to the magnetic field.

of the coherence between the electron motion and
the motion of the phonons, i.e., the electron-
phonon interaction becomes less effective, which
results in a decrease of M. Note that the general
trend of the temperature dependence of the polaron

ACT/IM,)

8
L2/

FIG. 12. Order parameter A(1/M,) as function of
the inverse of the electron-phonon coupling constant.
For comparison the order parameter of a Bose gas
(dashed-dotted curve) and of the Ising model (dashed
curve) are shown.
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FIG. 13. Mass of the Feynman polaron M = (v /w)?
as function of the temperature for different values of
the electron-phonon coupling and in the absence of
external fields.

mass is almost independent of a (see Fig. 13).
With increasing a one finds that M increases more
rapidly for small T and decreased faster at higher
T;, the peak structure in the mass-temperature
curve becomes more pronounced. The position of
the peak shifts to smaller T values with increasing
electron-phonon coupling, namely for a=1, 3, 5, 7,
and 9 the peak is located, respectively, at3*
T=0.38, 0.31, 0.27, 0.24, and 0.23 (numerical ac-
curacy +0.01). In the asymptotic limit a— o the
peak seems to occur at T'=0.20.

The contribution of the electron-phonon interac-
tion to the polaron internal energy is plotted in
Fig. 14(a) as a function of temperature for dif-
ferent values of a. Note that E =E —E,, with
E =09(BF)/dpB the polaron internal energy and E,
the free-electron energy. In the zero-temperature
limit the internal energy E (=E) equals the po-
laron ground-state energy. For nonzero tempera-
ture the polaron has a finite amplitude for occupa-
tion of higher excited polaron states, and as a
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consequence E (or E) has to be interpreted as an
average energy. For small electron-phonon cou-
pling and low temperature the internal energy is
analytically given by [use Egs. (79) and (83) of pa-
per I

E:—[a+%a2+0(a3)]+é[%a+0(a2)]

+0(1/8%) . 6

Note that the low-temperature correction to Eis
quadratic in T (B=1/kpT); no term linear in T is
present. Increasing the temperature increases E
until it reaches a maximum. The position of this
maximum shifts to smaller T values with increas-
ing a. For still higher temperatures the internal
energy E starts to decrease. Analytically, we ob-
tain for weak coupling the following high tempera-
ture limit [see Eq. (85) of paper IJ:

172

T [14+5B+0B)]+0% ,

B

= a
E=_%
2

0]

which shows that in the asymptotic limit T— oo
the internal energy E diverges as the square root of
T. Note that the free-electron energy [see Eq. (78)
of paper 1] is given by E, =3/(28), which implies
that the total polaron internal energy E will di-
verge like T in the considered asymptotic limit
T— o0.

The effect of the electron-phonon interaction on
the entropy is shown in Fig. 14(b), where
S =8 -8, with S=—03F /9T the polaron entropy
and S, the free-electron entropy. For small
electron-phonon coupling we obtain the following
analytic expressions for the entropy3+-per polaron:

S=+a[l+55a+0(a?)]
+-[1;[%a+0(a2)]+0(1/32) (8)
in the low-temperature limit [use Egs. (79) and (83)
of paper I] and
S=5aVaVB[1—5B+0(B)]+0(a?)
9

in the high-temperature limit [use Eq. (85) of paper
I].

In Fig. 14(c) the effect of the electron-phonon
interaction on the specific heat is plotted as a func-
tion of temperature for different values of the
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electron-phonon coupling strength. Note that
C=C-C, with C= —Té)zF/aT2 the polaron
specific heat and C, =+ > the free-electron specific
heat. As is apparent from Fig. 14(c), the specific
heat exhibits a characteristic peak whose amplitude
increases with a. The position of this peak is lo-
cated at the temperature34 T=0.20+0.01 and is in-
dependent of the electron-phonon coupling
strength. We have verified this numerically for
values of a between 0 and 10. Furthermore, the
position of this peak does not seem to be very sens-
itive to the approximation used to calculate C (and
thus to calculate F). For example, for a=3 we
calculated the free energy using perturbation
theory (this means v =w in the Feynman trial ac-
tion) and found that the amplitude of the peak is
1.98, which compares to 1.61 for the variational re-
sult. The position of the peak remains at
T=0.20+0.01. If the parameters v and w are
varied slightly, e.g., (v,w)=(4.0,2.1) and (3.42,
2.56) the peak amplitude becomes, respectively,
1.31 and 1.97, while the peak position is still locat-
ed at 7=0.2040.01.

Increasing the lattice temperature above a cer-
tain value alters the sign of the contribution of the
electron-phonon interaction to the specific heat. -
The temperature at which C equals zero decreases
only slightly with increasing a. For example, for
a=1, 3, 5, 7, and 9 the specific heat C becomes
zero, respectively, at the temperature T'=0.46,
0.45, 0.43, 0.41, and 0.40 (numerical accuracy
+0.01). Above these temperatures C decreases to a
minimum and for still larger temperature increases
again to the asymptotic value zero. _

The following expansions for the specific heat C
are obtained in the small electron-phonon coupling
limit. For low temperature one obtains [use Egs.
(79) of paper I]

1+0 +0(a?), (10)

1
B

while for high temperature [use Eq. (85) of paper
I

C= —a?lfﬁ[ 1— ,—5632+0(B3)] +0(a?)

(11)

is found.

A striking feature of the temperature dependence
of the polaron mass M and the thermodynamic
quantities E, S, and C is that the general form of
those curves is not very sensitive to the value of a.
A typical example is the a independence of the
peak position in the C-T curve. This is why only
figures have been presented here for a between 0.5
and 3. For a> 3 no new features appear in the
general form of the temperature dependence of M,
E, S, and C. This is completely different com-
pared to the magnetic field dependence of M, .# ,
and X, the behavior of which depend strongly on
a. This was most dramatically shown in Sec. III
for a>4.2.

V. COMBINED INFLUENCE OF TEMPERATURE
AND A MAGNETIC FIELD
ON THE PHASE TRANSITION

In the previcus sections the effect of an external
magnetic field and the effect of the temperature on
the properties of the polaron have been studied
separately. In this section we consider the com-
bined effects of temperature and magnetic field on
the behavior of polarons. The electron-phonon
coupling strength will be fixed; as an example we
take a=3. First, the properties of the polaron will
be studied as a function of the magnetic field for
different values of the temperature. Subsequently,
the effect of the magnetic field on the temperature
behavior of the polaron is analyzed. In the last
part the results are summarized in a phase dia-
gram.

A. Effect of temperature on the magnetic
field dependence of the polaron mass,
the magnetization, and the susceptibility

From the preceding section it is apparent that
with increasing temperature the effective electron-
phonon interaction increases as long as the tem-
perature does not exceed a specific value (see Fig.
13). Intuitively, one therefore expects that the crit-
ical point (d=4.2,0, /wy=2.24) will shift to a
smaller a value and consequently also to a smaller
magnetic field value (see Fig. 11) if the tempera-
ture increases. This will be confirmed by our nu-
merical results.

In Fig. 15 the mass of the Feynman polaron per-
pendicular and parallel (see inset of figure) to the
magnetic field is plotted as a function of the mag-
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netic field for different values of the temperature.
Note that the curves in Fig. 15 are quite similar to
those in Fig. 7 [see also Figs. 9(a) and 9(b)] if a is
replaced by 7. The Feynman polaron masses

M, =(v,/w,)* and M=, /w) )2 exhibit a
discontinuity at a certain magnetic field value if
the temperature is larger than 0.12.

The polaron magnetization (.#) relative to the
free-electron magnetization (.#,) is shown in Fig.
16(a) as a function of the magnetic field for dif-
ferent values of the temperature. A striking
feature is that the electron-phonon contribution to
the magnetization (.# =.# —.#,) is zero in the
zero magnetic field limit. This is different from
the zero-temperature case [see Fig. 3(a)] where .#
is different from zero in the limit o, /wy—0; in
other words,

lim lim #% lim lim .# .

0,—0 T—0 T—0 o,—0

T T T T T T
a=3 !

(VL/W.)?

TR S S B R

We/Wo 3

FIG. 15. Masses of the Feynman polaron perpendic-
ular, M, =(v, /w,)? and parallel, M| =(v)|/w))?, to the
magnetic field (inset of figure), as function of the mag-
netic field for different values of the temperature at a
fixed electron-phonon coupling constant a=3.

The analytic expression for the electron-phonon
contribution to the magnetization for a << 1,
Bo. <<1, B>>1 is [see Eq. (79) of paper I]

~ a 3 1
M =—— . —_— 2
363(0, 1 4B+O 7 +0(a?),

(12)

which indeed results in .# =0 in the limit w,—0
if B is finite (thus T540). Although expression (12)
is only valid in the limit of weak coupling it is
nevertheless suggestive for intermediate a. Indeed,
for small w, /wq values Eq. (12) results in a linear
increase of .# as function of the magnetic field.
The linear increase is steeper if the temperature is
lower. As is apparent from Fig. 16(a) the same
behavior is found numerically for a=3.

The contribution of the electron-phonon interac-
tion to the polaron susceptibility is shown in Fig.
16(b) around the critical point (T =0.120+0.001,
. /w9 =1.75+0.01). In this point a second-order
phase transition takes place. For temperatures*
higher than 0.12T), the ideal polaron gas under-
goes a first-order phase transition at a certain value
of the magnetic field. For fixed a (here @=3) one
can draw, in the (T /Tp,w. /wo) plane, a curve of
first-order phase transitions that ends in a point
where a second-order phase transition takes place
(at the end of this section we will discuss this in
more detail).

B. Effect of an external magnetic field
on the temperature dependence of the polaron
mass, the internal energy, the entropy,
and the specific heat

In Fig. 17 the mass of the Feynman polaron per-
pendicular, M| =(v, /w L)% and parallel (see inset
of figure), M) =(v) /w, ), to the magnetic field is
plotted as a function of the temperature for dif-
ferent values of the magnetic field. Observe that
for low temperature there is a considerable differ-
ence between M, and M|, which becomes even
more pronounced as the temperature increases.
However, above a well-defined temperature the
difference between M, and M| decreases if tem-
perature increases further. For still higher tem-
peratures the masses M, and M| do not differ
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FIG. 16. Same as Fig. 15 but now for the contribu-
tion of the electron-phonon interaction to (a) magnetiza-
tion (the inset represents an enlargement of the dashed
rectangle) and (b) susceptibility.
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FIG. 17. Same as Fig. 15 but now as function of the
temperature and at different values of the magnetic
field.

very much, and furthermore, they are not very
sensitive to changes of the magnetic field. This is
due to the randomizing effect of temperatures
which tends to restore the spherical symmetry in
the effective electron-phonon interaction, leading to
M) ~M,. Note that for o, /wy>1.75 the Feyn-
man polaron masses M, and M|, exhibit a discon-
tinuity at a well-defined temperature.

The contribution of the electron-phonon interac-
tion to the internal energy [Fig. 18(a)], the entropy
[Fig. 18(b)], and the specific heat [Fig. 18(c)] are
plotted as a function of the temperature for dif-
ferent values of the magnetic field. The applica-
tion of an external magnetic field shifts the energy
E curve to lower E values because the polaron
self-energy increases with increasing magnetic field
(see, e.g., Fig. 1 for the case a=1). For the low
temperature and low magnetic field behavior of the
entropy S [see inset of Fig. 18(b)] we are in a situa-
tion that is quite similar to the one encountered
earlier for the magnetization .#, namely one has

lim lim S5~ lim lim S .

»,—0 T—0 —0 0, —0

In the weak electron-phonon coupling limit this
can be demonstrated analytically. From Eq. (67)
of paper I we obtain for a << 1, Bw, >>1, and
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FIG. 18. Contribution of the electron-phonon interaction to (a) internal energy, (b) the entropy, and (c) specific heat.

Plots are as a function of the temperature. Curves are drawn for different values of the magnetic field but at a fixed

electron-phonon coupling constant, namely a=3.
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o, << 1 the following expression for the entropy
per polaron:

§= 1"—2[1+2;’0wc+0(w3)]

+%%{1—%’wc+o<mz)1+0(a2),

which gives

lim lim S=24+0(a?),
w‘,—ro T—0 12

while from Eq. (8) one obtains

lim lim §=%+0(a? .
T—0 o,—0 4

Furthermore, note that for very low temperature
the entropy S increases with increasing magnetic
field, while for higher values of the temperature
the reverse is true [see Fig. 18(b)].

The specific heat C [Fig. 18(c)] diverges at the
critical point’*: (T/Tp,w./we)=(0.12,1.75). The

0.[4\\

03 04

(13)
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position of the broad peak in the C-T curve, which
occurs at T/Tp =0.20 if w, /wy=0 [see Fig. 14(c)],
shifts slightly to higher temperature values if the
magnetic field increases.

C. Phase diagram

For T =0 the polaron state is determined by two
physical parameters, namely the electron-phonon
coupling constant a and the magnetic field # (or
equivalently w./wq). The resulting phase diagram
(see Fig. 11) is represented by a curve in the two-
dimensional plane (1/a,0¢/w.). In Fig. 19 we ex-
tended this phase diagram to arbitrary tempera-
ture. Now temperature is an additional physical
parameter which is needed to characterize the
phase of the polaron system. The points where a
first-order phase transition takes place form a
two-dimensional surface in the three-dimensional
space (1/a,wq/w.,T). This surface intersects the

~~_

06

FIG. 19. Phase diagram. At the two-dimensional surface a first-order phase transition takes place. The solid, thick
curve represents a critical line where a second-order phase transition takes place. At the front side of the surface, i.e.,
where a >> . /w,, the polaron state is characterized by M, ~M 1> while at the back side of the surface, i.e., where

a << /wo, one has M| >M ~1.
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T =0 plane if @ >4.2. The resulting curve is noth-
ing more then the curve shown in Fig. 11. For

a <4.2 the surface does not intersect the T'=0
plane; it is confined by a line of second-order phase
transitions (see, e.g., foregoing discussion on the
numerical example a=3). In other words, the crit-
ical point (@=4.2,0./wy=2.24) at T =0 becomes
a line of critical points, thus a critical line (thick
and solid curve in Fig. 19), which circumscribes
the surface of first-order phase transitions. This
surface divides the physical space (1/a,wq/0.,T)
into two regions in which the ideal polaron gas is
in two different phases. In the region in front of
the surface (where wy/w, >>1/a or a>>w./wg)
the polarons are characterized by M, ~M

(dressed state). On the other side of the surface
(where wy/w, << 1/a or a <<, /wg) the polarons
are in the “stripped” state, i.e., M| >M ~1.

The differences between the two polaron states
can be summarized as follows.

(1) The anisotropy in the effective electron-
phonon interaction is small for polarons in the
dressed state, i.e., M| ~M,, while it is very large
if the polarons are in the stripped state, i.e.,

M Il >M 1~ 1.

(2) The masses of the Feynman polaron, M, and
M), are larger in the dressed polaron state than in
the stripped polaron state.

(3) The contribution of the electron-phonon in-
teraction to the polaron magnetization .# is larger
in the stripped state than in the dressed state.

(4) In addition, the susceptibility X is larger in
the stripped state than in the dressed state.

(5) The internal energy E is lower for the
stripped state than for the dressed state.

(6) The entropy S is smaller if the polaron is
stripped than if the polaron is dressed.

(7) The contribution of the electron-phonon in-
teraction to the specific heat C is larger for dressed
polarons than for stripped polarons.

VI. CONCLUDING REMARKS

In this section two topics are discussed. First,
the difference between the present approach and a
mean-field approach is outlined. This is of special
importance in connection with the phase transition
found in this work. In a second point the possible
experimental consequences of our calculations are
discussed briefly.

In mean-field theory the dynamical influence of
the phonon field on the electron is replaced by the
influence of an average field on the electron, or

equivalently, the electron moves in a static poten-
tial ¥(X). In the path-integral formulation this
mean-field theory leads to the following general
form for the interacting part of the action (see also
Sec. II of paper I):

Spr= fOB du V(Fw)) . (14)

This must be compared to the following form used
in the present study (see Sec. III of paper I):
Smi= [ du [ ds W(Ew —Fsu —s) , is)
where W (T;7) is a certain function quadratic in ¥
that depends on four parameters v LYWW
This action, given by Eq. (15), can be considered as
containing a dynamical potential that not only de-
pends on the position of the electron at a given
moment but also depends on the whole electron
path between the (imaginary) times 0 and 8. Thus
in Eq. (15) a memory effect is taken into account.
Therefore, the present approach goes beyond
mean-field theory. Note that if we take
w; =w) =0 in Eq. (15) [see also Eq. (28) of Sec. III
of paper I] the double-time integral in Eq. (15) can
be reduced to a single one, and thus Eq. (15)
reduces to the form of Eq. (14). Thus the mean-
field theoretical approach is contained in our
theory as a special case.

Now we will discuss the possible experimental
consequences of the results reported here. These
consequences are twofold, namely, the phase transi-
tion will have implications on the static polaron
quantities, i.e., the thermodynamic quantities, and
on the dynamic polaron quantities, for example,
the magneto-optical absorption. Let us first dis-
cuss the effect on the thermodynamic quantities
like the specific heat and the susceptibility. Intui-
tively, one expects that due to the relatively small
number of conduction electrons (and thus of po-
larons) in ionic crystals and polar semiconductors
the contribution of the electron-phonon interaction
(and also of the electrons themselves) will be negli-
gible in comparison with the contribution of the
ions. To check the validity of this assertion let us
take four typical polar semiconductors KCl, KBr,
AgCl, and AgBr, which have, respectively, the fol-
lowing values for the electron-phonon coupling
constant’®?7; ¢=3.44, 3.05, 1.94, and 1.56. These
four crystals have a face-centered-cubic structure.
It has been shown®®3? that for such dielectric crys-
tals the specific heat (expressed in cal K~!mol 1)
is given by \

T
—928.6 | — 16
Cy=928.6 | = (16)
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if the temperature*® T < ® /50 (@ is called the De-
bye temperature and Cy is the specific heat at con-
stant volume. The specific heat discussed in the
foregoing sections is also taken at constant
volume). In general, for T < ®/50 the specific
heat no longer follows a simple T behavior be-
cause positive terms are added®® to Eq. (16). To
obtain a lower bound to the crystal specific heat
we may use Eq. (16) also for T'< ®/50. Note that
the Debye temperature and the temperature®* T,
which was used as unit temperature here, differ
slightly. For the above materials KCl, KBr, AgCl,
and AgBr one has, respectively,’®37*! @ (T))=235
(305), 174 (240), 183 (260), and 144 (190). As an
example take T'/Tp=0.01, 0.1, and 0.2; it then
follows that the specific heat of the above four ma-
terials is, respectively, of the order 1075 —10~%,
10>—107"', and 0.4—0.9 calK~!cm™3. The
contribution of the electron-phonon interaction to
the specific heat (for a~3.5) is about C~0.01 for
T/Tp=0.01, 1.0 for T/Tp=0.1, and 2.5 for
T/Tp=0.2 [see, e.g., Figs. 14(c) and 18(c)] as ex-
pressed in dimensionless units. The density of con-
duction electrons (and thus polarons) in those ma-
terials is typically of the order*? 10°—107 cm~3,
for the considered temperature range. For these
polaron densities the contribution of the electron-
phonon interaction to the specific heat (in units
calK~!cm™3) is of the order 3 102°—3x 10~
for T/Tp=0.01, 3x10~¥—3x10~" for
T/Tp=0.01, and 810~ 18—8x 10~ for
T/Tp=0.2. These values are at least 15 orders of
magnitude smaller than the values for the total
specific heat. Even if the electron density is as
high as 10'* cm~2 the polaron contribution is still
8 orders of magnitude smaller than the total
specific heat, and thus negligible.

For the magnetic susceptibility the same can be
shown. The diamagnetic susceptibility of** KCl,
KBr, AgCl, and AgBris —39.0%x 1076,
—49.1X107%, —49.0x 1075, and —59.7x10~¢
(as expressed in cgs units). The contribution of the
electron-phonon interaction to the susceptibility
(using the same units as before) is of order 10~ if
n,=10% cm~? and of order 10~'% if n, =10" cm—?
(n, is the electron density) and thus again negligi-
ble in comparison to the total susceptibility of
those polar materials. As a consequence it would
be very difficult, if not impossible, to detect experi-
mentally the first-order phase transition via the
thermodynamic quantities. Degenerate polar semi-
conductors have a much higher electron density
(n, ~10'*—10%). However, those materials are

weakly polar (e.g., GaAs has ¢=0.068). The po-
laron contribution to the specific heat of such ma-
terials is at most a few tenth of a percent while for
the magnetic susceptibility it is at most a few per-
cent.

The parameters of the Feynman polaron
v;,v),wy,w) exhibit a discontinuity at the phase-
transition point. This discontinuity will reflect it-
self in a discontinuous behavior of the magneto-
optical absorption spectrum as a function of the
magnetic field. In particular, we expect that the
cyclotron-resonance line will show a sudden shift
at the transition point. The calculation of this
shift is nontrivial. At present we limit ourselves to
present values of the temperature and the magnetic
field at which the second-order phase transition oc-
curs, for several semiconductors. These values are
presented in Fig. 20. To observe the first-order po-
laron phase transition one should apply magnetic
fields slightly larger (see Fig. 19) than the values
indicated in Fig. 20. The effect of the transition
will be larger if the jump in M, at the transition
point (indicated by AM ) is larger. In Fig. 21 a
plot is made of AM, as a function of temperature
for a=3. For T/Tp <0.12 there is no phase tran-
sition and thus AM, =0. The largest discontinuity
in M, occurs around T /T =0.4 where
AM | =2.76. With increasing magnetic field the
mass M, decreases suddenly from 3.87m to 1.11m

+
In07]
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FIG. 20. Value of the critical temperature and criti-
cal magnetic field for sixteen compound semiconductors.
For CuCl the values of the transverse (1) and longitudi-
nal (||) electron are shown. The error bars originate
from (1) the spreading in the values for @, wo, and m as
reported in the literature (Refs. 36 and 37) and (2) from
the numerical inaccuracy in the determination of the
critical point.
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FIG. 21. Temperature dependence of the jump in the
mass M, at the phase transition point for a=3.

(m is the electron band mass), which is a decrease
with a factor of 3.5.

The magnetic field range indicated in Fig. 20 is
experimentally accesssible by the use of pulsed
magnetic fields.* These magnetic fields have a
pulse duration of the order of microseconds. The
polaron needs only a time of the order of a few pi-
coseconds to relax to equilibrium; this time interval
is 6 orders of magnitude smaller than the pulse
duration of the magnetic field. As a consequence
it is possibly worthwhile to perform a magneto-
optical experiment (see, e.g., Refs. 44 and 45) to in-
vestigate the phase transition of an ideal polaron
gas found in the present theoretical work.
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APPENDIX A

In this appendix we calculate the polarization
charge density induced by the electron; in other
words we will calculate the density of the polariza-
tion cloud of the polaron. The interaction term in
the Frohlich Hamiltonian is proportional to the
electrostatic potential operator (see Ref. 46)

—

®(7)= ——2—2( Viage' &7 +Viake=¥T) (A1)
g

which leads to a polarization charge-density opera-
tor

p(F)= —ﬁv%m. (A2)

After taking the ensemble average of Eq. (A2) one
obtains the polarization charge density surrounding
the electron,

p(F)=(p(F—3))

1 = i
=_-—447'e %kz(Vi’e_’k"(a?e’k"‘)

+ V‘;’eir'?(a%e —ii’-i’)) ,
(A3)

where X is the electron position operator. If the
interaction coefficients ¥y and V% in the
Frohlich Hamiltonian [see Egs. (1)—(4) of paper I]
are considered as independent variables one obtains
for the expectation values in Eq. (A3)

e (geei®Ty—_11 8Z
By=(aye )= BZ vy’ (A4)
T 11 8z
By =(ale k%)= —— ., (AS)
k=lape =57 ary

with Z the partition function. In the path-integral
representation Eq. (A4) becomes [see Egs. (6) and
(8c) of paper I]

1 857)
_1 , A6
B( (A6)

B-
k 14

where the average ( ) is defined in terms of path
integrals. Equation (A6) will be evaluated approxi-
mately. As in paper I, the average ( ) over the
exact ensemble is replaced by an average { ),, over
the ensemble corresponding with the anisotropic
Feynman polaron model [see Egs. (10) and (15) of
paper I]. For the evaluation of the approximation
average we refer to Secs. II and III of paper I,
where all the essential steps can be found. Equa-
tion (A6) becomes equal to

B —k2D(u) —k3ID
B?=—Vg(1+n(wo))f0 du e ~te KD W TRIPHW

(A7)

where the same notations have been used as in pa-
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per I [the function D(u) and Dy (u) are given,
respectively, by Egs. (49a) and (49b) of paper I].
Inserting Eq. (A7) [and using Eq. (A5)] into Eq.
(A3) one obtains

V2a

(27)’%e

X dee’“_‘"?

p(P)= [147(wo)]

B —k2 k2
% fo du e —bg ~KPW , —kiDyw ’
(A8)
and after performing the K integral one finds
a
p(r)= -2—572—;3—/—2;[1+n(a)0)]
B e ¥
d —_—
X Jo Dt
x24y? 22
X T 4Dy w? 4D ()
(A9)

In the limit of zero temperature (T =0), small
electron-phonon coupling (@ << 1), and zero mag-
netic field (w./wy=0), one has D(u)=Dy(u)
=u /2, and Eq. (A9) reduces to

a exp(—V2|T])

= Al0
p(T) /30 7] (A10)

which is the result already obtained in Ref. 46.

Another limiting case for which p(T) can be
evaluated exactly is the one in which T'=0, a << 1,
and o, /wo>>1 (large magnetic fields). In this case
we have D(u)=u/2 and

Dy(u)=(1—e~ ") 20, ~1/20, .

Inserting these expressions into Eq. (A8) and
evaluating the integrals, one obtains for T540,

)= & (22 13
p(T)= e LCXP (x +y)2 2z | .

(A11)

Thus for T=0 and a << 1 we found [see Eq.
(A10)] that in the absence of a magnetic field the
induced polarization is spherical symmetric; the
polaron radius is of the order of 1/v/2. For large
magnetic fields the polaron is strongly anisotropic.
Along the magnetic field [take, for example,

x =y =0 in Eq. (A11)] the polarization increases
with increasing magnetic field strength. This will
result in an enhancement of the polaron mass, M IIs
along the magnetic field. Perpendicular to the
magnetic field [for example, take z=01in Eq.
(A11)] the polaron radius is of the order v'2/w,,
which decreases with increasing magnetic field.
And consequently the polaron pass, M, perpendic-
ular to the magnetic field, will decrease to the
bare-electron band mass in the limit o, /wy— .
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