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Statistical properties of polarons in a magnetic field. I. Analytic results
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The free energy of an ideal polaron gas in a static magnetic field is calculated using

Feynman's path-integral formalism. The trial action, used in Feynman's polaron theory,
is extended to take into account the anisotropy of the effective electron-phonon interac-

tion. This results in a free-energy expression with four variational parameters. Accord-

ing to Feynman's conjecture, the resulting free energy is an upper bound to the exact re-

sult. The approximate free energy is expected to provide accurate results for arbitrary
electron-phonon coupling strength (0.), temperature (T ), and magnetic field strength (.
The free energy per polaron is evaluated for hmiting values of a, T, and P .

I. INTRODUCTIGN

Our objective is the calculation of the Helmholtz

free energy F for a polaron in an ideal polaron gas'

in interaction with an external uniform magnetic
field 4 . The magnetization, the magnetic suscep-

tibility, the internal energy, the entropy, and the

specific heat are subsequently obtained as deriva-

tives of F. As a supplementary result we obtain an

approximation to the polaron mass, which is a
function of the magnetic field strength. Further-

more, thc polafon mass %'ill bc a61sotloplc bccausc
the magnetic field introduces a preferential direc-

tion into the system. .
A variety of methods have been applied to the

calculation of the ground-state energy of a polaron
in a magnetic field. Most of them are restricted to
the zero-temperature limit. In the weak and inter-
mediate electron-phonon coupling limit Larsen
has modified the Lee-Low-Pines (LLP) method to
descr1be the ground-state energy and the lom-

lying-excited states of a polaron in a weak magnet-
ic field. In the high magnetic field limit a method
based on the LLP transformation and the Born-
Oppenheimer approximation has been introduced

by Evrard et a/. ' (EKD). In Ref. 6 Larsen
presented a calculation of the polaron-energy spec-
trum for arbitrary magnetic fields valid in the
small coupling limit by using second-order
Rayleigh-Schrodinger perturbation theory (RSPT).
In the same reference a variational generalization

of the Haga ansatz7 to arbitrary magnetic fields

was derived. Bajaj approximated the polaron en-

cfgy spectrum, thc cyclotfon mass, and thc long1tu-

dinal effective mass in a magnetic field, for the
case of weak and intermediate electron-phonon

coup11ng, by us1ng Rn appfoRch given by Onsagcf
that is based on the use of the Bohr-Sommerfeld

quantization rule. Although in principle such a
method is only valid for large quantum numbers

(i.e., tlie classical liiiiit) he sliowed that tile resul'ts

are also meaningful for small quantum numbers.

The strong electron-phonon coupling limit was

first studied by Porsch. ' He applied the adiabatic

approximation (in the polaron problem also called
the Landau-Pekar approximation) to calculate the
polaron ground-state energy and the longitudinal
effective mass as function of the magnetic field.
This approximation can be improved slightly by
the inclusion of electron-phonon correlation effects
as shown by Kartheuser and Negrete" (KN). The
first systematic analytical and numerical calcula-
tion of the polaron ground-state energy for zero
temperature, arbitrary electron-phonon coupling
strength and arbitrary magnetic field strength was

performed by Lepine and Matz. ' These authors
used Green's-function techniques to obtain a varia-
tional upper bound to the exact polaron ground-
state energy in the Pock approximation. They
showed analytically how the weak- and strong-
coupling results, for small and large magnetic
fields, as derived by previous nlthods, could be
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reobtain ed.
The validity of the calculations on the magnetic

field dependence of the polaron properties reported
above is restricted to zero temperature. Extensions
to nonzero temperature have been developed using
the Feynman path-integral formalism. ' Hellwarth
and Platzman' were the first to extend Feynman's
polaron theory' to nonzero magnetic field and
nonzero temperature. Explicit calculations were
made within the Feynman two-parameter model
(this means an isotropic quadratic action) in the
limit of small magnetic fields and low temperature.
However, both limits were taken such that
Pfico, «1 (co, is the cyclotron resonance frequency
and P= 1 /k' T with T the lattice temperature and

k~ the Boltzmann constant). In this limit they cal-
culated the free energy, the magnetic susceptibility,
and the polaron mass. They found that the mag-

netic field correction to the free energy is quadratic
in co„while at zero temperature the correction is
linear in the magnetic field. Marshall and Chaw-
la' have calculated this linear correction term
within the same approach as in Ref. 14. Recently,
Saitoh' ' used a general quadratic action with an
infinite number of variational parameters to calcu-

late the polaron free energy and effective mass in

the limit of small' and large' magnetic fields.
However, no numerical results were obtained in

this work.
The purpose of the present paper (hereafter re-

ferred to as I) is to generalize Feynman's polaron
theory' to arbitrary magnetic field strength and

arbitrary temperature. To do so we shall apply the
Feynman inequality. ' ' Although Feynman's

proof of this inequality is only valid if no magnetic
field is present, there are intuitive reasons to be-

lieve that the inequality is also applicable in our
situation. Our arguments in favor of this conjec-

ture, which we call the Feynman conjecture be-

cause Feynman' had already suggested it in Ref.
19, are listed in the Appendix and are based on a
comparison between the Feynman inequality and
the Bogolyubov inequality. '

The trial action S used by Feynman is general-

ized as follows: First a magnetic field is included,
and subsequently the quadratic self-interaction is
chosen to be anisotropic. This anisotropy in the ef-

fective iriteraction is a novel feature not present in
other approaches considered so far, with the excep-
tion of Ref. 18. The inclusion of the anisotropy in

the effective electron-phonon interaction turns out
to be very important in describing the high mag-
netic field properties of the polaron. Furthermore,

it leads to interesting physical effects. This will be
discussed in more detail in the following paper
(hereafter referred to as II).

The outline of the present paper is as follows.
We start in Sec. II with a brief discussion of the
problem and show that in calculating the free ener-

gy along the lines of Ref. 15 it is sufficient to
know the Fourier transform of the electron
density-density correlation function as described by
a trial action (or trial Hamiltonian) and the free
energy corresponding with that trial action. In
Sec. III we present a generalization of the Feyn-
man trial action and show that it can be obtained
from the Hamiltonian of an anisotropic Feynman
polaron model. Static and dynamic properties of
this Hamiltonian are calculated. %'e found that
this model already exhibits some essential dynamic
features, such as noncrossing of Landau levels and
the appearance of the pinning effect, which are ap-
parent in more detailed investigations on magneto-
optics. The results of Secs. II and III are com-
bined in Sec. IV to obtain an approximation for
the polaron free energy. Most of the previous po-
laron theories are reobtained as limiting cases of
the present result. However, the present result can
be considered as a special case of Saitoh's' result,
where the most general form for the quadratic trial
action was used. Section V is devoted to the ana-
lytic calculation of different limits. The results are
compared with other results obtained earlier by
others. Finally, Sec. VI contains our concluding
remarks where special reference is made to the re-
cent work of Saitoh. ' Units are used such that
fl= pl =cop= 1 ~

II. FORMULATION OF THE PROBLEM
AND APPROXIMATION

The Hamiltonian that describes an electron in-

teracting with the vibrational modes of a crystal
and a constant uniform magnetic field is given by2

H =H, +Hph+Hl

with
'2

1 eA
H, = p+

2@1 C

&ph=Xi, ('i, ai +-»
k

HI ——g ( Vi, a i,
e' " ' '+ V'i, a -„e ' " ' "

) .
k
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A free electron in a magnetic field 4 =rotA with

band mass m, electric charge —e, and conjugate
coordinates {r, p ) is described by the Hamiltonlan

H, . In the following the magnetic field is taken

along the z axis, and the vector potential is written
in the symmetrical Coulomb gauge

PA=
2 '2

The operators a k and a k are creation and annihi-

lation operators for a phonon with wave vector k
and frequency to &. The constant Vp gives the

strength of the interaction between the electron and
the field mode k. For longitudinal-optical (LO)
phonon scattering one has

1/4.~o 4m+

2m')0

t00 is the LO-phonon frequency, V the volume of
the crystal, and tx the dimensionless Frohlich cou-
plmg constant.

The Helmholtz free energy may be written as
1g= ——lnZ

Z =Tre-&8
the partition function. The trace can be split up
into two parts, an electron part Tr, and a phonon
part Tfph~

Z=Tr, 'rr„h(e t' )=f dr{ r, t ~Tr~h(e ) g, t),
where the space integral is restricted to the crystal volume V. Time translational invariance allows us to
take t equal to zero. Owing to the property that the Frohlich Hamiltonian is quadratic in the phonon coor-
dinates it is possible to perform the trace Tr~h exactly. Using a path-integral formulation one obtains'

Z =Zph f dr f DF(u) expIS[F{u)]I5(F(P)—r)5(r(0) —r) (6

with N the number of phonon modes. The action S[F] in Eq. {6) was obtained after the exact elimination
of the phonon coordinates and thus is a functional of the electron position coordinates only. It is given
by24, 25

S =S,+Sr,
S,= ——, f du I r(u) + iso, [x (u)y(u) —y (u)x(u)] J, (S

P
St ——g ~

V-„~ f du f ds G„(u —s)expIik [r(u) —F{s)]], (S
k

(Sa)

where

with f Dr an integral over all possible electron paths. The variable u is related to the real time variable t

via u =it. The partition function of the free-phonon system (which is a set of harmonic oscillators) appears
as a factor in Eq. (6), which for LO phonons is equal to

Z~h ——Tr e '"=[2 sinh(P/2)] ('7

G (u) =—u (~)(e " +e"' '
"

' ') (Sd)

is the phonon Green's function, co, =eM/mc the cyclotron frequency, and n (co)=(e —1) ' the number of
phonons with frequency co.

The path integral in Eq. (6) with the action (Sa)—(Sc) has not been evaluated exactly. To obtain a reason-
able approximation to Eq. (6) we shall proceed along the lines indicated by Feynman. ' Instead of the ac-
tion S consider a trial (or model) action S~ that describes the electron evolution in an approximate way.
Furthermore, S is taken such that path integrals with this action can be done exactly. S defines a parti-
tion function

Z =e —= f dr f DF(u)expIS [F(u)])5(F(P)—r)5(r(0) —r)

and an expectation value

{&[r]) = f dr f Dr(u)e A [F(u)]5(F(P)—r)5(r(0) —r) (10)
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for any functional A [r]. These notations allow us
to write Eq. (6) as follows:

Z=Z~hZ (exp(S —S ))

If the actions S and S are real one can apply the
convexity property of the function e to establish
the inequality

(exp(S —S ) ) & exp((S —S )~ ),
which leads to the Feynman variational princi-
ple' ' for the free energy

F(Fph+F ——(S—S )
1

For the problem under study the actions S and
S are complex quantities. However, as argued in
the Appendix we accept Feynman's conjecture that
Eq. (11) can be applied in the present situation be-

cause S and S~ (see next section) are derivable
from Hermitian Hamiltonians after the elimination
of the appropriate variables.

em= R Rue~ R —R
ZR

X5(R(0)—R),

where the action Sz is given by

Sz[r,R]= du Lz(i r,iR;r,R),
0

(12)

and I.~ is a Lagrangian describing a two-particle

problem, with a corresponding Hamiltonian

H~ H, +H——~ +H, s [the significance of the dif-

ferent terms is similar to those of Eq. (1)]. In Eq.
(12) we used the partition function

Za =Tr[exp( PHR )]—[see also Eqs. (6) and (7)].
The partition function Zz corresponding to the
Hamiltonian H~ is given by

With the assumption that S is derivable from a
Hermjtian Hamiltonian HF (with corresponding

Lagrangian LF) after the elimination of the vari-

able R (the generalization to more variables is

straightforward) one may write

Z~=e =Tr(e )

= fdr fdR fDr(u) fDR(s)e 5{r{P)—r)5{r(0)—r)5(R(P) —R)5(R(0)—R) .

Inserting Eq. (12) into Eq. (9) and using Eq. (13) results in

p(p +p )
ZF =ZRZ~ =e

which implies that

The expectation value (10) can be written in terms of the action Sr by using Eqs. (12) and (14):

(13)

(14)

(A [r])~ = f d r fdR fDr(u) fDR(s) e A [r]5(r(P)—r }5{r(0) —r)5{R(P)—R}5{R(0)—R)

(15)

(A [r]) =(T;A [r(u)])F (16)

The subscript F in the notation ( )+ refers to the
S~

weight function e r.
Because S~ contains only equal-time interactions

it becomes possible to make the link with the

operator formalism. Using Ref. 26 [see formula

(18.12) on p. 49] the expectation value (15) may be

written as

and the expectation value

(18)(A )~= Tr(e FA) .
Zp

The time-ordering operator for imaginary times is

labeled by T . Using Eqs. (14) and (16) the ap-

proximation to the free energy [Eq. (11)]can be

written in the operator formalism. To simplify the

expectation value (S—S~ )~, we choose a trial ac-

tion of the form

with the operator

(17)

S~ =S,+Sm I

with S, given by Eq. (8b) and S I the self-

(19)
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interaction part of the trial action, which will be
chosen quadratic in the electron coordinates {see
Sec. IH}. The expectation value (S—S & splits

up into two terms [use Eqs. (Sa) and {19)].

(S-S & =(S,& -(S,, & {20)

(21a)

The calculation of the first term, (SI&~, results in

evaluating

(Ctk [r(tt)—r(d))&

(i) S(k,z) =S(—k, iP-z).
{ii)S(k,z)=S~(k, —z~).
(iii) S(k,z) is analytic for 0 & Imz &p, and

S(k,z) is continuous and uniform bounded for
0& Imz (P.
The first property (i). implies Eq. (25a), while thc
second one gfves

S,(k,u)=S,'(k, u), u real.

or in terms of operators [use Eq. (16)]

f(k, u,s)=(7;(etk '"'c" "'}&p (21b)

The above properties and Eqs. (24), (25a), and (25b)
will bc used to stinplify (S1&ttt sig11iflcalltly. De-
fine the function

If the self-interaction part of the trial action is
quadratic, the expectation value (S 1 & results in
evaluating terms like

([r(u) —mrs)] G.[gru) —P{s)]&

=—Vkf{k,u,s).G Vkf(k, u,s)
~ k 0 (22)

in the following way [using the property
Tr{AB)=Tr{BA )]:

where G is a tensor that may depend on u and s
but is independent of the electron coordinates.

Froin Eqs. (21a) and (22) it is apparent that the
key quantity to evaluate is f(k,u, s). This function
is related to the Fouriel tl'aiisforni of thc electron
density-density correlation function (for the defini-
tion see, e.g., Ref. 27, p. 370)

S(k 1) (C ik r(0)ei—k r(t)& (23)

g{u}=y ( V-„~'6 „(u)S,(k,u),

which allows us to write Eq. (Sc) as
P P

($~) Jdu=I:dsr(fd —s ~),

where use has been made of the equalities
i Vk i

=
i

V k [ andcok=tdt -„that follow
directly from the time-reversal symmetry of the
electron-phonon system. From the property
g{u)=g(P—u), which is induced by Eq. (25a), it
follows that

P
(Si& =P J, dug(u),

and after some simplifications the final expression
fs Obtafned:

—(S & =g
~ Vk ~

[1+11( -„)]

S(—k, iu —s i), u&s

S(k, iu —s i), u &s
(24}

wfth

S,(k,u)=S(k, iu) .

With cxprcss1011 (24) 111 1111111,tile cxpcetat1011
value (SI & can be reduced to a more convenient
forl11 by apply111g tile property

S,(k,u)=S, ( —k,P—u), u real (25a)

which is a direct consequence of the Kubo-
Martin-Schwinger (KMS) condition. Indeed, the
density matrix is of the form p=e ~ /Tr(e ~ )
(in the present ease the Hamiltonian H becomes
Hp) a11d thus sat1sfics tlic KMS eolld1t1011, whleli
induces the following properties (the variable z is
in general complex}:

X I duS, (k,u)e " . (26)

To resume the results of this section, given a
Htnnitian model Hamiltonian Hp one can find an
approximation to the exact free energy [see Eq.
(11)]. In doing this, one needs to know the free en-
ergy corresponding to HF and the Fourier-
transformed density-density correlation function of
the electmn as described by Hp. Equation (11),
which was obtained in the path-integral formalism,
is thus expressed in the operator formahsm. The
choice of the relevant model Hamiltonian Hp,
which will be used in the present paper, is dis-
cussed in the next section.

First we will discuss the choice of the trial ac-
tion. In the zero magnetic field case Feynman
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introduced a trial action that can be obtained from
a two-particle Hamiltonian after elimination of the
coordinates of one of the two particles. This Ham-
iltonian describes an electron that is coupled to a
second particle via a harmonic force. This second
particle, also called the fictitious particle (because
its coordinates must be eliminated to obtain the tri-
al action}, simulates the polarization cloud around
the electron. The mass of the fictitious particle
and the coupling between the electron and the ficti-
tious particle are a measure for the effective
electron-phonon interaction. This model system is
called the Feynman polaron model.

The application of an external static magnetic
field will influence the electron motion. It not
only introduces a preferential direction, but it will

also influence the efficiency with which the elec-
tron interacts with the phonons. Indeed, the mass
of the fictitious particle and the strength of the ef-
fective interaction will depend on the direction and
on the strength of the applied field. As will be
seen later, the direction and field dependence of the
effective interaction will be of fundamental impor-
tance for the appearance of certain physical phe-
nomena.

In view of the foregoing discussion it seems
reasonable to generalize the isotropic Feynman po-
laron Hamiltonian to a Hamiltonian with anisotro-

py in both the coupling and mass of the fictitious
particle. Using the axial symmetry around the
direction of the magnetic field we introduce the
following generalization of the Feynman polaron
Hamiltonian:

H =H()+Hg

with
2 & 2

Ps Ps
Hii = +, + —,Kii(z —z')

2m 2m
~(

Hi = (p» ——,mco, y) + (ps+ 2 mco, x)1 & 2 1

2m 2m
I 2

A'
+ $ + i Ki(r( —ri )

i &~ 2mj

This Hamiltonian describes an electron with coor-
dinates (r, p) and mass m = I, subjected to a mag-

netic field 4 =4 e, and interacting with a second

particle, called the fictitious particle, with coordi-

nates (r ', p ') and diagonal mass tensor

mg 0 0

0 mg 0

0 0 m()

The interaction is quadratic with a coupling tensor

0 0

0 ]cg 0

0 0

After eliminating the coordinates of the fictitious
particle one obtains an action S, which is a func-
tional of the electron coordinates only. This action
will be used as our trial action S and is given by

Sm =Se+Sm (27)

where S, is given by Eq. (8b) and

P PS,=—+C, J du f dsG. .(u —s)
i=1

)& [r;(u) —r;(s)]' . (28)

The constants Cj ——Ci ——C2, C(~
——C3 and

wg w] —l82 N
) (

N3 are given by

Ki
Wi =

mi

1+m
Ui =Ki

mi

NjC;= (u; —iu; ), i =l,
//

.

Note that the action (28} is a function of four
parameters namely, uz, u~~, mj, m~~, which will be
determined vmiationally. The original Feynman
trial action is obtained if we take u =ui ——

u~~,

~ =m, =+~~, and e, =o.

A. Exact diagonalization of the Hamiltonian Hy

1. Diagonalization of H~~

The Hamiltonian H~~ has four degrees of free-

dom, so a 4)(4 matrix must be diagonalized. This
has been done in Ref. 24. The results can be sum-

marized as follows:

The Hamiltonian HF has twelve degrees of free-

dom. Thus the diagonalization of Hs is equivalent

with the diagonalization of a 12)& 12 matrix. The
z component does not couple with the xy com-

ponents, and therefore the diagonalization of H~ is
divided into the diagonalization of H~t (four de-

grees of freedom) and the diagonalization of Hi
(eight degrees of freedom}.
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(29)

with 8
~~

and P~~ the conjugate variables of the
center of mass and Co and Co, respectively, the
creation and annihilation operators for the internal
oscillation with frequency so ——u~~. The total inass

MII is given by

M)) ——1+m j)
. (30)

The explicit time evolution of the z component
of the electron coordinate can be expressed in

terms of the normal coordinates

7?l
~~

1 U~~
—N

[(
0

2M)) s0
(32)

z(t) =El!+ t +do(Coe ' +Coe ' } (31)
II

with

transform of these equations results in four cou-

pled nonhomogeneous algebraic equations, which

can be solved analytically. One only has to deal

with 4&4 m.atrices. Then the inverse Laplace
transform gives the explicit time dependence of the
position coordinates in terms of the normal coordi-

nates.
The results of such a calculation can be summa-

rized as follows.

(i) The normal coordinates are:
(a) Two constants of motion (which were already

introduced in Ref. 29) II i and Ilz, which are relat-

ed to the classical orbital center. Namely, in clas-

sical mechanics ( —llz/to„lli/co, ) are the position

coordinates of the center of mass.

(b) Three creation and three annihilation opera-

tors I C iC; ~
i =1,2,3I (the approximate calcula-

tion of Ref. 29 leads to four creation and annihila-

tion operators) for internal oscillations with fre-

quency s1 cs2 %$3, wh1ch arc g1vcn by thc pos1tlvc

roots of the equation

s (s —ui) —oi, (s —iud) =0.22 22 2 2 22- (33)

2. The exact diagonalization ofHi

The diagonalization of Hi is equivalent with the
diagonahzation of a real symmetric 8X 8 matrix.
One of us (J.T.D.) and others have performed a
partial diagonalization of Hi in the following way.
After a canonical transformation the nondiagonal

part in the transformed Hamiltonian was handled

as a perturbation to the diagonal part. Then with
perturbation theory the low-lying energy levels
were calculated. In the following, an exact diago-
nalization of Hi will be given.

We proceed via the Heisenberg equations of
motion, because solving the equations of motion is
equivalent with an exact diagonalization of the
Hamiltonian. For example, the explicit tine
dependence of the electron position coordinate pro-
vides the eigenfrequencies (and thus the eigenvalues
of Hi} as well as the normal coordinates [see, e.g.,
Eq. (31)]. The equations of motion for the posi-
tion and momentum variables form a set of eight
linear first-order differential equations because Hi
is quadratic and has eight degrees of freedom. The
solution of this set of equations is rather lengthy
but straightforward. Therefore only a brief outline
of the calculation will be given.

After eliminating the momentum variables the
eight coupled first-order linear differential equa-
tions reduce to four coupled second-order linear
differential equations. Taking the Laplace

(ii) The explicit time evolution of the electron
position coordinates takes the form

3—g df(CJ'e ' +CJ e ' ),
N~

(34)

3

y(t)= +t' g ( 1)jd (—C e ' —C & ) ~

N

with

2 2

z, j=1,2,3 . (36)
3sj +2( —1)Jco,si —ui

(iii) The diagonalized Hamiltonian becomes

Hi ——g sj(CJ CJ+ —,), (3&)

1

Ei ( tt i,5z, tt i ) = g SJ( ttI+ i ),
j=1

where nj are positive integers.

(38)

B. Physical interpretation
of the eigenfrequencies

In Fig. 1(a) the eigenfrequencies sj, which are
given by the roots of Eq. (33), are plotted as a

which consists of three one-dimensional harmonic
oscillators. The energy levels are given by
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function of the magnetic field for a particular
choice of the parameters ui and iui. As an exam-

ple, we took iui ——1 and ui =1.048. From this fig-
ure it is apparent that the eigenfrequencies s i and

s3 can be related to the resonance transition ener-

gies of free electrons in a magnetic field and in po-
lar semiconductors.

Using the same choice of parameters (i.e., iui ——1

and ui =1.048) we have plotted in Fig. 1(b) the
ground-state energy Ei(0,0,0}and the energy of

S&

+c

some excited states [namely Ei(1,0,0) and
Ei(0,0, 1)] of the model Hamiltonian Hi. The en-

ergy scale is lifted with the zero point energy of
Hi at zero magnetic field and the unperturbed
Landau energy levels are drawn as dashed lines in
Fig. 1(b}. In a perturbation calculation of the po-
laron ground-state energy the spectrum of a free
electron in a magnetic field is used [dashed lines in
Fig. 1(b)] as the unperturbed part, while in the
present approach we used the spectrum of Iri as
the unperturbed part [solid lines in Fig. 1(b)]. This
Iilodel Haiililtolliall Hi allows ils fo take iiito ac-
count the following two effects (which in other ap-
proaches results only after a perturbative calcula-
tion):

(1) The absence of leuel crossing at c0, =L
Namely, at co, =1 there is a crossing of the unper-

3
turbed energy levels —,cu, (no phonons and the first

1
Landau level) and —,c0, +1 (one phonon and the
zeroth Landau level) that is lifted by the interac-
tion of the electron with the LO phonons. The
consequence of this effect is the appearance of a
doublet structure in the magneto-optical spec-
trum. "-"

(2) The pinning effect. For tu, ~ 00 the energy
level Ei(1,0,0) is pinned ' to the unperturbed
energy —,co, + 1 [six: Fig. 1(b)].

C. The free energy

The free energy of the system described by the
Hamiltonian H~ ——H~+H~I mill be calculated.
From the diagonalized Hamiltonian [see Eqs. (29)
and (37)] one notes that the partition function is
the product of the partition function of a one-
dimensional free particle with mass Mi and the
partition function of four one-dimensional harmon-
ic oscillators. Furthermore, one must sum over all
allowed values of the constants of the motion IIi
and II2,' this sum is equal to (I.„lr l2n)rnco, (see
Ref. 27, p. 217). Assume that the systein is con-
fined to move in a box with dimensions L„,I.r,
and L„and volume V =I.„I.&I, Then the parti-
tion function is given by

' 1/2
M~~ZE= Ne
2~P z u 2sinh( —,s&P}

FIG. l. (a) shows the eigenfrequencies [which are
determined by Eq. (33}]of the Feynman polaron Hamil-
tonian as a function of the magnetic field. The low-

lying energy states of the same Hamiltonian [see Eq.
(38)] are plotted in (b). The dashed lines indicate the en-

ergy levels of the noninteracting system.

from which the free energy,

1
I"p ————lnZp,

(39}
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is easily calculated. At zero temperature the free
energy reduces to the zero point energy of the
model Hamiltonian HF [see Eqs. (29) and (37)].

D. Pourier transform of the electron
density-density correlation function

Hamiltonian Hz, must be calculated. From the di-

agonalized form of the model Hamiltonian [Eqs.
(29} and (37)] and the explicit time dependence of
the electron coordinate [see Eqs. (31), (34), and
(35)] it is clear that the correlation function S(k, t)

[see Eq. (23)] can be written as a product of five
functions:

As shown in Sec. II the Fourier transform of the
density-density correlation function of the electron,
whose time evolution is described by the model

S(k,t)=S (k, t) QS„(k,t)
p, —0

with

(40)

Sp(k, t)=(exp[ idp—k, (Cp+Cp)]exp[idpk, (Cpe +Cpe )])F, (41)

Si(k, t) = (exp(idj I [k„i( ——1)ik~]CJ+[k, +i ( —1)

Xexp( idj f [k—, i( ——1)Jk ]Cie ' +[k

CtI )

( —1}'ky]CJ.e ' J))F, j=1,2, 3

and

(43)

~Aes eA +8 l~»1/2

S4(k, t)=j exp( —ik, RII)exp t'k, RII+i
'

tt
M~~

As an example we calculate Sp(k, t). The operators can be put into nodal order by applying the commu
tation relation twice,

which is valid if [A,B] commutes with A and B. This gives

Sp(k, t) =exP[ —dpk, (1 e' )]—(exP[id0k, Cp(e 1)]exP—[ id 0k, C0—(e ' 1)])F .—

Using the identity (see, e.g., Ref. 38, p. 374)

(e q 'e q''') =Tr(e ~' ''e ''
e '')/Tr(e ~ ' '')=exp[ —

~ q ~
n(Q)],

one obtains
P

jSot S0t
Sp(k, t) =exp k, d p 1 e+—4n(sp—)sin

(45)

The other four functions are calculated in an analogous way (see, e.g., Ref. 39 for a similar calculation).
The final result is

with

S(k,t) =exp[ —k, D0(t)]exp[ —kiDH(t)], (46)

kq ——k„+ky, (47a)

0 1

2M')

t itpt . 2 SPt

2
—it+ —+dp 1 —e ' ~4n(sp)sin (47b)

3 Sjt
D~~(t}= gd,2

1 e t +4n(si—)sin
j=1

(47c)
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In the expression for the free energy one needs the function S(k, t) for imaginary argument:

S,(k,u) =exp[ —k, D{u)]exp[—kiD~(u)],

fk Q —SOQ 2 SOQ
D(u)= 1 —+do 1 —e —4n(so)sinh

2Mii P 2

3 —s.a
DH(u) = $dj 1 —e ' —4n(sj )sinh

~

$
2

The last two functions have the property

lim Dii(u)=D(u) .
fg ~O

In the special case of an isotropic Feynman

model (u =Ui ——
U~~, io =iei ——ie~~) Hellwarth and

Platzman' calculated the same functions via

path-integral techniques [see Eq. (16) in Ref. 14].
The correspondence between the function 6 (u) in

Ref. 14 and the function DH(u) above is as fol-

lows: DH(u) =D(u) —co, G(u). In Ref. 14 D(u)
and 6{u) are represented as an infinite sum, while

here these functions are given in a closed analytic

orm.

IV. GENERAL ANALYTIC EXPRESSION
FOR THE POLARON FREE ENERGY

AND RELATION TO OTHER THEORIES

A. Analytic expression for the polaron
free energy

Equation (11) [see also Eq. (20)] gives a general

expression for an upper bound to the exact free en-

ergy

p~p„+p (g } + (g }1 1

p
Nl

p
tPI, I m

The free energy of the phonons, in the absence of
the electron, is obtained from Eq. (7) and is equal

to

(50)

The results of Secs. II and III will be combined

to obtain an explicit expression for the polaron free

energy for arbitrary temperature, electron-phonon

coupling, and magnetic field strength. The zero-

temperature limit of the free energy, which in this

limit is equal to the polaron ground-state energy,

will be given. Furthermore, the relation between

the present result and those derived earlier by other

authors will be pointed out.

NP „=—ln 2sinh-
P p

The trial action S defines the free energy [see

Eqs. (9) and (14)]

with Ez the free energy of the generalized Feyn-

man polaron model [see Eq. (39)]

1
i . ps',I'F=—+in 2sinh

P„o 2

U~~ N~ 1
ln

p LO~~ 2% V 21'
1——lnV, (53}

which equals

1+—ln 2sinh
2

The expectation value of Sl is obtained from

Eqs. (26) and (47}. For LO phonons and in the
limit of an infinite crystal volume one obtains

1~,=—&s, &.

[1+n (coo)]
2 21r

x du
e "

1
&D(u)+&H{u)

ln
0 v +(u) QD(u) v H(u)

(55)

and Fz is the free energy of the fictitious particle

in the generalized Feynman polaron model in the

absence of the electron. Equivalently, it is the free

energy of the Hamiltonian (see Sec. III}

13 I 2
PI'

Hg —g + 2 Kg?;
2' I



2S STATISTICAL PROPERTIES OF POLARONS IN A MAGNETIC. . .. I. . . . 7291

where H(u)=D(u) —DH(u); D(u) and DH(u) are

given by Eqs. (49a) and (49b}.
Two different methods can be used to calculate

(S r), where S I is givenby Eq. (28). One can
use the expectation value (22) and expressions (24)
and (48) to obtain (S I )~. However, another and

more convenient approach uses the equality

r}F BF~

P
(Syg j )yg —

J ~C
+

Il

(56)

which is obtained from the Eqs. (9), (10), (19), and
(28). Inserting Eqs. (52), (53), and (54) into Eq.
(56) one obtains

F I = — (S I )
1

Ci 3 Bsj. Psj
coth

uiwi i (}vi

+
Ull wll

+coth
PvII

v
(57)

where the derivatives Bsj/Bui are obtained from

Eq. (33) and are given by

BSJ 2UySJ.

3s +2( —1}J,s —v
2 2

(58)

The free energy of the phonons Fvh [see Eq. (51)]
and the volume contribution —(I/P), ln V in Eq.
(53) only give a constant contribution to the free

energy. In the following this constant contribution

will be subtracted from the right-hand side of Eq.
(50). This amounts to shifting the zero point of
the free energy. Finally, we obtain the following

approximation to the polaron free energy:

F —F F (59a)

with

2sinh
pw

1 ~ll toe 2
Fp ————ln

p 21T ivII V 2'ir13 puII
2 sinh

2

wj
2 sinh

2

3 Ps.
2 sinh

i=1

2

(59b)

Equation (59a) is the central result of the present
paper. The subscript "as" in Eq. (59a) indicates
that the trial action contains an anisotropic effec-

tive electron-phonon interaction. Expression (59a)
is valid for all a, T,co, and depends on four varia-
tional parameters Uq, wz, ull, wll. Thus we may
write

Fas =Fas(+~ T~cocivj iwi ~vIIwII ) &

where the variational parameters will be deter-
mined so that F» takes its minimum value. The
minimalization of Eq. (59) to the four parameters
has to be performed numerically (see'paper II) ex-

cept for some limiting cases where the minimaliza-
tion can be done analytically (see the next section).

E„=limF„,
T~O

and thus

1

Eaa= 2 g S& —2Wi —
WII

p=p

Ci 3 dsj C
+

a " e " v'D (u)+ v'H (u)
du In

2v 2m. o v'H(u) 3/D(u) —v'H(u)

(60)

B. Relation to other theories

The relation between the present result, Eq.
(59a), and the result of some other theories is
represented schematically in Fig. 2. Hellwarth and
Platzman' extended Feynman's path-integral vari-
ational calculation to include the effect of an exter-
nal magnetic field. As a trial action they choose a
general quadratic symmetric action. The general
results were presented in terms of infinite series.
Explicit analytic results were derived in Ref. 14,
within, the isotropic Feynman polaron model, in
the limit of small magnetic fields (co, «1) and low

temperature (P»1, but such that Pc@,« 1). We
have verified that in the limits considered our re-

sult is identical to the one of Ref. 14.
In the zero magnetic field limit one has u =ui

and Eq. (59a) transforms to the
result of Osaka. Taking the zero-temperature
limit further one obtains the result of Feynman's

polaron theory. '

Several theoretical studies have been published

during the last few years about the polaron in a
magnetic field. Almost all of them are concerned
with the zero-temperature limit. Below we show

how some of these results can be reobtained from
the present result [Eq. (59a)]. In the zero-
temperature limit the free energy F„[Eq.(59)] is

equal to the polaron ground-state energy E„,
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FIG. 2. Relation between different polaron theories.

The above expression is closely related to the re-
sult of Lepine and Matz. 'z In Ref. 12 Lepine and
Matz presented an expression for the polaron
ground-state energy, which was derived by using a
nonperturbative Pock-type mean-field theory.
Their result, which contains two variational
parameters (y and P'), is an upper bound to the ex-
act polaron ground-state energy. A model Hamil-
tonian was used to simulate the electron motion.
This model Hamiltonian describes an electron in a
lilagiletic 6eld A =4/&BC/e (wlilcll we sliall call
an internal field) and which is coupled quadratical-

ly, with a spring constant E =P', to a point fixed
in space. Note that the internal magnetic field A '

may differ from the external magnetic field A . It
can easily be verified that our result [Eq. (60)]
coincides with the result of Ref. 12 [Eq. (25) of
Ref. 12] if oile sets Ui=U~~ =p, Ni=N~~ =0 iii Eq.
(60) and if the internal field in Lepine and Matz's
theory is taken equal to ihe external magnetic field,
i.e., y =a), /4.

The present result for the polaron ground-state

energy [Eq. (60)] differs in three respects with the
Lepine and Matz'~ result. Firstly, here a trial ac-
tion is used to simulate the electron motion while

in Ref. 14 a trial (or model) Homiltonian was used.

Secondly, the trial action S [Eqs. (19), (Sb), and

(28)] describes a sehf interacting electron, i.e., it in-

cludes a memory effect, while the model Hamil-
tonian of Ref. 17 describes an electron with a local
(equal-time) interaction. Thirdly, in the present

study we allowed the effective electron phonon in-

teraction to be anisotropic. No such anisotropy is

present in the theory of Ref. 17.
If we take u, =u~~, ioi ——ic~~ (symmetrical model)

and expand Eq. (60) for small magnetic fields„we
obtain the result of Marshall and Chawla. '6 These
authors calculated the polaron ground-state energy,
using the Feynman path-integral approach up to
6rst order in the magnetic 6eld. From the first-
ordcr term, which is inversely proportional to the
polaron effective mass, these authors' calculated
the polaron mass.

If we take ui ——
u~~

=wi ——ic~~ [this implies C; =0
in Eq. (28)] the generalized Feynman trial action
reduces to the action of a free electron in a mag-
netic field. Thus the result of Rayleigh-
Schrodinger perturbation theory (RSPT) for the
polaron ground state, as derived by I arsen, will bc
obtained. Indeed, one can verify that inserting

ui ——
u~~ =ici ——

w~~ in Eq. (60) results in Eq. (69) of
Ref. 6.

The comparison between the present result and
the more general result of Saitoh' is postponed to
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the conclusion.

V. EXPLICIT ANALYTIC RESULTS
IN LIMITING CASES

In the derivation of Eq. (59a) no restriction on
the strength of the electron-phonon coupling (a),
temperature (P= 1 /ka T), and magnetic field

(pi, =eA /mc) was imposed. However, in general,
the variational calculation of the free energy [Eq.
(59a)] must be performed numerically. In this sec-
tion it is our goal to derive explicit analytic results
for the free energy, and in some cases for the
Feynman polaron mass, for a restrictive range of
a, P, and co, values where it is possible to perform
the variational calculation analytically. A sys-
tematic study of the most important limits will be
made.

A. Sma11 electron-phonon coup1ing (a (&1)

All Ai

2(EII —Kll)
' 2(Ei Ki) '— (64)

and the free energy becomes

A A
II

4(EII —Kll ) 4(E K)—
(65)

functions Fi p, A II, and Ai have a as a prefactor.
They are much more difficult to evaluate because

Fl [Eq. (55)] contains an integral that can only be
performed analytically in a restricted range of P
and coc values.

Adding up the different contributions to the free
energy [Eqs. (62) and see Eq. (59a)]

F„=Fc Fr—,p+{EII Kll)~II+(Ei —Ki)ei

All~ll All~ll+
' ' '

and minimizing F„with respect to the parameters

s'll aild ei results in

For small a the effective electron-phonon in-

teraction will be small and thus vi (vll) will be

near to wi (wll }. If we write

v =iw(1i+6 }i,
(61)

"II =wll{1++II} i

then ei and all
will be of order a. With this in

mind, the three terms in the approximate free ener-

gy [Eq. (59a)] may be expanded up to a . We
found

where F, [Eq. (63)] is the free-electron contribu-

tion, Fz p is linear in a, and the last two terms of
Eq. (65) are of order ai.

1. Pai, » I

In this limit the electron free energy (63) has the
asymptotic expansion

F,= 1n(28rP}+ ——ln=3 pic 1 Pc

Fp F, +Bjjejj+B——iei+Ejjej(j+Ei j+
F~I=Bjjejj+Bjsi+KIIEjjj+KiEi+ ' ' ''2

Fl,0+A
I i@II+A~a~+

{62a)

(62b)

(62c) c &&&

(66}

P~c . P~c——ln sinh (63)
J

and B&,BII,E&,EI I,Kq, KI I,Aq, A
I I

are certain func-
tions of P and roc and the two variational parame-
ters vi and vll [because wi and wll have been elim-

inated by using Eq. {61)]. Although it is possible
to evaluate Bll, Bj,Ell, Ez, Kll, and Kz explicitly
we will not give the explicit expressions for these
functions because they are rather lengthy and are
of no direct relevance at the moment. The other

where F, is the free energy of a free electron in a
magnetic field

F,= 1n(2mp)
3

e

This is the small magnetic field and low-

temperature limit, but such that 1/P «coc «1. In
the small magnetic field limit the difference be-

tween DH(u} and D(u) is of order pic and thus
H (u)/D (u) « 1 can be considered as an expansion
parameter in the integrand of Eq. (55). After
evaluating the integral in Eq. (55) we found

—FIp= —a (1+ (~ Nc —
84p coc+ ' ' ' )

1 8 87+
12

(1+ ip pic+ icc+

81 &2s so7s+ S( 48 c+ 864 c+
J

(67)
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which is the first-order correction in a of the po-
laron free energy relative to the electron free ener-

gy. The zero-temperature limit of Eq. (67) is
identical to the expansion obtained by I.arsen.

The parameters e~~ and el [see Eq. (64)] are, to
first order in co, and I/P, given, respectively, by

Gj +EyN~+~j —+

pHng limit one also has u =w+O(a). Inserting

ul ——
u~~

=3 into Eqs. (69a)—(69c}and (71a)—{71c)
2 z 13 ~ ~ 1

glVCS 6'j =6'() = 27, Ej = ~~ ~ 6y =8))= ~~ ~ SIld

(E
)
—~5 ~

Using Eqs. (61), (68), and (70) we obtain for the
masses of the Feynman polaron, to first order in a,
m, , and 1/P,

el —— 1— (g I+ul —1)0 2 2
3Ug Uy

2 —1+—- 17+
15ul ui y'1+ ui

1
'

2

1GUy Ug

1— 1

't/1 +u I

E~I+E~|6)&+6'~I—+ ' ' '0 c (91

0 2 2
1— (+1+u~~

—1

2 1
'Il= 1— — 1—

)/1+uii

{69c)

(70)

('71a)

4 2 44
27+ 45"'+ 405 P

(72b)

The zero-temperature and zero magnetic field limit

gives Mi ——M~~=l+a»+O(a ); it is identical to
the result as obtained by Feynman in Ref. 15 (see

aho Ref. 40) and close to the correct perturbation

theory result~i for the polaron mass

1+a/6+ 0 (a ). Note that MI, as function of the

magnetic field, increases faster than M~~ (namely

0.064 slid ~~
~0.044). Tllc tclnpcratllrc

dependence of Ml Md M(I is different. This is not

surprising because Eqs. (72R) and (72b) were de-

rived with the condition 1/P ~~m, ~~1, which

means that the zero magnetic field limit for finite

teGlpentQfc docs Got applg.
The a correction terin to the free energy I'„

[see Eq. (65)] is given by (to first ordei' in RI, and

1/P and for u =ul ——u~~=3)

(71b)

—1+ 62+1 18

I+u~~

160
(+ 1+u)~ —1) (71c)

Still, there are t~o varladonal parameters v, and

u~~ present in Eqs. (69a)—(69c) and (71a)—(71c).
Because tllc Illaglletlc field aiid tcillpcratllrc dcpcn-

dence of the variational parameters were, to lowest

order 111 co~ RIld 1/p, takcll lilto Rccollllt by wl Rnd

w~~ [see Eq. (61}],ui and u~~ may be chosen in such

a way that they minimize the free energy at zero

temperatQre aIld zero ma@1etlc fIIe1d~ 8Ild thUs

v =U~ ——UI~. FCQI1xQRQ fopQd 1Q Ref. 15 the va1UC

u =3. Note that in Ref. 15 one considered w in-

stead of u and found w =3, but in the small cou-

L

The first term, —az/81, has been given in Ref. 15

and can be compared to the exact result
—0.01592al as obtained from fourth-order pertur-

bation theory. Note that in second order of the

couphng the magnetic field contributes positively

to the free energy.
It has been argued by several authors that from

the ground-state energy of a polaron in a weak

111agllctlc field olic call dcflllc Rli cffcctlvc polaloll

(Illagflctlc ) Blass IIIII. Namely, tllc term lllicai ln

the magnetic field is of the form m, /2IIIII. If we

combine Eqs. (65), (66), (67), and (73) we find for
the term linear in the magnetic field the expression

' [1——,
' a+ —,'„a'+O(a')]

from which we obtain the polaron magnetic mass

IBB——1 +—,a+ Ig~6 a +O(a ) . (7
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This result was already obtained by Marshall and
Chawla. ' Note that Eq. (74} agrees very well with
Feynman's'5 polaron mass,

mp ——1+—,a+ „a +O(nl) . (75)

The coefficients of the a term differ only by 1.4%
( „'„=0.02469 while „I6=0.02503).

b. AP~ Q+l

In tile limit of lal'gc 111Rgnctlc fields wc shR11 cal-
culate the polamn free energy to first order in n.
It is not easy to calculate the masses of the Feyn-
man polamn Mi and M~~ to first order in a be-

cause in the limit co, »1 it turns out that, e.g., ui
and ici increase with the magnetic field, but of
course, such that ui/Ni ——1+0(a) (this conclusion
is based on numerical work which milI be present-
ed in paper II). This makes it very difficult to per-
fo~ ~ ~mythic calculation of M, ~d m~~ to firs~

I

order in 0,, or of the free energy to second order in

For large lllagllctlc fields D~(Q) 1/co~, slid
thus the integrand of Eq. (55) may be expanded in
DH(u)/D(u) «1. Furthermore, setting ci=c~~=0
ls pos»ble because we are only interested in the
first-order correction in a. For low temperature
(P»1 and thus P»1/co, »1) Eq. (55) has the
asymptotic form

Fy — (—in—co, —c) 1+ j. 9
4P 32P'

+ + [1n2+g( —,)]+
6)g N~,

(76)
with c=0.5772 the constant of Euler and g(x) the:
zeta function. In the zem-temperature hmit
several authors ' ' have found the dominant term,
—aln~r0, . For high temperature (P&&1) such
that co, »1/P »1, Eq. (55}becomes

1/2 '

G
PI ——

2 P

2

1+ +. ln
48

p 2 3 15 ln2Nq

16 1/lr 4pcll~ 32p Q) Qp~

Note that in this limit the electron free energy
[Eq. (63)] has the expansion

ln(2n'P)+ +O(P co, ) . (78)

For a &&1 and Pro, «&1 the difference between
D11(u) and D (u) is of the order ci, c~~, and plcl, .
Thus we may use H(u)/D (u) « 1 to evaluate Eq.
(55). In the following we study the low- and
h1gI]I-teQ1pcr ature hmlt separately.

The appearance of the term a/v P is typical for
the high-temperature hmit. However, for large
magnetic fields this term is changed with a factor
in'„which is typical for the large magnetic field
limit [see Eq. (77)]. Recently, Saitoh' obtained
th,e sal11e asymptotic expansions as given by Eqs.
(76) and (77), but in Ref. 18 only the coefficients
of the Inca, term and the m, -independent term were
calculated.

This is the small magnetic field and low- (but
nonzero) temperature limit such that
co, «1/P «1. The first-order correction in n to
tllc polaroll frcc cncrgy ls —Ey 0, wltll

I 9
4P 32P'

Bc 3 15
72 4P 32'

The zero magnetic field term is equal to the result
obtained in Ref. 44. Note that in the case
co, « 1/P « 1 the polaron free energy has no
linear term in the magnetic field. This is manifest-
ly different with the case 1/P «co, «1 [see Eq.
(67)], where such a hnear term is present.

The magnetic field correction term to the po-
laron free energy is [see Eqs. (78) and (79)]
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2

1 ——+0(u') (80)

Hellwarth and Platzman' then defined a polaron
magnetic mass, mH, by arguing that Eq. (80) is the
magnetic field correction to the free energy of a
particle vrith mass

0 )91'Il=~ 'll+'l + (81)

, , =1+—,tt+O(~'),
[1—

3 a+0 (a )]

which, to first order in a, is the correct expression
for the polaron mass.

For the parameter e~
~

we found the expression

understand because it is generally believed '

that the polaron mass has to increase with tem-

perature if P»1. Such an increase is attribut-

ed ' '~~ to the nonparabolicity of the polaron en-

ergy spectrum.

The first-order correction in the electron-phonon
coupling of the free energy is obtained from Eq.
(55} which, in the high-temperature limit, has the
series expansion

p2 p Q)

48 288

with e given by Eq. (71a) and

1 2 31+ 5+
+1+v~~

32
(+1+v~~ —1) (82)

The magnetic field correction to e~~ is unimportant.
Similarly as before we take v~~

=3 and find e~~
=—„

and e'
~

=—„.The magnetic-field-independent term

of ei is identical to Eq. (81), as expected. The
magnetic field corrections to ei are of secondary
importance; they are of the order of P ~, .

The a correction to the free energy is given by

[see Eq. (65)]

1 4 1

81 729 P

The first term, —a /81, is identical to the first
term of Eq. (73}.

The mass of the isotropic Feynman polaron be-

coQ1es

4 161 0 1

27 81 P
(84)

which is identical to the result of Ref. 40. Recent-

ly, Saitoh defined the polaron mass as the inverse
of the ratio of the acceleration rate to a fictitiously
applied force and found

1 1 1m* =1+a —— +0
6 8P p'

Note that such a definition results in a different
temperature behavior of the polaron mass. The
temperature dependence of Ref. 44 is hard to

For zero magnetic field, Saitoh has studied the
same high-temperature limit.

The analytic calculation of the a term is diffi-
cult and will not be given. The reason is that at
high temperature the parameters u~, vll, mj, and

Nll increase with j.ncfeaslng temperature. This is
confirmed by a numerical variational calculation of
the free energy (see, e.g., Ref. 45 and paper II}.
Note that for high magnetic fields we found a
similar increase of the variational parameters.

B. Strong clcctron-phOBOn couphng (c&& j )

In the following we assume that Pv »1. For
the limit of strong electron-phonon coupling one

has vll -a, which implies that the temperature
range is not severely restricted, namely P»1/ai.

ro, /v « I

In the small magnetic field case the amsotropy
between the effective electron-phonon coupling
parallel and perpendicular to the magnetic field
will be small. It is of secondary importance. Be-
cause we are only interested in the dominant terms
in the free energy we may take v =vi ——

v~~ and
iv =ivi ——tv~~. Therefore the free energy will be in-
dicated by E,„(s Seeec. IV).

The present small magnetic field limit (meaning
small relative to the electron-phonon strength} im-

plies that we may use H (u)/D(u) « 1 in the
evaluation of the integral appearing in FI [see Eq.
(55)]. However, to obtain an explicit expression for
the variational parameter u it is necessary to make
further restrictions on the range of a, P, and co, .
From now on we assume P» 1.
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~. pai. (io'/u')»&

This limit contains the zero-temperature case.
SUIQHBng Qp RH the IcstTict106s, %re sfe Ifi the sitQ-

atio~ such that 1 ~g u /ic gg pre, g» pu and with
p&)1 The dominant contributions to the free en-
ergy ai'e folllid to be (we took io =1, see, e.g., Ref.
15)

' I/2
1 3 3——lBU +—g ———~
p
'
~

a 3~.
U 3~1T v U 16 U 9'i/rr i/U

I

4ai 2 e 1

9m P 2 (4a /9ir)
s= —41n2 —1 +—+

QP~

+ 4 (4a'/9ir)
'

which, in the limit p~ ao»d , ~0, reduces «
the expression already obtained by Feynman. ""
From Eq. (86b) the mass of the (isotropic) Feyn-
man polaron is easily obtained:

16a Sa (41~ 1)
16a 1

8 luz 9n' 9n p

(87)

I',
y
——Ep+F~+F,

A)c, N~

4a /9rr

The leading term, 16a /8 le, was already obtained
in Ref. 13. Note that for small magnetic fields

and low temperatures the polaron mass (87)
enhances with increasing magnetic field strength
and increasing temperature. %e found the same

quantitative behavior in the case of small electron-

phonon couphng.
Inserting the value u =4az/9rr into Eq. (86a)

gives the following expression for the polaron free
cnef@f:

c Ip—
2 16 '/812

OPg

8 (16a'/Sid)'" ' (89c)

The first term Ez is the free energy of a particle,
with mass 16a~/8lrr (which is the polaron mass),
which interacts with a magnetic field. Il is the
well-known'5*" self-energy in the strong-coupling
limit. The magnetic-field-dependent term F, con-
tains a linear term in co, which is the zero-point
energy of a particle, with mass 16a /sin, in a
magnetic field. This term does not appear in Ref.
12. The ro, term represents a diamagnetic shift; it
is equal to the diamagnetic shift found in Ref. 12.

b pai. (ui'/u') «&

2
3 roc 2 a 2p

9~m vu 3 s'

T"e zero magnet~~ field limit is contained in this
case. The free energy becomes

I',r = ln(2n P)——In@ + —,s ——,= 3 3 3 3

p 3--. 2gR

16 "/816

prop /2

16a /8lrr

2
+I=- -3(ln2+ -'),

3T 4

(89a)

(89b)

A ~mmahzation of this expression mth rMP t to
u results iil tlie following vallle for the variational
PM'Smote;

4x' —(41n2 —1)+-9m' p
4 p
3 (4a /9n)
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from which we obtain the mass of the Feynman
polaron

M = — (41n2 —1)
81m 9ir 9~ P

2 3
4 9~+ 1+—,P (91)

Note that Eqs. (87) and (91) coincide if P—+ oo and

co, ~0, as should be the case.
Because the polaron is a quasiparticle, there are

different possibilities for the definition of the po-
laron mass. Recently, in the absence of a magnetic
field, Saitoh defined the polaron mass as the ac-
celeration rate against a fictitiously applied force.
In the considered limits he found 16a /81ir
—128a /243ir P. Note that with increasing tem-

perature the polaron mass decreases. In another
article' Saitoh presented still another definition
for the polaron mass, which was based on the zero
magnetic field diamagnetic susceptibility. Such a
definition resulted in the asymptotic expression
16a /81m —512a' /19683m P. This expression
also gives a decreasing polaron mass with increas-

ing temperature, but the coefficient of the
temperature-dependent term differs considerably
with that of Ref. 44.

Inserting v =4a /9m. into Eq. (90a) gives the fol-
lowing value for the free energy:

2. co /v~~ &&1

This is the large magnetic field limit, because for
h

II ivll »1 (remember that for
a»1 we may take tv~~=i). In the beginning of
Sec. V B on the strong electron-phonon coupling
we assumed that Pv~~ &&1, which in the present
case also implies that Pro, »1. For large magnetic
fields one has vi & v~~ (cf. the case for a &&1 and

co, » 1), which implies that co, /vi » 1. The
above-mentioned conditions Pv~~ &&1, Pco, &&1,
co, /v

~ ~

&& 1, co, /v i && 1, v
~~

&&1 allow us to calcu-

late the asymptotic expansion of the free energy

E„= in(2mP)+
2P 2

' 1/2
4coc

ln
vil

+ v~i a v~i

4 2

Minimizing this expression to the variational
parameter v~~ results in

(94a)

vll=
a 4~c 8

ln +a'e' P
(94b)

from which we obtain the polaron mass parallel to
the magnetic field

I

a 4 4~c 16a &
~c

M~~= ln + ln
ae ae

F y" +F +F'

with

3 2F' = ln
2P 16a /Slier

(92)

The free energy becomes

a 2 4m@)c
Fas=Fe —. ae

where

(95)

(96)

Pe 1

24 (16a4/81+)
(93a)

N C 1

(16a /81ir )'

2 1

(16a /81m )
(93b)

and Ii is given by Eq. (89b). E~ is the free energy
of a particle with mass 16a /9m in the limit

Pc@,/(16a /9n ) «1. The diamagnetic shift is,
apart from the temperature correction, identical to
that of Eq. (89c).

In(2~P)+

is the free energy of a free electron in a magnetic
field in the limit co, » l. Again, M~~ increases if
the lattice temperature increases.

Saitoh' also studied the present asymptotic limit
and found a polaron mass that decreases with in-

creasing temperature. Furthermore, the dominant
electron-phonon contribution to M~~ and E» differs
slightly with ours, namely, in Eqs. (95) and (96) we
must take powers of the term In(4m', /a e2),
which in Ref. 17 is replaced by ln(2m', /a e2).

Two remarks are in order. First, the dominant
contribution to the free energy resulting from the
electron-phonon interaction comes entirely from
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the interaction of the electron with the phonons

along the magnetic field. This is apparent from

Eq. (94a), where only the parameter u~~ enters into
the dominant term of E~. The effective electron-

phonon 1ntcractlon perpendicular to tlM Inagnet1c
field, as simulated by ul, enters only in terms
which are of order 1/RI, . If we want to determine

ul, it will be necessary to calculate E„at least to
order I/RI, . However, Fq. (96) already suggests
that Ml ——1+0(1/RI, ). Indeed, the free energy

E„[Eq.(96)] results from a free electron in a mag-
netic field plus a correction due to the electron-
phonon interaction along the field. Thus perpen-
dicular to the field the effective coupling between
the electron and the phonons is at least of order
1/f0~ In .papci II wc will show llulllcrlcally tllat
ndeed hf&~I I the 11m1t ~e ~ cc. Second, the

electron self-energy, which is proportional to
aI lnzal„can be understood as follows. For smail
a the electron self-energy which is proportional to
a, for RI, =0 becomes proportional to Iz lnm, for
co, » l. In the large-a limit the electron self-

energy is proportional to a for co, =0, while it is
proportional to (a inca, )1 for cl, »1. Thus as far
as the magnetic field is concerned, for cl, »1, its
influence on the electron self-energy can approxi-
mately be taken into account by replacing the
electron-phonon couphng constant o, by a in@), in
the limit co, pal.

VI. CONCI. USION

This is suggested by the numerical work of
Adarnomski et aI., mho considered the zero mag-
netic fidd limit of such an approach. In Ref. 53
an improvcBlcnt to thc FeynIDan 1'csult ' mas ob-
talllcd whlcll, fol' all valllcs of thc clcc'troll-pllolloll
coupling strength, was smaller than 1%.

IQ paper II several thcrmodynRImc quantltlcs are
calculated numerically, i.e., we present figures for
the magnetization, the susceptibihty, the internal
cllcrgy, thc clltl'opy, Rlld tllc spcclfle licat. A de-
tailed numerical comparison between different
theories will be presented.

One of us (F.P.) is grateful to the National Fund
for Scientific Research (Belgium) for financial sup-
port. Financial support by Fonds voor Kollectief
FundaIBcntccl Ondcrsock (FKFO), Bclgllllll; pI'0-

jcct No. 2.0072.80, is gratefully acknowledged.

We present intuitive arguments in favo~ of the
vahdity of the Feynman inequality in the case
when a magnetic field is present. Feynman
showed' ' ' in the case of zero magnetic field
that his approximate calculation of the free energy
provides an upper bound to the exact free energy,

In the present paper an approximate expression
for the free energy of a polaron in an uniform
magnetic field was obtained for arbitrary values of
temperature, electron-phonon coupling strength,
and magnetic field strength. This result was de-
rived in the spirit of Feynman's polaron theory,
where we generahzed the trial action to account for
the anisotropy in the effective electron-phonon in-
teraction. We reobtained most of the existing po-
laron theories as special cases.

Saitoh' 's (see also Ref. 14) considered a general
quadratic action to simulate the electron motion.
The resulting approximation to the free energy
contains an infinite number of variational parame-
ters, while in the present approach only four
parameters have to be determined variationally.
However, in Refs. 17 and 18 no numerical results
were presented. In spite of the much larger effort
needed in performing the variational calculation,
me do not expect that such an approach mill give a
substantial improvement to the present result.

with S the action of the polaron after the elimina-
tion of the phonon variables and E is the corre-
sponding exact free energy. E&h is the free energy
of the phonons, E~ is the free energy correspond-
ing with the trial action S, and ( ) is an aver-
age with weight function exp(S ). Note that
Feynman considers the free energy E shifted with
thc coIlstRllt contriblltlon EIh. Illcquallty (A 1) pl'0-
vides a variational principle to determine the
parameters in the trial action S . The proof of
(Al) is based on the fact that S and S are real.
For nonzero magnetic field strength the actions S
Rnd S~ contain an imaginary tcfID, mhich implies
that the original proof of Feynman's variational
principle Qo longer holds. Although R strict
mathematical proof is lacking, we have intuitive
reasons fo1 assmmng that thc Pcynman varlat1onal
principle [Eq. (Al)] is still vahd in the present situ-
ation. The motivation for this originates from the
Bogolyubov incqua11ty
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(A2)

H and Ho are Hermitlan Hamiltonians %vith corre-
sponding free energies E and Iio. The equihbrium
average with the Hamiltonian Ho is indicated by
{ )o. Inequality (A2) can be obtained from in-

equality (Al), and vice versa, if the actions S and
S are derivable from some Hermitian Hamiltoni-
alls H aild Ho. Now iiote tllat evell lf a nlagiletlc
field is applied, inequality (A2) still holds as long
as the Hamiltonians H and Ho are Hermitian.
Thus inequality (Al) must also be valid, although
S and S~ are complex quantities. This indicates
that the condition for S and S to be real, which
was needed in the proof of (Al), is too restrictive.

The above comparison between the Feynman in-

equality [Eq. (A 1)] and the Bogolyubov inequality

[Eq. (A2)] is instructive for our problem In .the
present situation the actions S and S are obtained
from Hermitian Hamiltonians, respectively, H and

Ho, after the elimination of the phonon variables.
This implies that S and S~ are nonlocal in time or
that S and S cannot be expressed directly in
terms of Hermitian Hamiltonians that are local in

time. This prevents us from using dire:tly the
above-mentioned link between Eq. (Al) and Eq.
{A2).

In summary, me have the following arguments at
our disposal for the justification of the use of in-

equality (Al) in the problem under study. First,
the reason why the Feynman inequality could not

be proved in a strict mathematical sense is the ap-

pearance of spurious imaginary terms that disap-

pear after the path integral has been evaluated.

Indeed, it turns out that all calculated quantities

are real, although the weight function in the path

integral, exp(S~ ), is complex. Second, it will turn

out that our results are consistent with the assump-

tion that Eq. (Al) is valid for the present situation.

For example, in Sec. V a11 the existing limiting

values for the polaron ground-state energy that

have been proved to be upper. bounds to the exact
ground-state energy (see, e.g., Ref. 12) are reob-

tained vnth the present approach. To conclude the

above discussion, we accept that Eq. (Al) is valid

if the actions S and S can be obtained, in one

way or another (e.g., after the elimination of some

variables), from Hermitian Hamiltonians 0 and

Ho. The last condition is satisfied in the present

case. Note that in Ref. 19 (p. 308) Feynman al-

ready made the conjo:ture that inequality (Al)
should be valid if a magnetic field is present.
Feynman's argumentation was based on the corn-

parison between the zero-temperature limit of Eq.
(A 1) and the Rayleigh-Ritz variational method,

while our argumentation relies on the comparison

between Eq. {Al) and the Bogolyubov inequahty

[Eq. (A2)].

An ideal polaron gas is defined as a gas consisting of
non-interacting polarons. In the dilute regime the

study of such a system is equivalent to the study of
one polaron. In the following all thermodynamic

quantitics vrill be calculated for onc polaron in such a
gas.

2The polaron mass in the present paper (and in next pa-

per, paper II) is defined as the mass of the Feynman

polaron model.
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