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Quantum-mechanical-model calculations of radiative properties of a molecular crystal.
I. Polaritons and abnormal decays of excitons in one- and two-dimensional systems
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An analysis of the interaction of an electronic collective excitation, of dimensions 1 and

2, with the radiation field is presented. The use of translation symmetry in infinite lat-
tices allows us to reduce the interaction problem to a coupling of a discrete matter state
to an effective continuum of photons presenting a low-energy edge. The resulting states

(radiatively unstable excitons, polaritons) are investigated as a function of the electronic
excitation energy relative to the edge of the continuum, with emphasis on the spectral
properties and the dynamical regimes in the intermediate region, when the energy of the
electronic excitation sweeps the edge of the continuum. Contact with the three-

dimensional polariton is made while application to radiative dynamics in layered crystals
is suggested.

I. INTRODUCTION

The purpose of this series of paper»s to present
a quantum-mechanical model for the interaction of
an ordered, weakly coupled, one-, two- or three-
dimensional system with the radiation field, in the
absence of phonons. An example of these systems
will be a molecular chain, a plane of molecules, or
a real finite crystal of layered structure interacting
with a photon continuum. In this paper, we
restrict our attention to the case where a discrete
state of energy fmo and wave vector K, for
example

~
K), strongly couples to a continuum of

photons. We analyze the effect of dimensionality
on the states of the matter-radiation systems and
we point out the conditions for instability as a
function of the position of the discrete energy level

~
K) relative to the photon continuum energy.

These investigations allow a natural transition
from the thro:-dimensional polariton limit
introduced by Hopfield' and other authors to one-
and two-dimensional cases. One- snd two-
dimensional lattices have already been investigated
quantum-mechanically by Agranovitch et al. and
classically by Philpott et al. in what may be
termed the pole approximation limit. %e present
an approach which goes beyond the pole
approximation limit and allows us to investigate
the behavior of the excitation in the intcrmecBatc
regimes (%=too/c) around the intersection of the
two zero-order dispersion curves, for the so-called

intermediate states between quasiphotons and
quasiexcitons.

The major features of our approach can be out-
lined as follows: First, we solve the exact total
Hamiltonian and calculate the eigenstate spectrum
which contains the stable polariton, the unstable
exciton, and perturbed photon states. Second, by
calculating exactly the evolution of the amplitude
Att(t) of the

~
K) state and its Fourier transform

Air(to), we analyze the excitation dynamics. We
find that the dynamics of these coupled systems
vary continuously and exhibit large variations in
the decay characteristics of the discrete

~
K) state

(i.e., an exponential de:ay, oscillatory behavior,
etc.). We should point out that it will not be possi-
ble to handle some of these dynamical regimes
(especially the intermediate case) using the well-
known pole approximation which is based on a
perturbative approach. These new findings are
important to the problem of crystal-surface
excitation dynamics where a surface exciton
couples to s crystal bulk continuum and to a
radiation field, as examphfied in the case of
anthracene crystal on the ab surface, ' as well as
for bulk dynamics which will be presented in the
second paper of this series.

The present paper is outlined as follows: In Sec.
II we present our model and discuss its limitations;
in Sec. III we define the basis of our mathematical
approach. We discuss the weakness of the
resonance approximation and introduce Feynman
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propagators, which provide a better analytical
behavior and suppress divergences of the matter-
radiation coupling at low- and high-frequency
limits. In Sec, IV, we present calculations of
dispersion curves for one- and two-dimensional
lattices; in addition, we provide detailed
calculations for the excitation dynamics and of the
smearing out of the matter state due to its
coupling to the effective continuum of photons.
Finally, in Sec. V, we use Feynman propagators
both for photons and excitons and, as a test of our
method of treating one- and two-dimensional
lattices, we derive the well-known equation for
three-dimensional polariton energies. %e mention
briefly the equivalence of the quasiboson
approximation with the method of Feynman

propagators, considered also by other authors
particularly in the coupling of electrons with
bosons (photons or phonons).

II. DESCRIPTION OF THE MODEL

A. General definitions

H =H~+H„+HI,
here the indices iii, r, and I stand for matter, radia-
tion, and interaction.

1. The matter Hamiltonian

The excited state of each lattice site n is written
as

~
n ). When taking into account quantum ex-

change of excitation between different sites fo form
Frenkel excitons, one writes

H =%coop ) n)(n [+ g 'J-„-„,
[ n)(n'),

+ +pn, n

where ficoo is the resonance energy of local transi-
tion and J„„,is the matrix element of the elec-
trostatic dipolar interaction between sites n and n'.
H~ is diagonalized by Fourier transformation on
the lattice-site states, using Born —von Karman
periodic boundary conditions,

The systems we are considering are infinite lat-
tices of one or two dimensions. We replace the
molecules by point dipoles placed at their centers.
The dipoles we are considering are electric transi-
tion dipoles connecting the ground state to an ex-
cited state; this two-level approximation suffices
for the investigation of phenomena near resonance.
As a further approximation we restrict our atten-
tion to rigid lattices and we deal only with the ex-
citonic and photonic components of the phenome-

na, neglecting phonon effects. Therefore, we keep
in mind that important discrepancies may be ex-

pected when comparing our results with experi-
mental data which may contain effects owing to,
for instance, (i) renormalization of states by cou-

pling to the thermal bath phonons, leading to shift
and damping of the excitonic component of the po-
lariton, and (ii) damping from the formation of
two-particle states' (exciton and phonon) continu-
um which may relax the vibronic excitons.

with

+exp(iK n)
(
n)

N

(4)

faux ——ficoo~ J'(K) .

K is the excitonic wave vector in the first Brjlioujn
zone (0&K & m/a), J(K) is the excitonic energy
dispersion with

J(K)=g'exp(iK n)JO-„,

and a indicates the lattice spacing. In problems of
effective coupling with radiation, we have to con-
sider only small values of excitomc wave vectors
E«m/a, so that in what follows we may ignore
the excitonic dispersion which may be included in
the unperturbed energy of the exciton.

B. The Hamiltonian of
the matter-radiation system 2. The radiation IIamiltonian

The interaction Hamiltonian is set up from the
interaction of one molecule with the radiation field
and its form will be common to all cases we are
considering. The total Hamiltonian is given the
usual form

As usual, the radiation field is quantized in a
box of side L where I goes to oo,' the field states
are written

~
k, e ) with k e =0, where Ak and e

are the momentum and thegolarization of the
photon. The wave vectors k form a three-
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dimensional lattice with a constant spacing
(2ir)/L. This leads to the expression,

Hr=& g C)k(iiawce~k~+ i ) ~

7k@'u k n'~ Skn k'n'

e-„=alk} .

9. The interuettion Hemiltoeien

Also, denoting by P)r the momentum operator of
the matter system,

Px=,„(}K)(ol—} 0) &K } )D,

we may use the Fourier transformation

p ~-1/& g C
-i K ~ n p

X

in order to ehminate the site variables in (7a)
which becomes

~. '1/2
e 2idic ~N

I
k~,xm, ~ . +Nk

In order to derive the matter-radiation interac-
tion we use the continuous medium approximation,
which means that we neglect in the summation on
the reciprocal lattice all the wave vectors which do
not bdong the first BriHouin zone. [See Eq. (Sb).]
This approximation is equivalent to neglecting the
local-field contribution or, more precisely, its
dispersion, since the contribution of the local field
for E =0 may be assumed to be included in the ex-
cltonlc cncrgy fKoc. T1118 appl'ox11nat1011 18 valid
since we limit ourself to excitonic wave vectors
X ~~ir/a. (See Sec. II8 1 above. )

We now consider in detail the way the continu-
ous medium approximation appears in the terms of
the usual interaction Hamiltonian, which is built

up by summation over all the charges a:

geik Ne —iK'n

(Sa)

In order to benefit from selection rules of the
momciltll111 coilscrvatloil Iaw, Ict'us decompose fhe
three-dimensional photon vector k into a com-
ponent kii lying in the matter subspace, and a
component q orhtogonal to it, i.e., k=kii+q.
Using this decomposition, the summation g„ in
Eq. (Sa) transforms to

1 y i(k K) g 1 ~ 1(ki)—K)'n

2

&i=—g — P A(R, )+g — A (R ) .
2@i~

When giving to A its development on the radiation
field modes, Eq. (6) transforms, when neglecting
th.e tctTQ in A, to

; I /2
8 2&K I

HI ~
k, „m L, gi0„

'(ln )&ol —lo)(n })D. (7b)

g p, C~(u C
i k ~ n + u t

C
-i k n )ke —ke

(7a)
P„,which is the momemtum operator of the nth
cell of the matter system, is related to the electric
transition dipole D„(the index n is dropped since
all the dipoles D„are parallel) as foHows:

where go extends over aH reciprocal-lattice vec-
tors of the matter system. Neglecting the terms
6+0, i.e., "umklapp" processes, is equivalent to
neglecting the atomic character of the matter and
making the jelhum approximation. Therefore, the
approximation G=O provides the selection rulei

i)
=K which simphTies the interaction Hamiltoni-

RQ to

2
'1/2

y 8:;2'1TAc

~ gm 3

' 1/2

X P@ c(ak, +uk, ), (Sc)
NI

J

&th k =K+q. The SlHDmatloB OVer p5.0tog
states now involves only t11e component q which is
of lower dnnc1181011 tl1an three. and defines the ef-
fective continuum to which the exciton K is effec-
tively collplcd. I11 fact, the subspace of the q's is
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complementary to the subspace of K in the sense
that if we indicate, respectively, by &q and &~
the dimension of these two subspaces, we have

&q ——3—&z. Using the translational invariance
of the lattice and the interaction Hamiltonian
given by (8c), it is straightforward to diagonalize
the total Hamiltonian by blocks of total momen-
tum K.

4. Dimensionality effects and nature of
the effectiue continuum

In each subspace K the interaction problem
amounts to the investigation of the coupling of the
discrete state

~
K;0) to the continuum of photon

states
~
0;K+ q, e )o & e & „. In what follows, we

analyze the structure of this continuum for each
dimension.

(i) Zero dimension In t.his case one point dipole
is coupled to a three-dimensional continuum of
photons. It is well known that in this case one ob-
tains a radiative shift and a radiative width as well

as a nonexponential contribution to the radiative
decay at long times. The effective continuum is
three-dimensional with a density of states g' '(co)

which is a "smooth function" of a):

L N
fof N pc%

2m'c (io —c II )
(2) ~ 0 for a) &cE.

(9c)

It exhibits a singularity and diverges for to =cK
(iu) Three dimensions Th. e lattice occupies the

whole space of quantization of the photons, the
matter state

~
K;0) no longer faces a continuum of

photons but it is coupled to a single photon with
k =K, and the density of states is reduced to a
Dirac function 5(K—k).

In general, when matter excitations are coupled
to a continuum of photons, these states are radia-
tively unstable. Furthermore, a singularity in the
continuum near the critical point Eo coolc g——ives
rise to a complex radiative decay the nature of
which will be examined below. "

Before concluding this section we would like to
remind the reader that these considerations may be
generalized to systems other than Frenkel excitons,
provided that the interaction involves only two
types of particles, photon-exciton such as in ionic
crystals, photon-optical phonon, etc.

L
25 C

(9a)

III. CHOICE OF THE MATHEMATICAL APPROACH

A. Introduction

(ii) One dimension The lat.tice is a chain of
molecules and K defined by the chain is one-

dimensional. It is coupled to the continuum of
photons k =(K+@)oz- „,q being perpendicular

to the chain. The effective continuum is two-

dimensional with a density of states,

I 2

2co for to&cK
())

2~c'
0 for co&cK.

(9b)

This exhibits a discontinuity at a) =cK for which

anomalous decay of
~
K;0) is expected for exciton-

ic energies %coo-AcK.
(iii) Two dimensions The lattice i.s a plane of

molecules; K is two-dimensional and lies in the

plane. It is coupled to the continuum of photons
lt =(K+q)0 „whose component q is carried

by a line normal to the plane. The effective con-

tinuum is one-dimensional with a density of states,

%hen a discrete state is coupled to a continuum,
the spectrum of the "new" eigenstates is still con-
tinuous, with possibly discrete states split off at the
edges of the continuum. These discrete states are
characterized by their energy, while the states of
the continuum may be characterized (i) by the re-
striction of the resolvent G(z) to the initial discrete
state, or (ii) equivalently and in a more general

way, by the scattering amplitude between states of
the initial continuum (S matrix elements). In part
C of this section, we discuss these two approaches.
Now, with the reduced interaction (8c) we are led
to investigate the coupling of a discrete excitonic
state

~
K) to a continuum of photons

(K+ q)0&e & „,cf. Eqs. (9). However, in addition
to resonant processes, the interaction HI couples

by antiresonant processes, the state
~
K;0) to states

~

K,K; —K+ q, e ) with two excitons and one pho-

ton, ' and then, by the successive powers of Hz, to
states containing a higher and higher number of
excitons and photons. Therefore, if we are not able
to sum up all the processes of the perturbation, it
is necessary to truncate to a given order the sub-
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space Q of states accessible from
~
K;0), with the

subsequent difficulty of this task. We may over-
come this difficulty by a renormalization of the
photonic propagator which allows us to treat both
resonant and antiresonant processes.

B. Restriction of the resolvent
in the matter subspace

1. General formalism

In a general way' the space of the states of the
matter-radiation system is partitioned into two
orthogonal subspaces with projectors P and Q
which satisfy

P+Q=l, PQ=QP=O.

The restriction of the resolvent G(z}=(z H} ' to-
the subspace P is written PG(z)P. The total Ham-
iltonian is written as H =Ho+Hq. Because P and

Q are eigenspaces of Ho, and Hr couples P to Q,
one has the general relations:

o+GOHIG

PGP =PGoP+PGoHrPGP+PGoHr QGP ~

QGP =QGoHr PGP+ QGoHr QGP,

with

Gp ——(z Ho)—
The elimination of QGP leads to the restricted
resolvent

Q=g ~0;K+@, )(0;K+q, e
~

.

With the use of interaction (Sc), where we replace
P» by (7c), the operator (10b) is a function with
the explicit form

2

R ( )
21TNfk g 0

( D}2 1

~~ N ~ +~ z —fKog +q

(10c)

The resonance approximation sums up in PGP all
the powers of Hr in the subspaces P and Q.
Nevertheless, because of the divergence at tot, ~0
of the interaction (10c) for certain dimensions of
the continuum, an artificial cutoff function must
be introduced for low frequencies.

3. Feynman propagators

We replace the photonic propagator
I/(z —%co»+e ) in the resonance approximation
(10c) by the Feynman propagator

2~»+e/[~ (~»+e—} 1

Although this change causes negligible effects near
resonance (z =fico»+e), it provides a much simpler
analytical expression for the interaction. In partic-
ular, the presence of antiresonant terms in the
Feynman propagator suppresses the infrared diver-
gence which appears in (10c) for a two-dimensional
lattice. With the Feynman propagator, the self-
energy (10c) has the form

PGP =P f (PGoP) ' PR (z)P]— (10a)

The so-called self-energy PRP has the following ex-
pression

1PR (z)P =PHrP+PHr Q QHr P
z —H

(10b)

I, z (fico»+e )—
In what follows, we consider RF as the complete
self-energy and write it as R.

In our specific system we always have PHrP =0. C. The dynamics of the matter state
coupled to the photon continuum

2. The resonance approximation 1. The time euolution of the initial state

The only elementary process we consider in-
volves states with only one photon. Then the pro-
jectors to be considered are

P= iK;0)(K;Oi

and

(12)

with

We look for the probability of finding the sys-
tem in the initial matter state

~
K) at a later time

t, the amplitude of this probability being

a»(t)=(K
~
U(t)

~
K),
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U(t) =— 1

2EK

X f exp( iz—t/R)G(z)d(z) .
C+

The path of integration is

C+ ——[—co+le, + oo +iE]'
as shown in Fig. 1; the region [cE &z g oo] consti-
tutes a cut for G(z). As shown in Fig. 1, the am-

plitude (12) contains two contributions, that from
the poles of G (z) and that from an integral L«(t),
which is generally much smaller than the contribu-
tion from the poles except in the intermediate re-

gion (E=coclc). L«(t) becomes important and
secures the continuity of A«(t) vs K, when K
crosses the intermediate region. Thus one can
write (res indicates residues),

A«(t) =g res +L«(t),

with

cE
L«(t) = . f . exp( izt/A)G«(z)—dz

2/PI, , CE—f oo

exp( izt /fi) G«(z—)dz

FIG. 1. The integral (35) must be taken along the
line C+. In order to get the experimental decay from
the complex P pole, it is lleccssaiy 'io close the 111tegra-

tion contour. Hwvever, this may be done only by pass-
1ng from tile second sheet to the f1i1'st onc, for instance,
by means of a loop parallel to the imaginary axis. The
contribution of the loop, although small for eE geo and
cÃ & coo, becomes quite comparable to that of the g"
pole in the intermediate region cE coo.

G«(co+i0) =[A(co—coo}—R«(co+i0)]

R«(co+i0) =irt h«(co)+ I «(co)—

G«(z)=(k ) G(z)
) K) .

%Jun only one pole contributes significantly, the
evolution is an exponential decay. On the other
hand, when two or more poles contribute, or when

the integral over the loop L«(t) (cf Fig. 1). is im-

portant, then the evolution is IQore complex, as
shown below in Figs. 10 and 11.

we arrive at the Fourier transform

+co
A«(co = f A«(t)exp( i cot )dt—

2F

I «(co)

[co-coo ~«(~)]'+ .I'«(~)'—

2. Spectral broadening of
the mutter state

The Fourier transform A«(co) of A«(t) provides
the probability of finding the energy irtco at the end
of the decay. Using the relations

Using the basis
I
i ) of the eigenstates of H and

their density g (co) [cf. (9)] at the energy iiico, we

may write

A«(co)= ( (k~i) [ g(c0) .

f G«(co iO)exp(izt/A—) dz =0,

+ cN

A«(t) = . f [G«(co i 0) G«(co+—i 0)]-
2ft/

and the explicit expressions

If the spectrum of H contains discrete states„ then
A«(co) contains Dirac peaks. As for the density of
states g (co) we use the functions (9), since this den-
sity is not modified by the coupling to a discrete
state, with the exception of a possible splitting off
of the lowest-energy state of the continuum, ' cf.
Fig. 2. A«(co} represents the spectral density of the
matter state at the energy Are. Owing to coupling



QUANTUM-MECHANICAL-MODEL CALCULATIONS OF RAJMATIVE. . . . L . . .

with the continuum, it represents also the popula-
tion of the channel of energy far following the de-

cay of
I
K &. In addition, the expression

~x(~)~g(a )=
I &K Ii & I'

FIG. 2. Variation vs E of the edge of the effective
continuum of photons. %coo indicates the energy of the
cxcitons discrctc state. (b) thc states bclo% the edge cE
are radiatively stable states (polaritons) and the states
above thc edge arc thc cxcitomc fcsonanccs in thc cffcc-
tivc continuum.

represents the matter component of the continuum.
Its co11Bcct106%1th the dlmcQ810Ilahtg 18 obvloUs

and will be discussed below in the section of appli-
cat10nS.

Concluding this section, let us indicate that the
function Gx(co+i 0) allows the calculation of a
more general expression than Ax(ro). This is the
scattcxing matrix S:

4

&0'K+q e l~ I0'&+q' e'&=4&.~— &0'&+q & l&1 IK'0&&K'0IIfi I0'K+q' &'&

XGx(x+q+i0+(x+q aix+q —) ~

which contains the full description of a continuum scattered by a lattice of electric transition dipoles. This
expression allows one to calculate quantities such as reflectivity or transmission by a two-dimensional lattice,
or light scattering by a molecular infinite chain.

IV. APPLICATIONS AND DISCUSSION

A. One-dimensional exritations coupled to the radiation

Let us first calculate the self-energy R"'. Using the density of states g"'(co) [cf. (9b)] and writing
I =Ma, one derives from (11),

g(e D)2

Z"~(z) = f d'q

After summation over the polarization e perpendicular to K+ q, angular integration, and writing

cox+q ——c(K +q )'~, one obtains

K —(2K —q')cos28

(AcosD) at K +qR"'z =-- qdq
.

[z (fje) (K +q —)]
' F(K+q),

where 8 is the angle between the axis of the molecular chain and the direction of the electric transition di-
pole D. E(K+q) is the usual cutoff phenomenological function which prevents the logarithmic divergence
of (19) for q~ oo and secures the decrease of the dipole-radiation coupling for large values of q. In order to
simplify (19), we take for F(k) a Lorentzian form,

E(k)=
1+( k

where l is a characteristic length of a molecule. For a standard calculation of (19) let us introduce dimen-
sionless parameters such as:



Kq ——coo/c, g=z/hroq, p ={CK/coo) =K/Kq,

f=DI/e ci, cc=e /Ac, ri=lKq .

This transforms (19) into

{20)

8"'(g)=fczhcoo J x cix
0

1+ p, —(2p, —x )cosz8

p +X
P2 2 2 I+riz(pz+x )

This expression has a cut extending from p, to oo on the real axis. After integration, one gets two solutions

of 8'"(g), one noted 8""in the first and one noted 8""'in the second Riemann sheet, with

g(lg, n(g) f f+
2 c

P {I—3cos 8)+I+cos 8 In(pz —gz)
$2

+(3cos 8—I) Inp +(I+cos 8)ln —+p,

ln(p, —g ) is such that we have for the two solutions:

In(x —p. )—ic with g =x+i0 and p, &x
In(x —p )=in with P=x iO an—1p&x .

In (22) we notice the presence of the factor

oKo=coou/c; on the other hand, the radiatjvc
width I of a single dipole (system of zelo dj-
mcnsion) would be, using the parameters (20),

Rcoo+R»(Rrao+iO) =jI coo+&» ——I »
2

I '"=—,'fcceo
C

Thus„with respect to thc radiative width I'N' of a
single dipole, the radiative width of a one-

dimensional radiant exciton is muitjpijcd by a fac-
tor c/coca Tllls R.mpljfljcatioll factoI', of all ol'der

10 with typical values for oio alld g, may be jntel-
prctcd Rs Rll cllllssloll ill phase of A, /g djpoles of
thc cllaln, whcI'c ){, 18 tllc clllltted wavelength.
gular and K dependence of the radiative shifts are
discussed below for the different approximations
QSCd.

Nvjng a strictly exponentially decaying cvolutjon.
The qualltltlcs 5» Rlld I », the so-Called frequency
shift and radiative width, depend on thc wave vec-

Substltlltloll of R» ln (22), and wjth q « I
(10 ), provides

=czfaKq (I+cos 8)ln(ri ip, —I
i )

No

+ p, '(I —3cos'8)ln IP
p

A Tkc peak Qppfoxs78tl'05

For a small shift 8 (z) which varies slowly with
z (as for an isolated dipole, for instance} one gets
an excellent approximation of 6{z)be replacing z
in R(z) by A(coq+ie),

+p (I —3cosz8} ~,
(27}

6» (z)=[8 fico() R» (Ace—8+i 0—)]

where 8 is the Heaviside function 8(x &0)=1 and
8(x &0)=0. The variations of b,» and I », as
functions of K and in the pole approximation, are
lllUstfsted IQ Figs. 3 RQd 4.
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FIG. 3. One-dimensional states in the pole approximation: variation vs E of the energy for three angles 8 between
the electric transition dipole D and the lattice axis. Solid lines indicate the real poles and broken lines the real part of
the complex poles. The quasivertical line indicates the edge AcE of the effective continuum. We notice a logarithmic
divergence at E~KO.

2. Calculations of the poles of the resolvent G»(z)

The next step is to calculate the poles of G»(z)
in order to arrive at a more accurate derivation of
the dynamics of the matter-radiation interaction

1,0

for all values of K (the dynamics are fully account-
ed for when we include the contribution of L»(t),
[see (13)]. Equation (25) becomes now an implicit
equation to be solved in each Rietnann sheet

g» ——1+ R» (g»I )
1

0
(28)

(I,II designate the first and second sheets. ) Ac-
cording to the contour chosen, cf. Fig. 1, the poles
in the second sheet contribute to the amplitude
A»(t) only if their real part satisfies

Re(» & (%K)/(ficoo); otherwise their contribution is
included in the integral L»(t), cf. (13).

We have calculated numerically the real and im-

aginary parts of Scoop and Iruog', as a function of
K and derived exact frequency shifts and radiative
widths from the relation

0
O.S l K

Ko

The calculations are illustrated in Fig. 5.

FIG. 4. One-dimensional states in the pole approxi-
mation: variation vs E of the radiative decay rate for
four angles 8 between the electric transition dipole D
and the lattice axis. A discontinuity occurs at E=ED,
since for E &ED the decay rate is zero.

B. Two-dimensional excitations
coupled to the radiation

Let us first calculate the self-energy R' '. With
L =Na, one derives from (11),
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FIG. 5. One-dimensional states with the exact pole: variation of the energy vs E for three angles 8. In the first
sheet (I) the poles are real (solid lines), they define eigenstates of H and give the dispersion of the polariton in the chain,
In the second sheet (II) the poles are complex with real parts indicated by broken lines; they define radiatively unstable
states. The quasivertical line indicates the edge photon ficE to which the solid lines are asymptotic.

E
R"'(z) = (cooD) J dqac o z — c(E+q)

(30)

To simplify, the dipole D was assumed to lie in the
plane and to make an angle 8 with the excitonic

momentum K. We notice that (30) converges
without need of a cutoff function; this property is
specific to dimension two. Also the divergence for
E~o, present in the resonance approximation, is
naturally eliminated with the use of Feynman pro-
pagators. With the dimensionless parameters (20),
we obtain for the solutions R' in the first and
second Riemann sheet,

2
R' "'"(g)=2m faRcoo — cos 8— 1 — cos 8

g2 (g2 ~2) 1 l2 g2
(31)

The complex square root is chosen so that R' corresponds to (g p)' =—i (p x)' —for g=x+i 0 with

p &x, and R corresponds to (g —p )'~ =(x —p, )'~ for g=x+i0 with p &x.

1. The pole approximation

Following the same procedure as for the one-dimensional case, one derives for the radiative shifts:

1 —p cos 8
2nfacoo —p, cos 8—

(p2 1 )1/2

2n faces( —p cos 8) for p & 1,

for p&1,
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0 for p&1r =E l —p, cos84n'fcscop, for ls & 1 .
( 1 +2)1/2

(33)

The variation of b» and I"» as functions of K, are illustrated in Figs. 6 and 7 for several angles Q.

Cctlciclotion of the poles of the resolvent

Numerical solution of the implicit equations

(I,n 1+ gi, II(gi (II}

(I,II designates first and second sheet) allowed us to derive exact values for the frequency shifts 8'n(K} and
the radiative widths I""(E). The results are illustrated in Figs. 8 and 9, respectively.

C. Exact calculation of A g (t) and generalization of the polariton concept

According to the value E, the amplitude (13) takes the following expression:

res'+ res" +L» for E &K«
A» (t)= '

res+I,» for K &K„,'
(34)

L»(t) =— (35)
8'(g)
Wp

8 '(g)
fin)p

which changes suddenly on the passage of the pole to the other side of the loop (cf. Fig. 1).
From the calculation of the residues in (34},one obtains

where cE & =cop+ 6,(E«), K„ indicates the critical value beyond which (E & K«) res" has no physical
meaning (cf. Figs. 8 and 9), its contribution being included in L» In what f. ollows the treatment is common
to one- and two-dimensional systems: j=1,2 indicates the dimension and the corresponding self-energy,
respectively, (19) and (30), which we are introducing in the calculation of (34).

In fact, no discontinuity appears in the amplitude (34) when E crosses. K„,because the absence of res" is
compensated by the integral

cK/coo —io '
1

cÃ/coo —i co

I,II -ig ~ coot $ dg 'in

fico() dg, ii
(36)

The numerical integration of L»(t) is delicate but we have the check A»(0) =1. The results of the calcula-
tion of (34) are illustrated in Figs. 10 and 11. They satisfy the relation

~
A»(0}

~

=1 with an accuracy better
than 10 for the real part and better than 5 &(10 for the imaginary part. Because of the strong decay of
e ', the integral L»(t) provides a significant contribution only in the intermediate region; elsewhere, the
calculation of A»(t) is satisfactory with only the contribution of the poles:

—i (coo+h g ) —rg f
e ' "e ", O(K&(K,

A»(t)= '
—i(duo —h,l )te, K)&Kp

(37)
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FIG. 6. Two-dimensional states in the pole approxi-
K of the energy for different an-mation: variation vs o n-

1 8 between the transiton dipole D and t e wave vec-

tor K. Solid lines indicate the real poles and bro
he real parts of the complex poles. T e inelines t e r

~=eE indicates the variation of the edgee of the effec-

tive continuum.

FIG, 8. Two-dimensional states with exact poles:
f the energy vs K fof three ang es 8. Solidvariation o e

cn lines indi-lines in ica e e
" d' te the real poles (polariton), broken

'

le exci-cate t crea pa sh 1 rts of the complex poles (unstab e exci-

tons), and dotted bnes indicate branches without p ysi-

cal meaning.

In the intermediate region, cf. Figs.i s. 10 and 11, the
two po es anl d the integral contribute and the

f A (r} is no longer simple; it shows os-
rillations m ic, uh' h unlike the three-dimensiona po-
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FIG. 7. Two-dimensional states in ihe pole approxi-
mation' vsflstlon vs 0 ofEC f the radiative decay rate or
different angles 8. Thc fate divcfges fof E~EQ wit

K &KQ.

FIG. 9. Two-dimensional states with exact po es.
of thc 1sdistlvc decay fate fof dlffcfcntvanation vs K o t era ia nt

angles ~ cg. The divergences Rfc eliminated; o
indicate branches without physical meaning.
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FIG. 10. One-dimensional states: variation of the
modulus of the probability amplitude ak(t) for different
values of the ratio K/Eo in the intermediate region.
The time scale of the decay is of the order of 10 '0 sec.

0 ~ 5

lariton, are damped because of the presence of the
effective continuum.

Now, we wish to show that a Fourier analysis of
A»(t) leads, in a simple manner, to the derivation
of radiatively stable states and to their photonic
and excitonic components. At large times t~ 00,
A»(t} is only due to the contribution of the pole in
the first sheet, cf. (37},because on one hand, the
imaginary part of g" is nonzero and negative and,
on the other hand, L»(t) goes to zero as Iit, cf.
(35}. This result may be described in the following
manner: Let

~

g'}, which is the pole of G» located
in the first Riemann sheet, be the discrete eigen-
state of H (radiatively stable since Imp'=0). The
projection of the initial state

~

E}on
~ g } in-

creases suddenly when E crosses the intermediate
region, cf. Figs. 12 and 13. If we write

~

i (co) )

&.0

0.5

Oo9 Os95 105 K

Kp

FIG. 12. Exciton character vs K of the polariton in
one- and two-dimensional cases. %e notice that the ex-
tension of the intermediate region is much larger for
two-dimensional polaritons (b) than for one-dimensional
polaritons (a).

(38}

where g'J'(co) =0 for co & cÃ. One may verify the
completeness relation on the eigenstates of H.

A, (t=O)= [(Z~g'&['

+ f ( (E
~

i (co) } ( g(co) dco= 1 .

As the first term in the right-hand side of (38)
contains no 5 peak, its contribution to A»(t) van-
ishes for t~ ao. Then, using (36},we get

for the continuum eigenstates of H, the general ex-
pression (17) may be written, separating the contin-
uum and the discrete state contributions,

A» (co)= ( (K ~i(co)} )
g'J'(co)

+ ) (E
~

g'» } )
5(co—co»),

~oo /
0 ~ 90

500 vp t A (t ) = [ (rC
~

g'} I'

FIG. 11. Two-dimensional states: variation of the
modulus of the probability amplitude Aq(t) for different
values of the ratio It: /Eo in the intermediate region.
The time scale of the decay is of the order of 1 psec.

1— 1 5R
fin)o g' (39)

Using (22}, one may check that 5R/5g ~, is neces-

sarily negative. Furthermore, it is possible to re-
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FIG. 13. Projection A~(~) of the matter state on the eigenstates of H in a two-dimensional system, for different

values of
I
E

I
and for 8=90'. The vertical line stands for the stable polariton 8 peak; the square indicates its area

which may be compared to that of the excitonic resonance in the intermediate region [cf. (a)—(d)]. (e) indicates the

shape of the resonance when the edge of the continuum is well above the exciton energy ficoo, whereas (fI indicates the

Lorentzian shape of the resonance where the edge is well below fKop.

late the excitomc character of the radiatively stable
state to its dispersion curve, cf. Figs. 5 and 8.
Indeed, in (22} In()tt —g) is the dominant term in
the interme5ate region p=1. Then one has the
approximate relation:

so that (39) becomes

) (z(g', ) ['=i— ~0. (40)
d(M

Therefore, the variation of the matter character of
the radiatively stable state, cf. Pigs. 12(a) and
12(b), is directly related to its dispersion, cf. Figs. 5
and 8. In conclusion the state

~ g» ) is practically
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purely photonic for K &Ko and purely excitonic
for K & Ko. The change of the character occurs in
the intermediate region whose extension hX'~'

strongly depends on the dimentionality
(~'J'=I )' 0/c), where I x 0 is the radiative
width at K =0 of the radiatively unstable state, cf.
Figs. 4 and 9. Again the index j indicates the di-

mension of the lattice. One may call the discrete
state

~
g'(K) ) a polariton of the molecular chain,

or of the plane of molecules, by analogy with the
three-dimensional case (its lower branch}. For
K &Ko the polariton is a photonic mode trapped
in the material system, and for K & Ko, the polari-
ton is a downwards shifted exciton that is radia-
tively stable. With this polariton

~
g'(K) ) disper-

sion (cf. Figs. 5 and 8, solid lines} is associated for
K &Ko a branch of radiatively unstable excitonic
states

~

f' (K) ), tentatively corresponding to the

upper branch of the three-dimensional polariton,
with the important difference that the energies

g"(K) are complex. The variations of AcooReP(K}
are plotted in Figs. 5 and 8 (broken lines} and the
variations of fuuolmg"(K) are plotted in Figs. 7
and 9. %e indicate in dotted lines the variations
when they have no physical meaning. In the inter-

mediate region, where the excitonic unstable states
lose their meaning, the description of the energy
dynamics has to take into account the integral

Lx(t). We notice, however, that the derivation of
the polariton states is not affected by Lx(t) since
this quantity may be neglected for t~ ao. The
spectral broadening of a two-dimensional excitation
is illustrated in Fig. 13. Anomalous with respect
to a resonance Lorentzian line shape, the spectral
line shapes in Fig. 13 are counterparts of nonex-

ponential, noncomplete radiative decays illustrated
in Fig. 11.

state
~

%coo& coupled to a continuum. When the
lowest state of the continuum is above furs, i.e.,

[iii(K +q2}'~ ]q 0&fuuo

the continuum repels downwards the discrete state
with a negative shift. On the contrary when
ficK & ficoo, the discrete state overlaps the continu-
um and is mixed with it, cf. also Fig. 2. In the in-

termediate region 6 and I vary very rapidly and
this excludes the validity of the pole approximation
[b, shows logarithmic divergence for one-
dimensional systems, 6 and I show more severe
divergence, as (K2 —Ko) '~i, for two-dimensional
systems].

In the region K&NO, h~ and I ~ take values
which are (A, /a}'J' times larger than the corre-
sponding quantities for a single site; this amplifica-
tion of the interaction shows the trend of a collec-
tive excitation to exhibit constructive (short radia-
tive processes) and destructive (long radiative pro-
cesses) effects in the interactions between sites.
The decay probability of the collective excitations
of the N molecules in the molecular chain or in the
plane of molecules is redistributed over the exciton
states 0&K ((coo/c). Thus we have super-
radiant-like states for K (coo/c, accompanied by
subradiant states for K & coo/c, with I =0. With
respect to the redistribution of the radiative decay
probability on the exciton states, it is interesting to
notice that analysis of the trace of the self-energies,
cf. (19}and (30), shows that for a system of N'/'

molecules, in the pole approximation, one has the
relation

(41)

D. Discussion

In this subsection, we review briefly features
which are proper to a collective excitation-
radiation interaction, to its successive approxima-
tions, and also features which are specific to the
dimensionality.

The results obtained by the pole approximation
for the two dimensions of the lattices account
correctly for the essence of the phenomenon out-
side of the intermediate region, shift of a purely
real energy level for E & Ko, shift and radiative
width for K &Ko, cf. Figs. 3, 4, 6, and 7. This
behavior is easily understood in terms of a discrete

The introduction of the exact poles in the resol-
vent, cf. Figs 5, 8, and 9, shows that there are no
significant changes outside the intermediate region.
On the contrary, the abnormal behavior of the ra-
diative interactions disappears in that region. The
sudden changes that I' and 6 show for
cK & coo+8,(K„)are contributions from g"(K);
they have no physical meaning, cf. dotted lines in
Figs. 8 and 9.

In conclusion, the main reason of the failure of
the pole approximation to describe the interaction
in the intermediate region, is that by putting in the
zeroth order z =(ficoo+ie)~, one makes a pertur-
bation treatment and assumes that the excitonic
and photonic components may be distinguished
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separately. In the intermediate region these com-
ponents are comparable and the perturbation treat-
ment fails. As for the stability of the initial state

~
K;0) coupled to a continuum of photons of arbi-

trary extension, cf. Figs. 11 and 13, we find the
two-limit behavior for which the pole approxima-
tion is vahd. (i) For 0 &E«Eo, the discrete state
faces a continuum without singularities and is
mixed into it, so that Ax(t) decays exponentially.
(ii) For E»Eo, the discrete state is repelled down-
wards without mixing

~
Atc(t)

~

remains constant.
In the intermediate region where the discrete state
faces a continuum near a singularity, the decay is
neither forbidden, as it is for E»E, nor total as
for the case K ggEo. In this region, the two poles
contribute and interfere; this explains the oscillat-
ing behavior of the excitonic component with beats
of frequency

~
hlr —b,x ~

. However, unlike the
three-dimensional case where each exciton K
"faces" a single photon k with k =K and where
these oscillations are not damped, in one- and
two-dimensional cases the effective continua
g'"(co) and g' '(co) introduce a radiative damping
mechanism for the excitonic component, this
damping being stronger for a two-dimensional ex-

citation. The behavior of the excitonic component
is better understood when we consider its smearing
out into the spectrum of the total Hamiltonian. In
Fig. 13, the square on the discrete polariton state
indicates the excitonic component, i.e.,

( (K
~ g~ ) (, which survives in the polariton state

after complete decay. The line shape of the con-
tinuum measures the spectral density of the state

~
K, fscoo', 0) at the energy fico, i.e.,

Ax(co)= ) (K ~i(co)) ) g(co) .

%hen one may neglect the variation of g(co) over

the width of the peak of A)c(co), then the spectral
line is a I orentzian and the decay Ax(t) is ex-

ponential. On the contrary, when the unperturbed

state
~
K, ficoo,'0) approaches the singularity of the

continuum, the spectral line around the maximum

becomes non-Lorentzian and asymmetric. Such a
spectral shape corresponds to a nonexponential de-

cay of Atc(t), complicated by the beats of the reso-

nance with a polariton state which exhibits, in this

region, an excitonic amplitude comparable to that
of the continuum, cf. Figs. 13(b) and 13(c).

I Dimelisiotlclity .effects

the intermediate region where the states are super-
positions of photons and excitons. For instance,
when we compare the self-energies R") and R( ',

cf. (19) and (30), respectively, we find that the ra-
diative widths in systems of dimension 2, 1, and 0
are simply related.

'2

I (2) I (1) 1.(0)

8 8
(42)

This relation shows once again the role of the
dimensionality in the interaction of excitations
with radiation, cf. Figs. 12(a) and 12(b).

V. THE THREE-DIMENSIONAL CASE

The three-dimensional lattice is assumed infinite
in all three directions. Thus photons and excitons
are quantized in the same box of I. where I. goes
to oo. In this case, there is no exciton state facing
a continuum of photons but in each subspace E
there are two excitons with momenta K and —K,
and photons with moment K and —K, and the ef-
fective continuum is of dimension zero.

A. The quasiboson approximation

The three-dimensional case has been treated in a
straightforward manner by adopting boson statis-

tics for excltolls as weil as for pllotolls. T111s

is a harmonic oscillator approximation in the limit
of weak excitation, i.e., valid for low density of ex-

citons. The following equation has been derived"
for real eigenenergies fico(E) in the subspace E.

Although the mathematics of this relation are
clear, one may interpret this relation by saying that
although the two-dimensional excitation faces a
less dense effective continuum g' '(co) than the
one-dimensional excitation, it exhibits a much
stronger transition dipole, so that the final cou-
pling is stronger than that of the one-dimensional
excitation. Also, analyzing expression (40) one
finds that the extension of the intermediate region
~(I) is larger for the two-dimensional excitation
than for the one-dimensional excitation. One ob-
tains

r

~(2) ~(1)
Q

The dimensionality shows up strongly in two

quantities, the radiative shift and the extension of
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with

i(E;OiHI iOK e} i
=

s i@ D[
COg

cog =cK .

These eigenstates correspond to new quasiparticles,
the polaritons, which are combination of photons
and excitons and diagonalize the total Hamiltonian
(1) written in the quasiboson approximation,

H =gz»„C»„C»„+b e,
K,y

with

Cscv= UI(,-8@+Vg Bg

+X(U»~», + I»~', ),

where B»,B» and a»„a», are Bose operators for
excitons and photons, respectively. The coeffi-
cients U» and V» represent the weight of the exci-
tonic state in the eigenstate of H and show the
change of the character of the eigenstate when the
momentum passes through the intermediate re-

gion. ' Such changes have been discussed for one-

and two-dimensional polaritons, cf. Figs. 12(a) and
12(b). The results (44) are exact in the quasiboson
approximation in the sense that they sum up all or-
ders of the perturbation HI On the o.ther hand, it
is obvious that the assumption of bosons is not
equivalent to the method we used in Sec. III, for
one- and two-dimensional lattices, using a Feyn-
man propagator for photons and a two-level ap-
proximation for the excitonic state.

B. Calculation of three-dimensional
polaritons with Feynman propagators

We wish to show that it is possible to arrive at
the exact results (44} by extending to the three-
dimensional case the technique of Feynman propa-
gators we used for systems of lower dimension.
Let us first notice that using Feynman propagators
for photons only, one arrives at the result,

z=hcoo+RF '(z)

i (K OiHi i
0;K,e} i

=ficop+2Ra)» z 2, (45)
z —(fm» )

which approaches that of (44). Now since in the
boson approximation excitons and photons obey
Bose statistics, we associate in our technique the

same type of Feynman propagators to photons and

to excitons, 2fico»/(z fi co») and

&cool(z fi coo), respectively. Thus in our calcu-
lation of the restricted resolvent PGP, we replace in

(10a),

PGOP= = by P
2 2 i, (46)

I' I' 2')p
z —H~ z —Scop g —g ~p

and we arrive at the implicit equation (44) by seek-

ing the poles of PGP in (10a). The fact that we

obtain the same result with the method of Feyn-
mann propagators suggests the following
equivalence of the mathematical techniques: (i)

The quasiboson approximation is equivalent to the
approach of associating Feynman propagators to
photons and to excitons in a two-level approxima-
tion. (ii} Correlatively, in systems of two particles,
Feynman propragators sum up all orders of the
perturbation Hz. Such an equivalence is implicit
in works of many authors investigating the interac-
tion of electrons with bosons (photons or phonons);
see, for instance, Ref. 8.

VI. CONCLUSION

By using translational symmetry and neglecting
the atomic structure of matter, we showed that the
study of the coupling to radiation of a one- or
two-dimensional exciton reduces to that of a
discrete matter excitation, of wave vector E and
energy %coo, coupled to an effective photon contin-
uum which has a low-energy edge fic

~

E ~, The
coupled system essentially presents two kinds of
limiting behavior according to the position of the
excitonic energy f»00 relative to the low-energy

edge of the effective continuum.
(i) When E & coo/c, the matter excitation is sim-

ply repelled downwards. Thus it is radiatively
stable (the polariton).

(ii) When E & coo/c, the matter excitation is radi-
atively unstable (the radiatively unstable exciton).

These two behaviors reflmt the cooperative trend
in the coupling to the photon of the site dipoles of
the exciton. These cooperative effects lead to
subradiant' states for I( ~ cop/c and to super-
radiant states for E & coo/c, with an amplifying
factor (c/coeu) for the d-dimensional exciton radi-
ative decay.

The transition between these two responses to
the coupling to the radiation, which occurs around
K cop/c has been thoroughly investigated. The
behavior in the transition region is well known for
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three-dimensional lattices, where, for each wave
vector E, two discrete eigenstates are formed (real
eigenenergies) as superpositions of exciton and pho-
ton. In one- and two-dimensional coupled systems,
the eigenstates are, on the one hand, a discrete
state of mixed character (the so-called d-
dimensional polariton} and, on the other hand, the
photon continuum mixed with matter character
showing non-Lorentzian shape in the transition
range of wave vectors X. Correlatively, the time
evolution of the matter excitations shows an in-

complete decay into the photon continuum, with

oscillations between the polariton and the excitomc
resonance.

The systems we investigated have allowed us to
present, from the theoretical point of view, an ex-
ample of discrete state coupled to a continuum of
photons near an edge. In addition, the quantum-
mechanical model we developed to investigate the
cooperative emission in two-dimensional exciton
states is a prerequisite for an investigation of sur-
face or bulk radiative dynainics in crystals of lay-
ered structure, such as anthracene, which we will
present in part II of this series.
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