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It is shown how certain methods developed to treat elementary excitations at surfaces
and interfaces can be applied to diffusion and segregation in the presence of surfaces and
interfaces.

I. INTRODUCTION

A wide variety of methods is now being used to
calculate electronic, vibrational, and magnetic
states at surfaces and interfaces. Exact formal
solutions for the single-particle excitations can be
derived for systems that can be described in terms
of pairwise interactions of finite range: electrons in
the tight-binding model, phonons in the Born —von
Karman model, and magnons in the Hiesenberg
model. Kalkstein and Soven' showed how to apply
Green's-function methods to this problem, and
more recently, several related elaborations and ex-
tensions of such Green's-function approaches have
appeared. Without attempting to be exhaustive, we
cite here the transfer matrix formalism of Falicov
and Yndurain, the work of Dy and co-workers,
and the matrix-continued-fraction development of
two of the present authors, which will be referred
to as MK hereafter.

A simple way to view these methods is as map-
pings onto linear chains. It is assumed that
periodicity is retained parallel to the surface or in-

terface, so that a transform with respect to a two-
dimensional wave vector q, can be performed.
For each value of q„ the interplanar elements of
the Hamiltonian matrix are zero everywhere except
on and near the diagonal, "near" being specified by
the particular surface or interface and the range of
the interatomic interactions. Surface or interfacial
properties are then determined by solving for the
Green's functions of q, -dependent semi-infinite or
infinite linear chains.

In this paper, we show how the same methods
can be applied to diffusion and segregation at sur-
faces and interfaces when these problems are treat-
ed in a continuous-time random-walk formula-
tion. ' The mathematical formalism is similar to

that for elementary excitations, except that the
operators are not Hermitian and a Laplace
transform with respect to time is taken instead of a
Fourier transform. The general theory is outlined
in Sec. II, using the notation and results of MK.
Specification to an fcc (001) surface, with the
diffusing species occupying substitutional sites
(e.g., vacancies) or octahedral interstitial sites, and
allowing only first-nearest-neighbor hopping, is
provided in Sec. III. Applications to thin films are
discussed in Sec. IV, where it is shown that
enhanced surface layer diffusion can occur in spe-
cial cases.

The purpose of this paper is to outline and illus-
trate the mathematical framework of an atomistic
description of diffusion and segregation when sur-
faces or interfaces are present. For clarity of expo-
sition, the theory is presented specifically for sur-
faces, and two simple choices of initial conditions
are considered in the section dealing with an fcc
(001) surface. Extensions to interfaces and to other
initial conditions are formally straightforward.
Grain boundary diffusion is an area of particular
interest for subsequent applications.

II. GENERAL FORMALISM

We consider a crystalline solid in which diffus-
ing particles may move from site to site on a
periodic lattice of their own. For vacancies in a
Bravais crystal, for example, the diffusion lattice is
the same as the crystalline lattice. This is also true
for (100)-split or dumbbell self-interstitials in fcc
metals like Cu and Al, ' although for this case
there is the additional complication of three possi-
ble dumbbell orientations at each site; diffusion of
these self-interstitials involves both motion and
dumbbell reorientation. We will not explicitly treat
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such problems with additional degrees of freedom,
but they can be handl(xl within our framework by
simply associating a basis with each site. In other
systems, the diffusion lattice may be translated
from the underlying crystal lattice. This occurs
for the octahedral interstitial sites in an fcc crystal,
which form an fcc lattice which is displaced from
the original by —, a cube edge or —, the body diago-

1181. Tllc tctl'allcdlal lntcrs'tltlal sl'tcs 111 811 fcc
crystal provide a third kind of example; they form
a simple cubic lattice of available positions. '0

The lattice of allowed sites for the diffusing par-
ticles will be specified by indices L, /, where L

denotes the plane parallel to the surface or inter-
face, and I position within the plane. For simplici-
ty, we will assume a Bravais diffusion lattice, but
non-Bravais lattices can be treated by adding a
basis and its attendant extra Indjccs. I ct
%(L,/;L', /';t)dt be the probabihty that a particle
jumps from site L', I' to L, / in the time interval
(t, t +dt) given that it was at L', I' at time t =0. A
Green's function G(L, /, t;L', /', 0) is defined as the
probability that a particle arrives at site I.,I at time
t given that it was at I.', I' at time O. The particle
wiH make its last jump to L, / from a neighboring
site I (,I), so G obeys thc equation

5(L,L')5(l, l')5(t)=G(L, /, t;L', I', 0) g f—drip(L, I;L),l),r)G(L), I),t r;L'—, /', 0) .
I.l, hl

The probability that the particle is at L, / at time t,
given that it occupied L', /' at 0, is denoted by
P (L,/, t;L', I',0};it will be there if it arrived at
some previous time t rand s—tayed for a period r,

P (L,I,t;L', I',0)

=f dr G(L, l, t ~;L', /', 0}4—(L,/;~}, (2)

C)(L„/;r) =1—g f dr' %(L) l),L,/;r') .
L4 l pll

The constraint upon the waiting-time density func-

tion %' is that a jump must occur to some neigh-

boring site at some time,

1= g f dt+(L„I„L,I;t).
L l, tl

As in MK,~ a two-dimensional transform is tak-
en with respect to 8 surface wave vector q, for the
diffusion lattice,

1 ~ iq, [ R(L, l) R(L',l')]-f L~Liqs =„,~~"~ I I'

yf(L,/;L', /'),

where N, ~ oo is the number of atoms in 8 layer.

Laplace rather than Fourier transforms are taken
with respect to time,

f(s)=f dte "f(t) . (6)

The transformed equations for G and P are

5(L,L ') =+[5(L,L 1 )—q((L,L 1,
' q„s)]

Ll

XG(L),L';q„s),

P(L,L', q„s)=pL(s)G(L,L';q„s),

(()L(s)= +4(L,/;s) =@(L,/, s) .1

The functions 4(L, /, s) do not depend on I, the po-
sition in plane L, because of our assumption of 8
Bravais diffusion lattice. We will outHne how to
solve Eq. (7) for 8 semi-infinite solid, following the
derivation in MK. Interfaces can be treated along
the same lines, as shown in Appendix B of MK.

The elements of the inverse of G in Eq. (7) are
nonzero only on and near the diagonal,

1 —%(1,1)
—% (2, 1)

4

—%(n, 1)
0

—I (1,2)
1-%(2,2)

4

4

—%(n,2)
%(n +1,2)—

—W l, n) 0
—%(2,n) %(2,n +1—)

4

4 4

4

1—%(n, n) %(n, n +1)—
%(n + l,—n) 1 —%(n + l,n + I)

4
4
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Pof thc simplest case, wbc1c thc particles caQ juIQp to neighboring sites only in thc sanM plane oi 1Q

nearest-neighbor planes, 6 ' is tridiagonal,

6 '(L,L';q„s)=[1 %(—L,L;q„s)]5(L,L') —%(L,L', q„s)[5(L —1,L')+5(L +1,L')] .

This is the inverse Green's function for a random
walk on a linear chain with q, -dependent nearest-
Qeighbor juIQp piobabi11tics.

In general, 6 ' is Mock-tridiagonal as in MK,

1—A3

—83

(12)

It is assumed that the jump probability matrices
A~, 8;, 8; settle down to their bulk values A~, 8~,
Bb Rt sonic lcvcl III, that ls, Rf'tcl' (III —1)X(ll 1)
planes. The sequence of equations [(13a), (13b),
. . . )] is thus terminated at level m by what we will
call the terminated bulk Green's function gs,

g =go=(l As Bs gs'—Bs)——1

Other blocks of the Green's function can be de-
rived diagrammatically, as shown by Dy et gl. A.
set of "descending" Green's functions y; are de-
fined as the solutions of the equations

g.=(1—A —8 I*y I B. I)
-1

where for the semi-infinite solid, y, =(1—A, )
and gc

——0. The diagonal blocks of 6 are given by

J

where A. 8 8 are (n —1}X(n—1) matrices of
clclllcnts 0 (L,L }, 1 is thc lllllt Illatrlx, Rlld 8 (8 )
is lower (upper) triangular. Note that unlike in the
elementary excitation problem, g ' is not Hermi-
tian, A;QA; and 8;+8;.We block 6 in the same
way as its inverse, so that 6 i I is the upper left
(n —1}X (II —1) block, giz the block correspond-
ing to —Bl, and so forth. Note that the Green's
function 6 is not block-tridiagonal, that is, g J+0
for (i —j (

)1.
It is shown in MK that the upper left or surface

block of 6 is the solution of a recursive sequence
of equations,

g, =GII(qg, s)=(1—Ai —Bi gg'BI) ', (13R)

(13b)

G;;=(1 A; —8; —g;+i 8; —8; i y; i.B; I)

=gi +gi ~i —1 Gi -i i —1 ~i -j gi

For i &i', the off-diagonal blocks are

6-=6-8'g i' ' ' '8'-I g'

while for i &i',

ii ii i —1 j i —1
6- =6- B. ~ ~ s eg, &

eQ/ ~ & (17b)

P(,L L'q ——
g O, t)CO(L') .

If n~ is a unit vector in the a direction parallel
to the surface, then a measure of planar diffusion
is thc mean"square distance a.paft1clc IDovcs 1n a
plane from its starting point in that plane in a
time t,

X P (L, /, I;L', /', 0)
2

2 P(L,L;qg, t)

Thc function q/(L, /;L'/', t) was defined at the
outset as the probability per unit time that a parti-
cle at L, ', /' at time t =0 will jump to site J,/ at
time I. The form for 4' that we will use separates
1ts spatial and tiIGc dcpcndcncc, '

0 (L,/;L', /', t) =J(L,/;L', /')P (I), (20)

(21)

%e are now in a position, at least in principle, to
determine any desired element 6(L,L', q„t) of the
Green's function or, from Eqs. (2} or (8}, the con-
ditional probability function P(L,L;q„t) Mea-.
surable quantities will generally involve initial con-
ditions as well. For example, let c(L,/, r) be the
concentration of diffusing particles, that is, the
probability tliat a particle ls at site L, /, Rt fllnc I.
Suppose further that the initial concentration is a
function only of depth, C(L,/, t =0)=Co(L). Then
the concentration 1Q plane L at tiIDc t ls g1vcn by

C(L, I)= gc(L, /, t)
l
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and pl. is normalized correctly as defined to in-

tegrate to unity over all time. The form given
above for %(L,/;L', /', t) can be related to thermally
activated hopping in a straightforward way.

The transforms needed in Eqs. (7) and (8}for G
and I' are

%(L,L', q„s)=J(L,L'; q, )QI. (s),

QL, (&)=
S'IL+1

TL

pL, (&)=
svL+1

An alternative form for the sum rule (22} is

(24)

(25}

1=+J(L,L', q, =O) .
I.

This sum rule for diffusion is analogous to the

Goldstone rule that refiects translational invariance
for lattice vibrations and spin waves. Substituting

Eq. (25) in Eq. (8), we can express the Laplace
transforms of the planar concentration and dif-

fusion functions in Eqs. (18}and (19) in the form

The constraint in Eq. (4) that no site L', /' be a
trap then requires that the sum of the relative pro-
babilities for jumps from L', /' to its neighbors be
one,

(22)

and the algebra reduces to that for a q, -dependent
linear chain with nearest-neighbor hopping. Solu-
tions for systems such as a fcc (110) surface where
the matrices are 2&2's can be derived along the
lines followed in Mostoller and Rajagopal. " For
cases where the blocks are (n —1)&& (n —1)*s, n y 3,
gi, can be determined by transforming Eq. (14) to a
A,-matrix problem.

The two-dimensional wave vector for the fcc
(001) surface is

q, =(2m'/a)((i+(2, —pi+(2, 0), (28)

1 1
where ——, & gi, (2 & —,. In the bulk, the probability
of jumping from a site to any of its twelve nearest
neighbors is the same, so that js =J(L,/;L', /') =—„
between nearest neighbors in the bulk. For an
atom at site L', /' in plane 1, there are four nearest
neighbors in plane 1 and four in plane 2, so there
are two relative jump probability parameters j))
and j2i, and they must satisfy the sum rule

1=4(jii+j2i). From Eqs. (5), (10)—(12), and (23)
and (24), the functions A;, 8;, 8; are as follows:

1
Ai(q~, s)= j(ii/J's)

3 s'fi+ 1

X(cos'mgi+cos mg, —1),
18i(q„s}=

3(

C (L,s) = QG (L,L', q, =O,s)CO(L '), (26)
sv'L + 1

X (j2, /j& )cosn g&cosm (2,
1As(q„s)=—

3(sent, +1)

(29b)

2 G(L,L;q„s)cf

de~ q, =0

To illustrate the general formalism described in

the preceding section, we will show how it applies

to the (001) surface of a fcc diffusion lattice. This
lattice is appropriate for diffusion in a fcc crystal
if the diffusing particles occupy the crystalline

atomic sites (e.g., vacancies) or the octahedral in-

terstitial sites, which are the cube centers and the

midpoints of the cube edges. Nearest-neighbor

hopping is assumed, and for simplicity it is also as-

sumed that only the first plane differs from the
bulk. This example then is one for which Eq. (11)
applies, that is, for which the matrices A;, 8;, 8;
in (12) and subsequent equations are in fact scalars,

X(cos mgi+cos m(2 —1), (29c)

gi=(1 —Ai 8s8igs) '—
go=(1 As 8agi) '——

(30)

(31)

In addition, the intraplanar Green's function Gi,

for the infinite bulk crystal can be obtained from

Eq. (16),

Gs =(1 kg'» gs . -2 (32)

8b(q„s) 8i,=(q s)„
1

cosngicosmg2 . .
3 srs+1

A, and 8, are the only elements of G ' in Eq.
(12) that differ from Ai, and 8s.

From Eqs. (13a) and (14), the surface and ter-
minated bulk Green's functions are the solutions of
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The solution of these equations is straightforward, and we will give only some of the final results.
The appropriate dimensionless I.aplace transform variable for the bulk is u =st F. or + —,+g, or $2, the

terminated bulk and bulk Green's functions are

gb ——
z z [3(u+1)—(cos mgi+cos ngz —1)—o],3(u +1) 2 ' 2

2cos @/icos m(2
(33)

(34)

cr2=
t 3(u +1)—[(cosmgi+cosngq)~ —1] I I 3(u +1)—[(cosn(i —cosmgz)i —1] ] . (35)

In the limit q, ~0 ((~0) appropriate for the planar concentration and diffusion functions, gb and Gb
reduce to

gb ———,(u +1) u +uo —[u (u +2uo)]'~i+ u +1— 1

3Q
+1 [u(u+2uo)]'~ ir~g2 (36}

u+1
1

1 p(i
[u (u +2uo)]'" (37)

iS) —r)J rb ~

cL, i=JL, )JJb =12', i 3=cii+c2)

(38)

In terms of these ratios and of u =st and uo ———,,
the I.aplace transform of the surface plane Green's
function can be written as

%here Qo= 3 ~

To express the surface plane. Green's function

gi ——6» for g —+0 in a compact fashion, we intro-
duce soiiie addi'tioiial notatioii iiivolviiig tlie
surface:bulk ratios of the waiting times and relative
)uIIlp probabilities

uniform throughout the semi-infinite solid, Co(L)
=Qo, %e Obtain

~ ( )
C(ls}

Ch, o

ii g bgbciu+I

a)u+1 1 —Bye q =0

Substituting from (36) and (40)—(42), these reduce
to

Gii ——(a)u+1} ——,m g
1 2 N(u).

D(u) ' D'(u)
1D(u) =(o') ——,c2i)u+ —,c2)[u (u +2uc)]'~',

(u+2u, )'"
N(u) =2—ci) + —,c2i

(40)
I;(s)=

(u+2u )'
I s(s)=—

D(u)

(45)

(46)

From Eqs. (27), (28), and (40), the surface planar
diffusion transform is

The quantities vvhose behavior with time rve mull

discuss are surface concentrations and planar dif-
fusion. For the former, two initial distributions
wiH be considered. - First, if all diffusing particles
are initially in the surface layer, that is, if
Co(L) =c,05(L, 1}in Eqs. (18) and (26), then the
transform of the concentration in the surface layer,
normalized to thc 161tial value, 1s

1,(s)= * = 6»(q, =0,s) . (43)
C(l,s)

ego aalu +1
Gn the other hand, if the initial concentration is

(r~(l,s))= 4Q
D (u)

(47)

(Rb (L,s) ) =
szb+ 1 2 Gb(q„s)

disa

1 2 1= 6Q 'Pb u'"(u +2ui)-)'" ' (48)

For comparison, we can also define mean-square
planar diffusion distances for the bulk and the ter-
minated bulk by substituting G~ and gb, respective-
ly, for G(L,L) in Eq. (27),

T



d
I gs(q»s) '

dq, q, =o
I—+1 [N(it+2tto)]'i

3Q

—(u+1}

(r,'(l, l) )= —,u'(I ——,c» )(tIII),
(Rg',~(L,t)) =—,&'(t jrs) . (55)

These results exhibit the behavior expected. The
time scale for thc sllrfacc properties I » 1 II, Rlld

(r ) is rl at small times, and for the bulk proper-

ty (Rs )' it is rs. If all diffusing particles are ini-

tially in the surface layer, then the surface concen-

The inverse Laplace transforms of Eqs.
(45}—(49) can all be written down in closed form,
These general results are given in Appendix A.
Several hmiting cases of interest are discussed
bdom.

We first consider the special case where there is
no hopping from plane 1 to plane 2, that is,
0=jul ——cqi. From Eqs. (41) and (42), we then
have D(it) =IIII =ski and N(u}=2. With the sur-

face decoupled from the bulk, the mean-square sur-

face plallRr diff llsloll dls'tallcc lllcI'cases llllcarly
%ith t1IC,

(r~(l, t)) =-,al{tjrl) .

If all diffusing particles are initially in the surface

layer, then reassuringly, they remain there„

I;(t)=1. For a uniform initial concentration of
the diffusing particles, however, the concentration
in the surface plane increases without hmit,

2t/3m~

I'R(t)=1+ —,I dxc "[Io(x)+Ii(x)] . (51

This occurs because we have assumed that there is

no hopping from plane 1 to plane 2, but have al-

lowed hopping from plane 2 to plane 1,j II js——
[2 '

For the general case in which hopping from sur-

face to bulk is allowed, we will discuss the short-

and long-time hmlts of the general expressions

g1VCQ iQ APPCBCBX A. At VC+ Sh01t timCS, thRt 18,

for t/rs ~0 and u I (ties )~0, the concentration
ratios and mean-square diffusion distances are
llBCSf 111 t:

I;(t)=1——,c»(t II-I), (52)

I'II(t) =1+—,(al —
col )(I/~I),

tration can only decrease„and l, (t) does so. For. a
umform initial concentration, however, Eq. (53)
shows that 1 II(t) may either, increase or decrease
Rccofdlllg to wllcthcr cti ri——/I's ls greatel OI less
than c21=J21jjs. Tllc value of (ra(l, t)) is less
than it woukl be for no hopping from plane 1 to
plane 2 [cf. Eq. (50)] by the factor 1—cli/3, re-
flecting the fact that a particle in the surface plane
can now hop into the bulk as well as in the sur-
face.

TIM long-time bcllavlor of thc vRrlous fulic'tlons

can be found either directly from Eqs.
(Al) —{A10),or by keeping only the most singular
terms in their Laplace transforms in the limit
s,a —+0, then inverting the transforms. The results
are as follows:

In (56)
cgi [Ir(t /we)/3]

Q]I's(t)-—

(r~(l, t) )— tII[(t jets )/12m]ln,
&2].

(Rse(L, t) ) -at[(t jets )/12Ir]'~,

[(4Ir/3}{tjr )]'n

I;(t) goes to zero at long timea as it should; if all

diffusing particles are initially in the surface layer,

they will eventually all diffuse into the bulk. The
surface layer concentration reaches a steady-state
value larger or smaller than the initial value by
I"s —el/czi if the initial concentration is uniform.

Both the surface and bulk planar diffusion func-

tions have the same t'/ power-law dependence, in
contrast to the case of a surface isolated from the

bulk, where (r~( l, t) ) was proportional to t
Equation (59) corresponds to a bulk diffusion con-

stRllt of Ds =Qif /3f's.
The long-time behavior of the terminated bulk

planar diffusion in Eq. (60) reflects an unphysical

property of the terminated bulk Green's function

gs. It is the surface Green's function for a semi-
inflnite crystal in which the sum rule (4) or (22) is
not obeyed in the surface layer; as previously not-

ed, this sum rule is the analog of the Goldstone
rule for phonons and magnons. The relative jump
probabihties for a particle at L', I' in the surface
layer of the " terminated bulk" have the same
value, J{L,l;L', 1')=—„,as in the bulk, but there

are only eight sites to which jumps can be made.

(rt, (1,t) ) therefore exhibits a t 'n rather than a
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t dependence.
Between the short-time behavior in Eqs.

(52)—(54) and the very long-time behavior in Eqs.
(56)—(58), surface segregation and diffusion go
through an intermediate range determined primari-

ly by the ratio of ai ——~I/I's to cII =j21/J's He. re
the solutions can be found numerically from Eqs.
(A4}—(A8}.

IV. THIN FII.MS

P(L,L', q, =O, t) =
TQ

(62)

m =6+1 n =A+1

In the above, pL, is defined as the ratio

J(L,L —1;q, )

J(L —1,L;q, )
(64)

The general theory described in Sec. II can be

applied to thin films as well as to surfaces of
sc1111-111flIlltc solids and Iiltcrfaccs 111 Illflilltc crys-

tals. Mathematically, the primary difference is that

the recursive sequence of equations [(13a), (13b),
. . .] is not ended with a terminated bulk Green's

function gs that satisfies Eq. (14), but rather with

gN=(1 kv) -' (61)

for a film of N blocks. Also, the blocking into

(II -1)p(n —1)'s requires that films of N(II —1)
planes be considered.

To illustrate such applications, we wiB give a
few results for a film of N layers in which only
hopping in the same plane and between nearest-

neighbor plies is allowed, The inverse Green's-

function matrix G '(q„s) then is tridiagonal, just
as for a finite linear chain with (q, -dependent)

nearest-neighbor hopping. %'e restrict our interest
to the long-time limit, I /I I ~ oo, so we keep only

the most singular terms in the Laplace transforms
in the limit s ~0. Equation (7} for G is rewritten

as an equation for the conditional probability P,
using Eqs. (8) and (23)—(25). Solutions in the hmit

q„s~O are then found by employing appropriate-

ly transformed versions of Eqs. (13a), (13b), . . .
and (15)—(17).

In the long-time limit, the conditional probabili-

ty that a particle is in plane L given that it began
in plane L' is

Equation (62) describes the steady-state concentra-
tion of diffusing particles in the film. It does not
and should not depend on the initial layer-depen-
dent concentration distribution, because enough
time has elapsed to allow the planar concentrations
to find equilibrium.

The same lack of dependence on the starting
point occurs for the intra- and interplanar mean-

square displacements,

I
, P(L,L', q„r) =bi I, (65}

rl, d
I J(LI,LI,'q, )

disa
1

q =0 TLt

For an fcc (001) diffusion film, this can be written
in the form

(67)

~i, 1
51, —— g (1+4jl, I ) .

J. L,
' L'

(68)

For a single layer, 51=1 and 51——a'/21-1, as in Eq.
(50).

In thin films, it is possible for the underlying

layers to give enhanced surface diffusion. For an

fcc (001) film of two layers, for example,

51= (I+VI—4j»» (69)
'P) +P2f'2

where pz ——jul/J'll. This will be greater than one,
and (r (l, t)) will be greater than (a /2I l)i, if

(1—4jlz)&1 =4ju~i & &z(uz&z+ 2&I } (70)

Roughly speaking, an atom that begins in the sur-

face layer can drop into plane 2 where more rapid
diffusion occurs and return to the surface further
from its starting point than if it had remained in

plane 1 the whole time. This cannot happen in the
true long-time limit (t » any ~L } for a semi-
infinite solid, because for that case, the probability
that the particle will be found in plane 1, where it
began, vanishes as I '~ for I-+00 [cf. Eq. (56) for
a semi-infinite solid and Eq. (62) for a thin film].
Practically, however, there may be situations in
which diffusion on and just below the surface of a
semi-infinite solid occurs on a time scale orders of
magnitude faster than in the bulk and between the
bulk and the surface region. In such situations, a
thin-film treatment would be appropriate.
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APPENDIX: GENERAL TIME-DEPENDENT RESULTS FOR fcc (001)

The Laplace transforms (45)—(49) can be inverted with the aid of tables' ' and considerable algebra. We
first make a few definitions,

a=at ——,c2i, b=-, c2i, d= (n ——b ),

d

and recall that uo ———,. The surface plane concentration and diffusion functions then are

I;(t)= [bF(T,uo, u i )—ae ' ],

(A3)

(A4)

I (t}=-, F(T,u, u, )+—(1—e ' )+1
b

(A5)

2
(r (l, t)) =—,a b8(T, uo, ui)F(T, uo, ui)+ (1 b ——uuo)(1 —e ' )+—[2(1—b) —duo]Te

Q)

where the function F and operator 8 are defined by

F(T,uo ui)=e ' Io(uoT)+(2uo —ui)e ' I dT'e ' ' Io(uoT'),

8(T,uo u i )=uoT+ —uo + uo+ —"[2(1—b) —uuo]
BQo d But

Planar diffusion in the bulk and at the surface of the terminated bulk are given by

(Rt,a(L,t))= —,a uoTe ' [Io(uoT)+Ii(uoT}],
r

(rta(l, t})= , a2e '-Io(u, T)+ 1 — I, (uoT)
QoT
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