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The free energy of an ideal polaron gas in a static magnetic field is calculated using
Feynman’s path-integral formalism. The trial action, used in Feynman’s polaron theory,
is extended to take into account the anisotropy of the effective electron-phonon interac-
tion. This results in a free-energy expression with four variational parameters. Accord-
ing to Feynman’s conjecture, the resulting free energy is an upper bound to the exact re-
sult. The approximate free energy is expected to provide accurate results for arbitrary
electron-phonon coupling strength (a), temperature (T'), and magnetic field strength ().
The free energy per polaron is evaluated for limiting values of a, T, and 5.

1. INTRODUCTION

Our objective is the calculation of the Helmholtz
free energy F for a polaron in an ideal polaron gas'
in interaction with an external uniform magnetic
field . The magnetization, the magnetic suscep-
tibility, the internal energy, the entropy, and the
specific heat are subsequently obtained as deriva-
tives of F. As a supplementary result we obtain an
approximation to the polaron mass,? which is a
function of the magnetic field strength. Further-
more, the polaron mass will be anisotropic because
the magnetic field introduces a preferential direc-
tion into the system.

A variety of methods have been applied to the
calculation of the ground-state energy of a polaron
in a magnetic field. Most of them are restricted to
the zero-temperature limit. In the weak and inter-
mediate electron-phonon coupling limit Larsen’
has modified the Lee-Low-Pines (LLP) method* to
describe the ground-state energy and the low-
lying-excited states of a polaron in a weak magnet-
ic field. In the high magnetic field limit a method
based on the LLP transformation and the Born-
Oppenheimer approximation has been introduced
by Evrard et al.> (EKD). In Ref. 6 Larsen
presented a calculation of the polaron-energy spec-
trum for arbitrary magnetic fields valid in the
small coupling limit by using second-order
Rayleigh-Schrodinger perturbation theory (RSPT).
In the same reference a variational generalization
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of the Haga ansatz’ to arbitrary magnetic fields
was derived. Bajaj® approximated the polaron en-
ergy spectrum, the cyclotron mass, and the longitu-
dinal effective mass in a magnetic field, for the
case of weak and intermediate electron-phonon
coupling, by using an approach given by Onsager’
that is based on the use of the Bohr-Sommerfeld
quantization rule. Although in principle such a
method is only valid for large quantum numbers
(i.e., the classical limit) he showed that the results
are also meaningful for small quantum numbers.
The strong electron-phonon coupling limit was
first studied by Porsch.!® He applied the adiabatic
approximation (in the polaron problem also called
the Landau-Pekar approximation) to calculate the
polaron ground-state energy and the longitudinal
effective mass as function of the magnetic field.
This approximation can be improved slightly by
the inclusion of electron-phonon correlation effects
as shown by Kartheuser and Negrete!! (KN). The
first systematic analytical and numerical calcula-
tion of the polaron ground-state energy for zero
temperature, arbitrary electron-phonon coupling
strength and arbitrary magnetic field strength was
performed by Lépine and Matz.!? These authors
used Green’s-function techniques to obtain a varia-
tional upper bound to the exact polaron ground-
state energy in the Fock approximation. They
showed analytically how the weak- and strong-
coupling results, for small and large magnetic
fields, as derived by previous methods, could be
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reobtained.

The validity of the calculations on the magnetic
field dependence of the polaron properties reported
above is restricted to zero temperature. Extensions
to nonzero temperature have been developed using
the Feynman path-integral formalism.!* Hellwarth
and Platzman'* were the first to extend Feynman’s
polaron theory'> to nonzero magnetic field and
nonzero temperature. Explicit calculations were
made within the Feynman two-parameter model
(this means an isotropic quadratic action) in the
limit of small magnetic fields and low temperature.
However, both limits were taken such that
Brw, << 1 (@, is the cyclotron resonance frequency
and B=1/kgT with T the lattice temperature and
kp the Boltzmann constant). In this limit they cal-
culated the free energy, the magnetic susceptibility,
and the polaron mass. They found that the mag-
netic field correction to the free energy is quadratic
in ., while at zero temperature the correction is
linear in the magnetic field. Marshall and Chaw-
1a!® have calculated this linear correction term
within the same approach as in Ref. 14. Recently,
Saitoh!”!8 used a general quadratic action with an
infinite number of variational parameters to calcu-
late the polaron free energy and effective mass in
the limit of small'” and large'® magnetic fields.
However, no numerical results were obtained in
this work.

The purpose of the present paper (hereafter re-
ferred to as I) is to generalize Feynman’s polaron
theory'® to arbitrary magnetic field strength and
arbitrary temperature. To do so we shall apply the
Feynman inequality.'®?° Although Feynman’s
proof of this inequality is only valid if no magnetic
field is present, there are intuitive reasons to be-
lieve that the inequality is also applicable in our
situation. Our arguments in favor of this conjec-
ture, which we call the Feynman conjecture be-
cause Feynman'® had already suggested it in Ref.
19, are listed in the Appendix and are based on a
comparison between the Feynman inequality and
the Bogolyubov inequality.?"??

The trial action S,, used by Feynman is general-
ized as follows: First a magnetic field is included,
and subsequently the quadratic self-interaction is
chosen to be anisotropic. This anisotropy in the ef-
fective interaction is a novel feature not present in
other approaches considered so far, with the excep-
tion of Ref. 18. The inclusion of the anisotropy in
the effective electron-phonon interaction turns out
to be very important in describing the high mag-
netic field properties of the polaron. Furthermore,

it leads to interesting physical effects. This will be
discussed in more detail in the following paper
(hereafter referred to as II).

The outline of the present paper is as follows.
We start in Sec. II with a brief discussion of the
problem and show that in calculating the free ener-
gy along the lines of Ref. 15 it is sufficient to
know the Fourier transform of the electron
density-density correlation function as described by
a trial action (or trial Hamiltonian) and the free
energy corresponding with that trial action. In
Sec. III we present a generalization of the Feyn-
man trial action and show that it can be obtained
from the Hamiltonian of an anisotropic Feynman
polaron model. Static and dynamic properties of
this Hamiltonian are calculated. We found that
this model already exhibits some essential dynamic
features, such as noncrossing of Landau levels and
the appearance of the pinning effect, which are ap-
parent in more detailed investigations on magneto-
optics. The results of Secs. II and III are com-
bined in Sec. IV to obtain an approximation for
the polaron free energy. Most of the previous po-
laron theories are reobtained as limiting cases of
the present result. However, the present result can
be considered as a special case of Saitoh’s'® result,
where the most general form for the quadratic trial
action was used. Section V is devoted to the ana-
lytic calculation of different limits. The results are
compared with other results obtained earlier by
others. Finally, Sec. VI contains our concluding
remarks where special reference is made to the re-
cent work of Saitoh.'® Units are used such that
fi=m =wy=1.

II. FORMULATION OF THE PROBLEM
AND APPROXIMATION

The Hamiltonian that describes an electron in-
teracting with the vibrational modes of a crystal
and a constant uniform magnetic field is given by**

H=H,+H,,+H; (1)
with
L2
He=51r; ﬁ+5f‘— , 2
Hpy,= 2wy(a§;a;>+-;-) , 3)
K
H;= Z(Vl—gaye’?'?-k Veabe=i$T) )
K



25 STATISTICAL PROPERTIES OF POLARONS IN A MAGNETIC.... L... 7283

A free electron in a magnetic field H =rotA with O =y, )
band mass m, electric charge —e, and conjugate oo 172 1/4
coordinates (T, p) is described by the Hamiltonian V=i 0 | 4ma fi

H,. In the following the magnetic field is taken k 4 2ma,

along the z axis, and the vector potential is written

in the symmetrical Coulomb gauge @, is the LO-phonon frequency, V the volume of

the crystal, and a the dimensionless Frohlich cou-

N ¥ X pling constant.
A= |- ‘2—)’, '2_?‘,0 The Helmholtz free energy may be written as
t . . F=— 1 InZ

The operators a > and ay are creation and annihi- ) B
lation operators for a phonon with wave vector K with
and frequency oy. The constant V¢ gives the Z=Tre #
strength of the i_r}teraction between the electron and the partition function. The trace can be split up
the field mode k. For longitudinal-optical (LO) into two parts, an electron part Tr, and a phonon
phonon scattering one has part Try,

Z =Tr, *Tryle ~PH)= [ dT(T,t | Trle P | Tpt)

where the space integral is restricted to the crystal volume V. Time translational invariance allows us to
take ¢ equal to zero. Owing to the property that the Fréhlich Hamiltonian is quadratic in the phonon coor-
dinates it is possible to perform the trace Try;, exactly. Using a path-integral formulation one obtains!>24?%

Z =2, [ d7 [ DF(w) exp{S[F(u)]}8(F(B)—F)8(F(0)—T) 6)

with f D7 an integral over all possible electron paths. The variable u is related to the real time variable ¢
via u =it. The partition function of the free-phonon system (which is a set of harmonic oscillators) appears
as a factor in Eq. (6), which for LO phonons is equal to

Zp=Tre """ _[25inh(8/2)]V )

with N the number of phonon modes. The action S[T] in Eq. (6) was obtained after the exact elimination
of the phonon coordinates and thus is a functional of the electron position coordinates only. It is given

by24,25
S=S,+S;, (8a)
S.=—7% foﬂdu{%’(u)2+imc[x(u)j(u)-ym)x(u)]} , (8b)
Si=3 Vel [ du [ ds Gurlu —s)expliK-[Fw)~F(5)]] , (80
where ‘
Go(u)=73n(w)(e? | 4eoB=1uD) (8d)

is the phonon Green’s function, ®, =e# /mc the cyclotron frequency, and n (»)=(ef*—1)~! the number of
phonons with frequency w.

The path integral in Eq. (6) with the action (8a)—(8c) has not been evaluated exactly. To obtain a reason-
able approximation to Eq. (6) we shall proceed along the lines indicated by Feynman.!®> Instead of the ac-
tion S consider a trial (or model) action S,, that describes the electron evolution in an approximate way.
Furthermore, S,, is taken such that path integrals with this action can be done exactly. S,, defines a parti-
tion function

Z,,,=e_BF"'E fdf’f Dt(u)exp{S,,[F(u)]}8(F(B)—T)8(T(0)—T) 9)
and an expectation value

(A[r]),,.:i [ a7 [ Drwe ™ A[Tw)18(F(B) — IB(F(0)— T) (10)
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for any functional 4 [r]. These notations allow us
to write Eq. (6) as follows:

Z=Zy3Z,{exp(S —Sp))pm .

If the actions S and S, are real one can apply the
convexity property of the function e* to establish
the inequality

(exp(S —Sp))m >exp({S =S )m) »

which leads to the Feynman variational princi-
ple!>% for the free energy

1
ngph+F,,,_E(s—s,,,>m. (11)

For the problem under study the actions .S and
S,. are complex quantities. However, as argued in
the Appendix we accept Feynman’s conjecture that
Eq. (11) can be applied in the present situation be-
cause S and S,, (see next section) are derivable
from Hermitian Hamiltonians after the elimination
of the appropriate variables.

1

With the assumption that S, is derivable from a
Hermitian Hamiltonian Hy (with corresponding
Lagrangian L) after the elimination of the vari-
able R (the generalization to more variables is
straightforward) one may write

s, 1 3 = Spem =
en=o7- [ dR [ dR(u)e "8(R(B)—R)

x 8(R(0)—R) , (12)
where the action Sy is given by
— B . = —
Se[F,R]= fo du Lp(iT,iR;T,R) ,

and Ly is a Lagrangian describing a two-particle
problem, with a corresponding Hamiltonian
Hp=H,+Hg+H, [the significance of the dif-
ferent terms is similar to those of Eq. (1)]. In Eq.
(12) we used the partition function

Zg =Tr[exp(—BHpg)] [see also Egs. (6) and (7)].
The partition function Zr corresponding to the
Hamiltonian Hy is given by

Zp=e—ﬁFF=Tr(e_ﬁHF)
= [d7 [dR [DFw) [ DR(s)e8((B)—I8((0)— NBR(B) ~RISRO)—R) . (13)
Inserting Eq. (12) into Eq. (9) and using Eq. (13) results in
Zp=ZpZ, —e PTRTM)

which implies that
Fm '—‘Fp ——FR .

(14)

The expectation value (10) can be written in terms of the action Sy by using Egs. (12) and (14):

<Am>m=ZL [ ar [dR [ Dr(w) [ DR(s) e FA[FIS(F(B) —TIB(F(0) — PISR(B) —R)S(R(0)—R)
F

=(A[r]>p .

The subscript F in the notation { )y refers to the
weight function e’F.

Because Sy contains only equal-time interactions
it becomes possible to make the link with the
operator formalism. Using Ref. 26 [see formula
(18.12) on p. 49] the expectation value (15) may be
written as

(A[FD)m=(TA[TW]F (16)

with the operator

) =e"FR0)e T HF 17)

(15)

r
and the expectation value

(A)p=—Tre PHry) . (18)
Zr

The time-ordering operator for imaginary times is
labeled by T,. Using Egs. (14) and (16) the ap-
proximation to the free energy [Eq. (11)] can be
written in the operator formalism. To simplify the
expectation value (S —S,, ), we choose a trial ac-
tion of the form

S =S¢ +Sm,1 (19)
with S, given by Eq. (8b) and S,, ; the self-
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interaction part of the trial action, which will be
chosen quadratic in the electron coordinates (see
Sec. III). The expectation value (S —S,, ), splits
up into two terms [use Egs. (8a) and (19)]

(S —8m)m={S)m—(Sm1)m - (20)

The calculation of the first term, (S} ),,, results in
evaluating

F(K,u,5)= (e F {TW=T)) (21a)
or in terms of operators [use Eq. (16)]
f(l_{,u,s)=(Tc(e"?'%‘“’e"?'?“’))p . (21b)

If the self-interaction part of the trial action is
quadratic, the expectation value (S, ), results in
evaluating terms like

([F)—F(5)] G [Fu)—T(5)]) m
=—Vef(Ku,8)CVef(Kus) | oy (22

where G is a tensor that may depend on u and s
but is independent of the electron coordinates.

From Eqs. (21a) and (22) it is apparent that the
key quantity to evaluate is f'( K,u,s). This function
is related to the Fourier transform of the electron
density-density correlation function (for the defini-
tion see, e.g., Ref. 27, p. 370)

S(E,t):(e‘if'?‘o’e‘?'?(”) (23)

in the following way [using the property
Tr(AB)=Tr(BA)]:

S.(=K,|u—=s|), u>s

Kus)=\, - 24)
FRw)=1g @ lu=s|), u<s (

with
Se(K,u)=S(k,iu) .

With expression (24) in mind, the expectation
value (S;),, can be reduced to a more convenient
form by applying the property

S, (K,u)=S,(—k,B—u), u real (25a)
which is a direct consequence of the Kubo-
Martin-Schwinger (KMS) condition. Indeed, the
density matrix is of the form p=e ~PH /Tr(e —PH)
(in the present case the Hamiltonian H becomes
Hp) and thus satisfies the KMS condition, which
induces the following properties?® (the variable z is
in general complex):

i) $(K,2)=S(—K,iB—2).

(i) S (k,z)=S*(k, —z*).

(111) S (k z) is analytic for 0 <Imz <3, and
S(k. ,Z) is continuous and uniform bounded for
0<Imz <.

The first property (i) implies Eq. (25a), while the
second one gives

S.(K,u)=S*(K,u), u real. (25b)

The above properties and Eqs. (24), (25a), and (25b)
will be used to simplify (S;),, significantly. De-
fine the function

gw=3 | Vg %G pw)S.(K,u),
k

which allows us to write Eq. (8c) as
(S;)m f duf dsg(lu—s|),

where use has been made of the equalities
[Ve|?=|V_g|*and op=0_7 ¢ that follow
dn'ectly from the time-reversal symmetry of the
electron-phonon system. From the property
g(u)=g(B—u), which is induced by Eq. (25a), it
follows that

(S1)m Bf dug(u

and after some simplifications the final expression
is obtained:

(S, 2 [V {2[l+n(co7;)]

- mT(’u

X fo du S,(K,u)e (26)

To resume the results of this section, given a
Hermitian model Hamiltonian Hy one can find an
approximation to the exact free energy [see Eq.
(11)]. In doing this, one needs to know the free en-
ergy corresponding to Hy and the Fourier-
transformed density-density correlation function of
the electron as described by Hr. Equation (11),
which was obtained in the path-integral formalism,
is thus expressed in the operator formalism. The
choice of the relevant model Hamiltonian Hy,
which will be used in the present paper, is dis-
cussed in the next section.

III. STATIC AND DYNAMIC STUDY OF THE
GENERALIZED FEYNMAN POLARON MODEL
IN A MAGNETIC FIELD

First we will discuss the choice of the trial ac-
tion. In the zero magnetic field case Feynman®®
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introduced a trial action that can be obtained from
a two-particle Hamiltonian after elimination of the
coordinates of one of the two particles. This Ham-
iltonian describes an electron that is coupled to a
second particle via a harmonic force. This second
particle, also called the fictitious particle (because
its coordinates must be eliminated to obtain the tri-
al action), simulates the polarization cloud around
the electron. The mass of the fictitious particle
and the coupling between the electron and the ficti-
tious particle are a measure for the effective
electron-phonon interaction. This model system is
called the Feynman polaron model.

The application of an external static magnetic
field will influence the electron motion. It not
only introduces a preferential direction, but it will
also influence the efficiency with which the elec-
tron interacts with the phonons. Indeed, the mass
of the fictitious particle and the strength of the ef-
fective interaction will depend on the direction and
on the strength of the applied field. As will be
seen later, the direction and field dependence of the
effective interaction will be of fundamental impor-
tance for the appearance of certain physical phe-
nomena.

In view of the foregoing discussion it seems
reasonable to generalize the isotropic Feynman po-
laron Hamiltonian to a Hamiltonian with anisotro-
py in both the coupling and mass of the fictitious
particle. Using the axial symmetry around the
direction of the magnetic field we introduce the
following generalization of the Feynman polaron
Hamiltonian:

Hp=H|+H,
with ,
2
H“=—2pz;+ ;’; +3r(z =27,
H =——1—(p —tmo y)2+—1—(p ++macx)?
Lo, 27T 2m Y e
S
i 2
+ + k(i —ri)
,=Ex,y 2m1 PRANALS) i

This Hamiltonian describes an electron with coor-
dinates (T,P) and mass m =1, subjected to a mag-

netic field # =27¢€, and interacting with a second
particle, called the fictitious particle, with coordi-
nates (T',P ') and diagonal mass tensor

m;, 0 O
0 m{ O
0 0 mil

The interaction is quadratic with a coupling tensor

K| 0 0
0 K 0
00 K”

After eliminating the coordinates of the fictitious
particle one obtains an action S,,, which is a func-
tional of the electron coordinates only. This action
will be used as our trial action §,, and is given by

Sm =S5, +Sm,1 ’ (27

where S, is given by Eq. (8b) and

3 B B
Smi=— 3 C; [ du [ ds Gylu—s)

i=1

X[r(u)—ri(s)]?.  (28)

The constants C, =C;=C,, C;=C3 and
W) =w; =Ww,, W) =ws are given by
K; 14+m;
wi2= ‘, ’ Ui2=Ki B : ’
i m;

Ci=—twi—wd), i=L)]|.
4
Note that the action (28) is a function of four
parameters namely, v),v),w;,w), which will be
determined variationally. The original Feynman
trial action is obtained if we take v =v, =),
w=w, =w)|, and 0, =0.

A. Exact diagonalization of the Hamiltonian Hy

The Hamiltonian Hy has twelve degrees of free-
dom. Thus the diagonalization of Hy is equivalent
with the diagonalization of a 12X 12 matrix. The
z component does not couple with the xy com-
ponents, and therefore the diagonalization of Hp. is
divided into the diagonalization of H|| (four de-
grees of freedom) and the diagonalization of H,
(eight degrees of freedom).

1. Diagonalization of H |

The Hamiltonian H)| has four degrees of free-
dom, so a 4 X4 matrix must be diagonalized. This
has been done in Ref. 24. The results can be sum-
marized as follows:
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Pu ]
H” ” ——+50(Cy C0+7) (29)

with R|| and P, the conjugate variables of the
center of mass and CZ, and C,, respectively, the
creation and annihilation operators for the internal
oscillation with frequency so=v||. The total mass
M), is given by

Mn=1+mi} . (30)

The explicit time evolution of the z component
of the electron coordinate can be expressed in
terms of the normal coordinates

—isyt

P
2(0=Ry+~ Lt +do(Coe " +Cle™)  (31)
I

with

==l (32)

2. The exact diagonalization of H,

The diagonalization of H, is equivalent with the
diagonalization of a real symmetric 8 X 8 matrix.
One of us (J.T.D.) and others®® have performed a
partial diagonalization of H, in the following way.
After a canonical transformation the nondiagonal
part in the transformed Hamiltonian was handled
as a perturbation to the diagonal part. Then with
perturbation theory the low-lying energy levels
were calculated. In the following, an exact diago-
nalization of H, will be given.

We proceed via the Heisenberg equations of
motion, because solving the equations of motion is
equivalent with an exact diagonalization of the
Hamiltonian. For example, the explicit time
dependence of the electron position coordinate pro-
vides the eigenfrequencies (and thus the eigenvalues
of H,) as well as the normal coordinates [see, e.g.,
Eq. (31)]. The equations of motion for the posi-
tion and momentum variables form a set of eight
linear first-order differential equations because H,
is quadratic and has eight degrees of freedom. The
solution of this set of equations is rather lengthy
but straightforward. Therefore only a brief outline
of the calculation will be given.

After eliminating the momentum variables the
eight coupled first-order linear differential equa-
tions reduce to four coupled second-order linear
differential equations. Taking the Laplace

transform of these equations results in four cou-
pled nonhomogeneous algebraic equations, which
can be solved analytically. One only has to deal
with 4 X4 matrices. Then the inverse Laplace
transform gives the explicit time dependence of the
position coordinates in terms of the normal coordi-
nates.

The results of such a calculation can be summa-
rized as follows.

(i) The normal coordinates are:

(a) Two constants of motion (which were already
introduced in Ref. 29) IT; and II,, which are relat-
ed to the classical orbital center. Namely, in clas-
sical mechanics (—1II,/w.,I1;/w,) are the position
coordinates of the center of mass.

(b) Three creation and three annihilation opera-
tors {C, ,Ci | i=1,2,3} (the approximate calcula-
tion of Ref. 29 leads to four creation and annihila-
tion operators) for internal oscillations with fre-
quency s; <5, <53, which are given by the positive
roots of the equation

sAs?—v? )P —wi(s?—w?)?=0. (33)

(ii) The explicit time evolution of the electron
position coordinates takes the form

I 3 —is; is;
x(=——2— 3 d(Cje ™V +Cfe), (34)
o, o

3

it 3 (—D)id;(Cie ™' —CJe"), (33)
with

2 2
di=t , j=123. (6

2s; 3s] +2(—1)"wcsj—vl

(iii) The diagonalized Hamiltonian becomes
3
H =73 sclc;+7), (37)
i=1

which consists of three one-dimensional harmonic
oscillators. The energy levels are given by

3
El(nlynZ’n3)= 2 Sl(n]+%) ) (38)
j=1

where n; are positive integers.

B. Physical interpretation
of the eigenfrequencies

In Fig. 1(a) the eigenfrequencies s;, which are
given by the roots of Eq. (33), are plotted as a
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function of the magnetic field for a particular
choice of the parameters v, and w,. As an exam-
ple, we took w, =1 and v, =1.048. From this fig-
ure it is apparent that the eigenfrequencies s; and
53 can be related to the resonance transition ener-
gies of free electrons in a magnetic field and in po-
lar semiconductors.%3!

Using the same choice of parameters (i.e., w, =1
and v, =1.048) we have plotted in Fig. 1(b) the
ground-state energy E,(0,0,0) and the energy of

2L v\\//;:::.OAB S5,

F /) (b)
0 e 2

FIG. 1. (a) shows the eigenfrequencies [which are
determined by Eq. (33)] of the Feynman polaron Hamil-
tonian as a function of the magnetic field. The low-
lying energy states of the same Hamiltonian [see Eq.
(38)] are plotted in (b). The dashed lines indicate the en-
ergy levels of the noninteracting system.

some excited states [namely E,(1,0,0) and
E,(0,0,1)] of the model Hamiltonian H,. The en-
ergy scale is lifted with the zero point energy of
H, at zero magnetic field and the unperturbed
Landau energy levels are drawn as dashed lines in
Fig. 1(b). In a perturbation calculation of the po-
laron ground-state energy the spectrum of a free
electron in a magnetic field is used [dashed lines in
Fig. 1(b)] as the unperturbed part, while in the
present approach we used the spectrum of H, as
the unperturbed part [solid lines in Fig. 1(b)]. This
model Hamiltonian H, allows us to take into ac-
count the following two effects (which in other ap-
proaches results only after a perturbative calcula-
tion):

(1) The absence of level crossing at o, =1.
Namely, at w. =1 there is a crossing of the unper-
turbed energy levels > o, (no phonons and the first
Landau level) and coc +1 (one phonon and the
zeroth Landau level) that is lifted by the interac-
tion of the electron with the LO phonons. The
consequence of this effect is the appearance of a
doublet structure in the magneto-optical spec-
trum.30-33

(2) The pinning effect. For w.— o the energy
level E,(1,0,0) is pinned®34=% to the unperturbed
energy 5o, + 1 [see Fig. 1(b)].

C. The free energy

The free energy of the system described by the
Hamiltonian Hp=H+H|; will be calculated.
From the diagonalized Hamiltonian [see Egs. (29)
and (37)] one notes that the partition function is
the product of the partition function of a one-
dimensional free particle with mass M, and the
partition function of four one-dimensional harmon-
ic oscillators. Furthermore, one must sum over all
allowed values of the constants of the motion II,
and II,; this sum is equal to (L,L,/2mma, (see
Ref. 27, p. 217). Assume that the system is con-
fined to move in a box with dimensions L,, L,
and L, and volume V' =L,L,L,. Then the parti-
tion function is given by

172

1

smh( s,,B)
(39)

from which the free energy,

n=—%mh,
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is easily calculated. At zero temperature the free
energy reduces to the zero point energy of the
model Hamiltonian H [see Eqgs. (29) and (37)].

D. Fourier transform of the electron
density-density correlation function

Hamiltonian Hy, must be calculated. From the di-
agonalized form of the model Hamiltonian [Egs.
(29) and (37)] and the explicit time dependence of
the electron coordinate [see Egs. (31), (34), and _
(35)] it is clear that the correlation function S(k,?)
[see Eq. (23)] can be written as a product of five
functions: ‘

— — 3 —
As shown in Sec. II the Fourier transform of the S(k,0)=84(k,) [T Su(k,0) (40)
density-density correlation function of the electron, u=0
whose time evolution is described by the model with
|
oo . + . —isot | ~t isot ) (41)
So(k,t)={exp[ —idok,(Co+Cq)lexplidok,(Cope +Coe )Dr
S;(K,0)=(explid; ([ ky —i(— 1Yk, 1C; + [k, +i(—1)  C]})
xexpl —id; ([l —i(— 1), 1Ce "'+ [k (1K, 1Cfe™)p, j=1,2,3 (42)
and
o . kP
S4(k,t)=(exp(—ik, R Jexp |ik, R +i t . (43)
My |[r

As an example we calculate So(K,?). The operators can be put into normal order by applying the commu-

tation relation twice,

edeB—eA+B[4B12 (44)
which is valid if [4,B] commutes with 4 and B. This gives

So(K, 1) =exp[ —d2k(1—e"*)](explidok,Chie™* — 1) ]exp[ —idok,Cole " —1)])f .
Using the identity (see, e.g., Ref. 38, p. 374)

(eT*¢ =TTy _r(e PO T T T T~ TT) /re(e =B C) exp[ — | G | 2n(Q)], (45)
one obtains

So(K,H)=exp | —k2d? 1-——eis°'+4n(so)sin2s70t
The other four functions are calculated in an analogous way (see, e.g., Ref. 39 for a similar calculation).
The final result is

S(K,t)=exp[ —k2D%(t)Jexp[ —k1DJ(1)] , 46)
with

ki=kZ+k}, (47a)

DYt)=—— l—'t+’—2 ‘+d3 [1—e“"‘+4n(so)sinﬂE ] , (470)

2M|, B 2
DY ()= idjz [l—em’t+4n(sj)sin2£1i . (47¢)

j=1 2
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In the expression for the free energy one needs the function S ( K, for imaginary argument:

S, (K,u)=exp[ —k2D (u)]exp[ —k’Dg(u)], 48)
where
Dw)=—2— [1- % | 142 [1—e °0 _4n(s,)sinh? 2L (49
M, g | % 0 2 |’ a)
& 2 —sju .o SjU
Dy(w)=3d} |1—e 7 —4n(sj)smh—2-— ) (49b)
j=1
The last two functions have the propert
property Fo="1n [25inh2 | . (s1)
lim Dy(u)=D(u) . B 2

mc——>0

In the special case of an isotropic Feynman
model (v =v, =v;, w =w, =w)) Hellwarth and
Platzman!# calculated the same functions via
path-integral techniques [see Eq. (16) in Ref. 14].
The correspondence between the function G () in
Ref. 14 and the function Dg(u) above is as fol-
lows: Dy(u)=D(u)—w2G(u). In Ref. 14 D(u)
and G(u) are represented as an infinite sum, while
here these functions are given in a closed analytic
form.

IV. GENERAL ANALYTIC EXPRESSION
FOR THE POLARON FREE ENERGY
AND RELATION TO OTHER THEORIES

The results of Secs. II and III will be combined
to obtain an explicit expression for the polaron free
energy for arbitrary temperature, electron-phonon
coupling, and magnetic field strength. The zero-
temperature limit of the free energy, which in this
limit is equal to the polaron ground-state energy,
will be given. Furthermore, the relation between
the present result and those derived earlier by other
authors will be pointed out.

A. Analytic expression for the polaron
free energy

Equation (11) [see also Eq. (20)] gives a general
expression for an upper bound to the exact free en-

ergy
1 1
F<Fy+F,— E(S, Y m +E<S'"” Ym - (50)

The free energy of the phonons, in the absence of
the electron, is obtained from Eq. (7) and is equal
to

The trial action S,, defines the free energy [see
Eqgs. (9) and (14)]

F,—=Fp—Fg , (52)

with F the free energy of the generalized Feyn-
man polaron model [see Eq. (39)]

1$ ., Bsy
Fr=— > In|2sinh——
F B,Eo 2
1 V|| @ 1 1
—=Ih|*+———|——InV, (53
B n w” 2T Vv 2’1TB B n ( )

and Fy is the free energy of the fictitious particle
in the generalized Feynman polaron model in the
absence of the electron. Equivalently, it is the free
energy of the Hamiltonian (see Sec. III)

3

Hz=3

i=1

pi’

’

2m,~

1 2
+7K,~r',-

which equals

FR———'%IH

.. Bw,
2sinh >
Bwj|

2sinh 5

(54)

+ —l—ln
B

The expectation value of S; is obtained from
Egs. (26) and (47). For LO phonons and in the
limit of an infinite crystal volume one obtains

Fz=é<51)m

a
—Zm[1+n(w0)]
xfﬂdu e In VD(u)+VHu)
0 VH(u) vVDw)—VH@w) |’

(55)
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where H(u)=D (u)—Dy(u); D(u) and Dg(u) are
given by Egs. (49a) and (49b).

Two different methods can be used to calculate
(Sm,1)m> Where S, | is given by Eq. (28). One can
use the expectation value (22) and expressions (24)
and (48) to obtain (S, ;),. However, another and
more convenient approach uses the equality

1 JoF,, oF,,
"B Smim=Ci5e, +Ci5e,

which is obtained from the Egs. (9), (10), (19), and
(28). Inserting Egs. (52), (53), and (54) into Eq.
(56) one obtains

(56)

1
Fm,1="E(Sm,I>m
_ Cl z aSJ thB
vlwlj avl 2
C v
I |__2 +cothB I R (57)
vwy | By 2

where the derivatives 3s; /dv, are obtained from
Eq. (33) and are given by

aSj ZUJ_S]'

i AR (58)
al)l 3SJ +2(—1)1C06Sj—l}l

The free energy of the phonons Fp, [see Eq. (51)]
and the volume contribution —(1/f3), In¥ in Eq.
(53) only give a constant contribution to the free
energy. In the following this constant contribution
will be subtracted from the right-hand side of Eq.
(50). This amounts to shifting the zero point of
the free energy. Finally, we obtain the following
approximation to the polaron free energy:

Fu=Fo—F,, ;—F (59a)

with

. B
11 1 v o 2sinh 2

—In|——-
B 21 w” V27TB 281 hBU“

F0=—

2
2sinh P, ]
X ——— e

H 2 smh

i=1

(59b)

Equation (59a) is the central result of the present
paper. The subscript “as” in Eq. (59a) indicates
that the trial action contains an anisotropic effec-

tive electron-phonon interaction. Expression (59a)
is valid for all ¢, 7,0, and depends on four varia-
tional parameters v ,w LYWy Thus we may
write

Fy =Fas(a’T’wc;vlan.’U||w|[) ’
where the variational parameters will be deter-
mined so that F,g takes its minimum value. The
minimalization of Eq. (59) to the four parameters
has to be performed numerically (see ‘paper II) ex-
cept for some limiting cases where the minimaliza-
tion can be done analytically (see the next section).

B. Relation to other theories

The relation between the present result, Eq.
(59a), and the result of some other theories is
represented schematically in Fig. 2. Hellwarth and
Platzman'* extended Feynman’s path-integral vari-
ational calculation to include the effect of an exter-
nal magnetic field. As a trial action they choose a
general quadratic symmetric action. The general
results were presented in terms of infinite series.
Explicit analytic results were derived in Ref. 14,
within, the isotropic Feynman polaron model, in
the limit of small magnetic fields (w, << 1) and low
temperature (8>>1, but such that Bo, <<1). We
have verified that in the limits considered our re-

sult is identical to the one of Ref. 14.
In the zero magnetic field limit one has v =v,;

=v), W= wl=w,| and Eq. (59a) transforms to the
result of Osaka.?* Taking the zero-temperature
limit further one obtains the result of Feynman’s
polaron theory.!

Several theoretical studies have been published
during the last few years about the polaron in a
magnetic field. Almost all of them are concerned
with the zero-temperature limit. Below we show
how some of these results can be reobtained from
the present result [Eq. (59a)]. In the zero-
temperature limit the free energy F,; [Eq. (59)] is
equal to the polaron ground-state energy E,

E,= }‘anOF as »

and thus
3 C 3 Os; C
Ba= | B sum2wimwy | =0, ﬁ+—v ;
p=0 1wy =y vy vy,
f du e ¥ VD(u)+V
VD(u)—V'H )
(60)
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Anisotropic model

Fas (@ Tr0eivy oWy sV ewy)
Vl =V" =v
wl =W“ =w
Bw <<1 Symmetrical model
c
wc<<1 FSY(Q,T,wc;v,w)
T=0
Hellwarth v=8%;w=0 |Lepine and Matz
and Eqy(a,w _;v,w) .at
Platzman sy c Y=(wc/4)uz ErmleiwgiBtyy)
mc=0
Osaka mc<<1 \a
Fo(a,T;v,w
T=0 Marshall Larsen (RSPT)
and E ., (a,w )
Feynman 5 =0 Chawla LA 'T¢c
EF(a;v,w) ¢

FIG. 2. Relation between different polaron theories.

The above expression is closely related to the re-
sult of Lépine and Matz.'? In Ref. 12 Lépine and
Matz presented an expression for the polaron
ground-state energy, which was derived by using a
nonperturbative Fock-type mean-field theory.

Their result, which contains two variational
parameters (y and f3'), is an upper bound to the ex-
act polaron ground-state energy. A model Hamil-
tonian was used to simulate the electron motion.
This model Hamiltonian describes an electron in a
magnetic field %' =4y’mc /e (which we shall call
an internal field) and which is coupled quadratical-
ly, with a spring constant K =p'%, to a point fixed
in space. Note that the internal magnetic field 57’
may differ from the external magnetic field . It
can easily be verified that our result [Eq. (60)]
coincides with the result of Ref. 12 [Eq. (25) of
Ref. 12] if one sets v, =v; =", w, =w; =0 in Eq.
(60) and if the internal field in Lépine and Matz’s
theory is taken equal to the external magnetic field,
ie, yl=0./4.

The present result for the polaron ground-state
energy [Eq. (60)] differs in three respects with the
Lépine and Matz'* result. Firstly, here a trial ac-
tion is used to simulate the electron motion while
in Ref. 14 a trial (or model) Hamiltonian was used.
Secondly, the trial action S [Egs. (19), (8b), and

(28)] describes a self-interacting electron, i.e., it in-
cludes a memory effect, while the model Hamil-
tonian of Ref. 17 describes an electron with a local
(equal-time) interaction. Thirdly, in the present
study we allowed the effective electron phonon in-
teraction to be anisotropic. No such anisotropy is
present in the theory of Ref. 17.

If we take v, =v||, w; =w)|| (symmetrical model)
and expand Eq. (60) for small magnetic fields, we
obtain the result of Marshall and Chawla.'® These
authors calculated the polaron ground-state energy,
using the Feynman path-integral approach up to
first order in the magnetic field. From the first-
order term, which is inversely proportional to the
polaron effective mass, these authors!® calculated
the polaron mass.

If we take v, =v||=w, =w)| [this implies C;=0
in Eq. (28)] the generalized Feynman trial action
reduces to the action of a free electron in a mag-
netic field. Thus the result of Rayleigh-
Schrodinger perturbation theory (RSPT) for the
polaron ground state, as derived by Larsen,® will be
obtained. Indeed, one can verify that inserting
vy =v|=w, =w) in Eq. (60) results in Eq. (69) of
Ref. 6.

The comparison between the present result and
the more general result of Saitoh!® is postponed to



25 STATISTICAL PROPERTIES OF POLARONS IN A MAGNETIC.... L... 7293

the conclusion.

V. EXPLICIT ANALYTIC RESULTS
IN LIMITING CASES

In the derivation of Eq. (59a) no restriction on
the strength of the electron-phonon coupling (a),
temperature (8=1/kpT), and magnetic field
(w,=ed¥/mc) was imposed. However, in general,
the variational calculation of the free energy [Eq.
(59a)] must be performed numerically. In this sec-
tion it is our goal to derive explicit analytic results
for the free energy, and in some cases for the
Feynman polaron mass, for a restrictive range of
a, B, and o, values where it is possible to perform
the variational calculation analytically. A sys-
tematic study of the most important limits will be
made.

A. Small electron-phonon coupling (@ <<1)

For small a the effective electron-phonon in-
teraction will be small and thus v, (v)|) will be
near to w; (w))). If we write

=w(1 ,
ne=w(l+e) (61)
vy =wy(1+€),

then €, and ¢, will be of order a. With this in
mind, the three terms in the approximate free ener-
gy [Eq. (59a)] may be expanded up to a®. We
found

Fo=F,+B € +B.€,+E € +E €+ - , (62a)
Fm,I=B||€||+B1€1+K||€|2| +K e+, (62b)
FI=FI,0+A||€||+A161+ Tty (62¢)

where F, is the free energy of a free electron in a
magnetic field

F,= == In(2nB)

2B
1 Bo. B")c
— 5 In ) sinh ) , (63)

and B,,B|,E,E|,K},K|,4,,4) are certain func-
tions of B and w, and the two variational parame-
ters v, and v| [because w, and w); have been elim-
inated by using Eq. (61)]. Although it is possible
to evaluate B, B, E|, E|, K|}, and K| explicitly
we will not give the explicit expressions for these
functions because they are rather lengthy and are
of no direct relevance at the moment. The other

functions Fjo, 4|, and A, have a as a prefactor.
They are much more difficult to evaluate because
F; [Eq. (55)] contains an integral that can only be
performed analytically in a restricted range of 8
and o, values.

Adding up the different contributions to the free
energy [Eqgs. (62) and see Eq. (592)]

Fpy=F,—Fpo+(E|—K)))e}+(E,—K) )}
—Aje—4) €+

and minimizing F,; with respect to the parameters
€, and € results in

A A

€||=m, €1=m , (64)
and the free energy becomes
Fo=F,—Fjo— Z I
w= e LT 4B —-K))  4E,—K))’
(65)

where F, [Eq. (63)] is the free-electron contribu-
tion, Fy is linear in a, and the last two terms of
Eq. (65) are of order .

1. Bo.>>1

In this limit the electron free energy (63) has the
asymptotic expansion

3 W 1 ch
F,-zB In(27B)+ > —Bln 5 +
(66)
a. 0, <<l1

This is the small magnetic field and low-
temperature limit, but such that 1/8<«<w, <<1. In
the small magnetic field limit the difference be-
tween Dy (u) and D(u) is of order w, and thus
H(u)/D(u) << 1 can be considered as an expansion
parameter in the integrand of Eq. (55). After
evaluating the integral in Eq. (55) we found

2

—Fo=—a|(l+ 5o, — 550+ ")

1 9 27

81 125 5075

2
40ﬁ2(1_-_4_8‘a€+w'wc+ )

2+...)

+

(67)
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which is the first-order correction in a of the po-
laron free energy relative to the electron free ener-
gy. The zero-temperature limit of Eq. (67) is
identical to the expansion obtained by Larsen.?
The parameters €); and €, [see Eq. (64)] are, to
first order in w, and 1/p, given, respectively, by

e =a e(f+€icoc+€f%+"' (68)
with
€Y=§%“ [ -—"—(V 1+”1“1)} (69a)
1
e 2 1 3
€= 151}1 1+vl 17+ 5,
O A
—--v—z( 14v,—1) (69b)
1
= -2 oL ||, (6%
! 1001 v, V4o,
and
=0 eﬁ+e,‘lmc+eﬁ%+ tee (70)
with
eﬁz—z—— 1——2—(v1+v“——1 R (71a)
3y v)|
LS PRI PR S
I IOU” vy V 1+U” ’
(71b)
1 1 18
= 14— |62+ ———
U 30v), | T [T VI
- 1v_60‘(\/ 1+U”—1) (710)
Il

Still, there are two variational parameters v; and
v) present in Eqgs. (69a)—(69c) and (71a)—(71c).
Because the magnetic field and temperature depen-
dence of the variational parameters were, to lowest
order in w, and 1/, taken into account by w, and
w)| [see Eq. (61)], v, and v)| may be chosen in such
a way that they minimize the free energy at zero
temperature and zero magnetic field, and thus
v=v,;=v). Feynman found in Ref. 15 the value

v =3. Note that in Ref. 15 one considered w in-
stead of v and found w =3, but in the small cou-

pling limit one also has v =w +O(a). Inserting
vl_v” =3 into Eqs (69a)——(69c) and (71a)—(71c)
gives ef=¢fj = 3, €i= 557, ef=efj=75, and

1= Tos“

Using Eqgs. (61), (68), and (70) we obtain for the
masses of the Feynman polaron, to first order in a,
w;, and 1/p,

4 26 2 1
M =1+a +405 +45 B] (72a)
and
My=lta |4+ = +%% (72b)

The zero-temperature and zero magnetlc field limit
gives M, =M, =l4+ax ~+0(a?); it is identical to
the result as obtained by Feynman in Ref. 15 (see
also Ref. 40) and close to the correct perturbation
theory result*! for the polaron mass
14+a/6+0(a?). Note that M|, as function of the
magnetic field, increases faster than M| (namely
~0 064 and H ~0.044). The temperature

dependence of M, and M, is different. This is not
surprising because Eqs. (72a) and (72b) were de-
rived with the condition 1/B8 <<®, << 1, which
means that the zero magnetic field limit for finite
temperature does not apply.

The a? correction term to the free energy Fy

- [see Eq. (65)] is given by (to first order in &, and

1/B and for v =v, =v)=3)

o 41
=5193
The first term, —a?/81, has been given in Ref. 15
and can be compared to the exact result
—0.01592a? as obtained from fourth-order pertur-
bation theory.*> Note that in second order of the
coupling the magnetic field contributes positively
to the free energy.

It has been argued by several authors that from
the ground-state energy of a polaron in a weak
magnetic field one can define an effective polaron
(magnetic“) mass my. Namely, the term linear in
the magnetic field is of the form w,/2myg. If we
combine Egs. (65), (66), (67), and (73) we find for
the term linear in the magnetic field the expression

(73)

®
S l1-Fa+ 750 +0(@)]
from which we obtain the polaron magnetic mass

my=1+ca+gra’+0(a® . (74)
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This result was already obtained by Marshall and
Chawla.!® Note that Eq. (74) agrees very well with
Feynman’s' polaron mass,

mp=1++a+p5a’+0(d) . (75)

The coefficients of the a term differ only by 1.4%
=0.02469 while —— 2916 =0.02503).

( 2916

b w.>>1

In the limit of large magnetic fields we shall cal-
culate the polaron free energy to first order in .
It is not easy to calculate the masses of the Feyn-
man polaron M, and M| to first order in a be-
cause in the limit o, >>1 it turns out that, e.g., v,
and w, increase with the magnetic field, but of
course, such that v, /w, =140 () (this conclusion
is based on numerical work which will be present-
ed in paper II). This makes it very difficult to per-
form an analytic calculation of M, and M|, to first

|

P 172 Bco
=78 [1+4s+ ]l T ]
63 1
Ve VR L]

The appearance of the term a/V/B is typical for
the high-temperature limit. However, for large
magnetic fields this term is changed with a factor
Inw,, which is typical for the large magnetic field
limit [see Eq. (77)]. Recently, Saitoh!® obtained
the same asymptotic expansions as given by Egs.
(76) and (77), but in Ref. 18 only the coefficients
of the Inw, term and the w,-independent term were
calculated.

2. Bo, <1

Note that in this limit the electron free energy
[Eq. (63)] has the expansion
ﬁ
F,= 28 2 1n2np) +
For a << 1 and Bw, << 1 the difference between
Dy (u) and D(u) is of the order €|, €, and Bo
Thus we may use H(u)/D(u) << 1 to evaluate Eq
(55). In the following we study the low- and
high-temperature limit separately.

+0(B3 . (78)

16+1/‘

order in a, or of the free energy to second order in
a.

For large magnetic fields Dy(u)~1/w,, and
thus the integrand of Eq. (55) may be expanded in
Dy(u)/D(u) << 1. Furthermore, setting €, =€) =0
is possible because we are only interested in the
first-order correction in @. For low temperature
(B>>1 and thus B8>>1/w, >>1) Eq. (55) has the
asymptotic form

F,=% (Inw, —c)

48 3282

ot +]

Inw,

1
+
Lwc La)(.'

+ [In2+£&(3)]+ - - - ]

(76)
with ¢ ~0.5772 the constant of Euler and £(x) the
zeta function. In the zero-temperature limit
several authors®>!? have found the dominant term,
—alny/w,. For high temperature (B <<1) such
that o, >>1/8>>1, Eq. (55) becomes

2 3 15 In2w,
4Po,  32B%? v/ Bo,

amn

a. B>>1

This is the small magnetic field and low- (but
nonzero) temperature limit such that
w, << 1/B << 1. The first-order correction in a to

the polaron free energy is —Fj o, with
Fio=a 1+—~+ 2 +
1o 48" 32p
Bo 3 15
+ 2 "3 7 + + .

(79)

The zero magnetic field term is equal to the result
obtained in Ref. 44. Note that in the case
o, <<1/B << 1 the polaron free energy has no
linear term in the magnetic field. This is manifest-
ly different with the case 1/B8 <<, << 1 [see Eq.
(67)], where such a linear term is present.

The magnetic field correction term to the po-
laron free energy is [see Eqgs. (78) and (79)]
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Bo?
24

1—%+0(a2) (80)

Hellwarth and Platzman'* then defined a polaron
magnetic mass, my, by arguing that Eq. (80) is the
magnetic field correction to the free energy of a
particle with mass

myg _ 1
m  [1—sa+0(@)]?

=1+5a+0(a?,

which, to first order in a, is the correct expression
for the polaron mass.
For the parameter €| we found the expression

1
f=a eﬂ+eﬁE+ s (81)
with €° given by Eq. (71a) and
1 2 3
- L .
f 6o | oy [ e
32
—‘v—"(\/l-f-l)”—l) . (82)
!

The magnetic field correction to €| is unlmportar;t
Similarly as before we take v =3 and find eH =5
and ef = 81 The magnetic-field-independent term
of €, is identical to Eq. (81), as expected. The
magnetic field corrections to €, are of secondary
1mportance, they are of the order of Bro?.

The a? correction to the free energy is given by
[see Eq. (65)]

2

1 4 1
—_— — e e . 83
81 198" ] ®3)
The first term, —a?/81, is identical to the first

term of Eq. (73).
The mass of the isotropic Feynman polaron be-
. + — e

comes
1
8187 |
which is identical to the result of Ref. 40. Recent-
ly, Saitoh** defined the polaron mass as the inverse

of the ratio of the acceleration rate to a fictitiously
applied force and found

1
B AT

4 161

M=1+4a , (84)

1
BZ
Note that such a definition results in a different

temperature behavior of the polaron mass. The
temperature dependence of Ref. 44 is hard to

understand because it is generally believed?® %4546

that the polaron mass has to increase with tem-
perature if B>>1. Such an increase is attribut-
ed?>*%%5 1o the nonparabolicity of the polaron en-
ergy spectrum.*’—%

b. Bl

The first-order correction in the electron-phonon
coupling of the free energy is obtained from Eq.
(55) which, in the high-temperature limit, has the
series expansion

12 5 2
BZ Bo;

12 2, ...

+-=+ 288 +

—fr=- 48

alX
B

(85)

For zero magnetic field, Saitoh** has studied the
same high-temperature limit.”

The analytic calculation of the a? term is diffi-
cult and will not be given. The reason is that at
high temperature the parameters v, v);, wy, and
w|| increase with increasing temperature. This is
confirmed by a numerical variational calculation of
the free energy (see, e.g., Ref. 45 and paper II).
Note that for high magnetic fields we found a
similar increase of the variational parameters.

B. Strong electron-phonon coupling (a>>1)

In the following we assume that Sv >>1. For
the limit of strong electron-phonon coupling one
has oI ~a?, which implies that the temperature
range is not severely restricted, namely S>> 1/a%

1. w./v<l

In the small magnetic field case the anisotropy
between the effective electron-phonon coupling
parallel and perpendicular to the magnetic field
will be small. It is of secondary importance. Be-
cause we are only interested in the dominant terms
in the free energy we may take v =v; =v) and
w =w, =w)|. Therefore the free energy will be in-
dicated by Fy (see Sec. IV).

The present small magnetic field limit (meaning
small relative to the electron-phonon strength) im-
plies that we may use H (u)/D(u)<<1 in the
evaluation of the integral appearing in F; [see Eq.
(55)]. However, to obtain an explicit expression for
the variational parameter v it is necessary to make
further restrictions on the range of «, 8, and w,.
From now on we assume 8>>1.
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a. Bo,(w?/v?) >>1

This limit contains the zero-temperature case.

Summing up all the restrictions, we are in the situ-
I

3 1, |Bo 1 3
Fy=— —_In|— |—= 3,32
"= 28 In(27B) Bln 3 ] ﬂlnv+ V=3
2
1 a 3 D
—_— 1 — —_—
e lTwEm T T [
Minimizing F,, to v results in
4a® 1
= ——(4In2—1 —_—
2
% 1 (86b)

‘>

4 (4a*/97)
which, in the limit B— o and o.—0, reduces to
the expression already obtained by Feynman.'>3!

From Eq. (86b) the mass of the (isotropic) Feyn-
man polaron is easily obtained:

16a* 8a? 16a% 1
= e——— 1 —
M 51,2 91r(4n2 D+ o7 B
2
(o7 [0
— (87)
4a2/9 3

The leading term, 16a4/811r2, was already obtained
in Ref. 13. Note that for small magnetic fields
and low temperatures the polaron mass (87)
enhances with increasing magnetic field strength
and increasing temperature. We found the same
quantitative behavior in the case of small electron-
phonon coupling.

Inserting the value v =4a?/97 into Eq. (86a)
gives the following expression for the polaron free
energy:

Fy=F,+F,+F., (88)
with
3 2B
Fo—= > qn|—27B__
T I { 16a*/8172 l
__1_ln B, /2
B | 16a*/817° (892)
(12 1
Fa=""37"'3(]n2+‘4'), (89b)
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ation such that 1 <<v?/w? << Bw, <<Pv and with
B>>1. The dominant contributions to the free en-
ergy are found to be (we took w =1, see, e.g., Ref.
15)

v 172 1 1
—a |— [ — |2In 2——+—3—E”
_;Qﬁ%+.. 4
‘ (86a)
81
7 2 16a*/817*
i 1 (89c)

8 (6ot /812

The first term F, is the free energy of a particle,
with mass 160:“/8111'2 (which is the polaron mass),
which interacts with a magnetic field. F, is the
well-known'>! self-energy in the strong-coupling
limit. The magnetic-field-dependent term F, con-
tains a linear term in w, which is the zero-point
energy of a particle, with mass 16a*/8172, in a
magnetic ﬁeld This term does not appear in Ref.
12. The wc term represents a diamagnetic shift; it
is equal to the diamagnetic shift found in Ref. 12.

b. Bw.(w?/v?) «<1

The zero magnetic field limit is contained in this
case. The free energy becomes

Fy= fﬁ-ln(zwﬁ)— %Inv i3
172 1 1
—a|> I+— 2In2——+— l
T v 2
2
3% |, 2 a 28 . .
T |TwErvs T3t |t
(90a)

A minimalization of this expression with respect to
v results in the following value for the variational
parameter:

2
4" ama—1)4+ L
T B

0 I

(90b)

4 B
1 —_—
T [ + 3 (4a?/97)?
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from which we obtain the mass of the Feynman
polaron

16a* 8a? 48a% 1
8172 917'( -1 97 B
w; 4 [or |’
(4 m
—_ 1 —_ =
) 3 |4a? £ oD

Note that Egs. (87) and (91) coincide if 8— « and
w.—0, as should be the case.

Because the polaron is a quasiparticle, there are
different possibilities for the definition of the po-
laron mass. Recently, in the absence of a magnetic
field, Saitoh* defined the polaron mass as the ac-
celeration rate against a fictitiously applied force.
In the considered limits he found 16a*/817?
—128a*/2437°B. Note that with increasing tem-
perature the polaron mass decreases. In another
article!” Saitoh presented still another definition
for the polaron mass, which was based on the zero
magnetic field diamagnetic susceptibility. Such a
definition resulted in the asymptotic expression
16a*/817*—512a'°/196837*B. This expression
also gives a decreasing polaron mass with increas-
ing temperature, but the coefficient of the
temperature-dependent term differs considerably
with that of Ref. 44.

Inserting v =4a?/9r into Eq. (90a) gives the fol-
lowing value for the free energy:

Fy=F,+F,+F, 92)
with
o3l
p 2[3 16a* /817

Bo; 1

(93a)
24 (16a*/817%)
S S
% 8 (16a*/817%)!/?
28 1
1+ (93b)
o R (16a4/81172)3/2]

and F, is given by Eq. (89b). F, is the free energy
of a particle with mass l6a4/91r in the limit
Bo,/(16a*/91) << 1. The diamagnetic shift is,
apart from the temperature correction, identical to
that of Eq. (89c).

2. o, /v|2| >1

This is the large magnetic field limit, because for
a>>1 one has v /w|; >>1 (remember that for
a>>1 we may take w||=1). In the beginning of
Sec. VB on the strong electron-phonon coupling
we assumed that Bv|| >>1, which in the present
case also implies that Sw, >>1. For large magnetic
fields one has v, <v|| (cf. the case for ¢ << 1 and
@, >>1), which implies that o, /vi>>1. The
above-mentloned condltlons By >>1, Bo, >>1,
coc/v” >>1, 0, /02 >>1, vy >>1 allow us to calcu-
late the asymptotic expansion of the free energy

Fo= —In(2np)+ =1
== g n(2mB)+ 5 —ﬁ ny|,
v o |7
Il a Il c
— | 1 94
4 2 m " v” (942)
Minimizing this expression to the variational
parameter v|| results in
2 4w 8
a c
=—1 - 94b
U= 202 + B (94b)

from which we obtain the polaron mass parallel to
the magnetic field

Mo a_“ 41rwc 16a* In dro,
Il ﬂ,2 B ae? |
(95)
The free energy becomes
(12 4”Twc

F,=F, ~ 4 In 202 | (96)
where

Fe = EE In( 21TB + —5—

is the free energy of a free electron in a magnetic
field in the limit w. >>1. Again, M| increases if
the lattice temperature increases.

Saitoh'” also studied the present asymptotic limit
and found a polaron mass that decreases with in-
creasing temperature. Furthermore, the dominant
electron-phonon contribution to M| and F,, differs
slightly with ours, namely, in Eqgs. (95) and (96) we
must take powers of the term In(47w, /a’e?),
which in Ref. 17 is replaced by In(27mw, /a’e?).

Two remarks are in order. First, the dominant
contribution to the free energy resulting from the
electron-phonon interaction comes entirely from
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the interaction of the electron with the phonons
along the magnetic field. This is apparent from
Eq. (94a), where only the parameter v|| enters into
the dominant term of F,,. The effective electron-
phonon interaction perpendicular to the magnetic
field, as simulated by v, enters only in terms
which are of order 1/w,. If we want to determine
v,, it will be necessary to calculate F,s at least to
order 1/w,.. However, Eq. (96) already suggests
that M, =14+0(1/w,). Indeed, the free energy
F,, [Eq. (96)] results from a free electron in a mag-
netic field plus a correction due to the electron-
phonon interaction along the field. Thus perpen-
dicular to the field the effective coupling between
the electron and the phonons is at least of order
1/w,. In paper II we will show numerically that
indeed M, —1 in the limit w,— . Second, the
electron self-energy, which is proportional to
a*In’w,, can be understood as follows. For small
a the electron self-energy which is proportional to
a, for o, =0 becomes proportional to a Inw, for
. >>1. In the large-a limit the electron self-
energy is proportional to a? for w, =0, while it is
proportional to (aInw,)? for w, >>1. Thus as far
as the magnetic field is concerned, for o, >>1, its
influence on the electron self-energy can approxi-
mately be taken into account by replacing the
electron-phonon coupling constant a by alnw, in
the limit o, >> 1.

VI. CONCLUSION

In the present paper an approximate expression
for the free energy of a polaron in an uniform
magnetic field was obtained for arbitrary values of
temperature, electron-phonon coupling strength,
and magnetic field strength. This result was de-
rived in the spirit of Feynman’s polaron theory,”
where we generalized the trial action to account for
the anisotropy in the effective electron-phonon in-
teraction. We reobtained most of the existing po-
laron theories as special cases.

Saitoh!”'!® (see also Ref. 14) considered a general
quadratic action to simulate the electron motion.
The resulting approximation to the free energy
contains an infinite number of variational parame-
ters, while in the present approach only four
parameters have to be determined variationally.
However, in Refs. 17 and 18 no numerical results
were presented. In spite of the much larger effort
needed in performing the variational calculation,
we do not expect that such an approach will give a
substantial improvement to the present result.

This is suggested by the numerical work of
Adamowski et al.,”> who considered the zero mag-
netic field limit of such an approach. In Ref. 53
an improvement to the Feynman result!>>* was ob-
tained which, for all values of the electron-phonon
coupling strength, was smaller than 1%.

In paper II several thermodynamic quantities are
calculated numerically, i.e., we present figures for
the magnetization, the susceptibility, the internal
energy, the entropy, and the specific heat. A de-
tailed numerical comparison between different
theories will be presented.
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APPENDIX

We present intuitive arguments in favor of the
validity of the Feynman inequality in the case
when a magnetic field is present. Feynman
showed!*1%2 in the case of zero magnetic field
that his approximate calculation of the free energy
provides an upper bound to the exact free energy,

FngthF,,,—%(s S )m (A1)

with S the action of the polaron after the elimina-
tion of the phonon variables and F is the corre-
sponding exact free energy. Fp, is the free energy
of the phonons, F,, is the free energy correspond-
ing with the trial action S,,, and { ),, is an aver-
age with weight function exp(S,,). Note that
Feynman considers the free energy F shifted with
the constant contribution F;,. Inequality (A1) pro-
vides a variational principle to determine the
parameters in the trial action S,,. The proof of
(A1) is based on the fact that S and S,, are real.
For nonzero magnetic field strength the actions S
and S,, contain an imaginary term, which implies
that the original proof of Feynman’s variational
principle no longer holds. Although a strict
mathematical proof is lacking, we have intuitive
reasons for assuming that the Feynman variational
principle [Eq. (A1)] is still valid in the present situ-
ation. The motivation for this originates from the
Bogolyubov inequality?!
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FSF()"‘(H-HO)(). (A2)

H and H, are Hermitian Hamiltonians with corre-
sponding free energies F and Fy. The equilibrium
average with the Hamiltonian H, is indicated by
( )o. Inequality (A2) can be obtained from in-
equality (A1), and vice versa,?? if the actions S and
S,, are derivable from some Hermitian Hamiltoni-
ans H and H,. Now note that even if a magnetic
field is applied, inequality (A2) still holds as long
as the Hamiltonians H and H, are Hermitian.
Thus inequality (A1) must also be valid, although
S and S,, are complex quantities. This indicates
that the condition for S and S, to be real, which
was needed in the proof of (A1), is too restrictive.

The above comparison between the Feynman in-
equality [Eq. (A1)] and the Bogolyubov inequality
[Eq. (A2)] is instructive for our problem. In the
present situation the actions S and S,, are obtained
from Hermitian Hamiltonians, respectively, H and
H, after the elimination of the phonon variables.
This implies that S and S, are nonlocal in time or
that S and S,, cannot be expressed directly in
terms of Hermitian Hamiltonians that are local in
time. This prevents us from using directly the
above-mentioned link between Eq. (A1) and Eq.
(A2).

In summary, we have the following arguments at
our disposal for the justification of the use of in-

equality (A1) in the problem under study. First,
the reason why the Feynman inequality could not
be proved in a strict mathematical sense is the ap-
pearance of spurious imaginary terms that disap-
pear after the path integral has been evaluated.
Indeed, it turns out that all calculated quantities
are real, although the weight function in the path
integral, exp(S,, ), is complex. Second, it will turn
out that our results are consistent with the assump-
tion that Eq. (A1) is valid for the present situation.
For example, in Sec. V all the existing limiting
values for the polaron ground-state energy that
have been proved to be upper bounds to the exact
ground-state energy (see, e.g., Ref. 12) are reob-
tained with the present approach. To conclude the
above discussion, we accept that Eq. (A1) is valid
if the actions S and S,, can be obtained, in one
way or another (e.g., after the elimination of some
variables), from Hermitian Hamiltonians H and
H,. The last condition is satisfied in the present
case. Note that in Ref. 19 (p. 308) Feynman al-
ready made the conjecture that inequality (A1)
should be valid if a magnetic field is present.
Feynman’s argumentation was based on the com-
parison between the zero-temperature limit of Eq.
(A1) and the Rayleigh-Ritz variational method,
while our argumentation relies on the comparison
between Eq. (A1) and the Bogolyubov inequality
[Eq. (A2)].

1An ideal polaron gas is defined as a gas consisting of
non-interacting polarons. In the dilute regime the
study of such a system is equivalent to the study of
one polaron. In the following all thermodynamic
quantities will be calculated for one polaron in such a
gas.

2The polaron mass in the present paper (and in next pa-
per, paper II) is defined as the mass of the Feynman
polaron model.
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