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A theoretical model for calculating the structure and energy of molecular crystals is

presented. The model, which requires no empirical parameters, is based on the Gordon-

Kim electron-gas model. Many-body effects are incorporated through the mutual overlap

of the electronic distributions of all molecules or ions in the neighborhood of a given

point in the crystal. Effects of the crystal environment on the molecular properties are

approximated by inclusion of an electrostatic potential that mimics the crystal potential in

ab initio calculations on the individual component molecules or ions in the crystal. Ap-
plication is made to a number of alkali and alkaline-earth hydroxide crystals in which the
components are taken to be hydroxide ions, and alkali or alkaline-earth cations. The
agreement with experiment is good (within 2.5% in lattice constants and 1.1% in lattice
dissociation energy). The calculated changes in molecular dipole moment are between 20
and 40%.

I. INTRODUCTION

A number of theoretical methods have been
developed to calculate the properties of molecular
crystals. Optimally, such a theory should satisfy
three conditions: The theory should describe well

the anisotropies of the intermolecular interactions
(dynamical properties in particular depend critical-
ly on the shape of the energy surface}, it should be
usable in a predictive sense where experimental re-
sults are not available, and the calculations should
not be prohibitively expensive. As of now, no
method has entirely satisfied these three conditions.

The most commonly used method used to calcu-
late properties of molecular crystals has been to ex-
press the total interaction energy as a sum over the
pair interactions between the molecules in the crys-
tal. ' The difficulties with this method arise in
determining accurate forms for the short-range
repulsive forces between the molecules. One of the

primary difficulties in finding an expression for
these repulsions between molecules is that the po-
tentials are often highly anisotropic. In particular,
it is not easy to extract good information about the
anisotropy of the pair potentials from experimental
data. Fitting the parameters in the short-range po-
tential to pressure-volume data in solids, an ap-
proach often taken to find pair potentials ~ is ambi-
guous, since in a crystal the nearest neighbors are

in just a few sets of relative orientations and only
limited regions of the pair potentials are sampled.
The potentials found to fit these experimental data
are really only appropriate for the positions and
orientations in the experimental system and thus
cannot be used with any confidence to describe
either other forms of the crystal, or a general
orientation of the molecules. In principle, obtain-

ing information about the pair potentials from data
on lattice vibrations offer a better sampling of the
pair potentials because the vibrational frequencies
depend on a larger portion of the potential sur-
face.i However, the complexities of the pair poten-
tials make it difficult to find an uriambiguous rep-
resentation of the potential from this data.
Molecular-beam scattering has been used primarily
to obtain the isotropic part of the potential, except
for such relatively simple systems as the
Hz —inert-gas potentials. One can also obtain
some information about anisotropic potentials from
the second virial coefficient, but again the data do
not uniquely determine the short-range potential. s

The best experimental approach has been to find
the intermolecular pair potentials that show best
agreement with all available data.

Traditional theoretical inethods of calculating
the short-range pair potentials, such as the
Hartree-Fock self-consistent-field method (SCF},
are time consuming and subject to errors which are

25 7221 19S2 The American Physical Society



7222 R. LeSAR AND R. G. GORDON 25

difficult to estimate. For molecular interactions
in particular, where the potential between the mol-
ecules is a function of many variables, to get a
good representation of the potential, many points
on the potential surface are needed. Because of the
difficulty and expense of obtaining a high-quality
calculation of the pair potential with these
methods, relatively few molecular crystals have
been studied using theoretically determined poten-
tials.

Recently, Gordon and Kim have developed a re-
latively simple a priori method of calculating the
short-range interactions between molecules, the
electron-gas model (GK). ' In its original formal-
ism, and in a later version (the modified electron-
gas model, MEG), ' this model has been shown to
give pair potentials that are in good agreement
with experimentally determined potentials. The to-
tal short-range energy is written as a sum of con-
tributions representing the exchange, kinetic, corre-
lation, and nonpoint Coulomb interactions. Each
of these terms can be expressed as a simple func-
tional of the electronic density, which is taken to
be a superposition of densities calculated from
Hartree-Fock wave functions found for the isolated
molecules. The main advantages to this method
over traditional ab initio methods are that it takes
much less computer time for each potential point
and that the time for each calculation is essentially
independent of the size of the molecules involved.

The electron-gas model has been applied quite
successfully to the calculation of properties of ion-

ic crystals containing monatomic ions. In the
work by Kim and Gordon" and Cohen and Gor-
don, ' the binding energy of a crystal was ex-

pressed as a sum of point Coulomb (Madelung) en-

ergies and a short-range energy which was calcu-
lated as a sum of pair potentials calculated with
the GK model in the Kim and Gordon calcula-
tions and the MEG model in the Cohen and Gor-
don case. Recently, an electron-gas theory for ion-
ic crystals that includes many-body effects has
been developed by Muhlhausen and Gordon. '

This model has given very good agreement with
experiment for a wide variety of ionic crystals.
Boyer has used potentials generated by the
electron-gas model to study the lattice vibrations of
some ionic salts, with particular attention to the
solid-liquid transition. '

While the use of the electron-gas model greatly
simplifies the calculation of intermolecular poten-
tials, the complexity of these potential surfaces
makes it prohibitively time consuming to find

all potentials needed for all crystals of interest.
Methods where the energy of the crystal is deter-
mined directly, and not as a sum of pair potentials,
should provide more efficient calculational
schemes. Ab initio methods based on Hartree-Fock
theory have been developed to calculate the ener-
gies of crystals without using the pair potential for-
malism. ' These calculations are mathematically
and numerically difficult, and the approximations
necessary to overcome these problems make these
theories either inaccurate or impractical for calcu-
lations on most crystals.

Here we present a theoretical model for molecu-
lar crystals, similar to the many-body electron-gas
model for atomic ionic crystals of Muhlhausen and
Gordon, ' that eliminates the need for calculating
the intermolecular pair potentials and requires no
empirical parameters. The binding energy calculat-
ed with this method includes two types of many-

body effects. One type is due to distortions of the
electronic density of a mole:ule in the crystal due
to the fields produced by all other molecules in the
crystal. The second type is due to the nonlinearity
of the electron-gas functionals and represents the
short-range energy due to the mutual overlap of
more than two charge distributions. Although the
model is used here for crystals containing only
linear molecules, the method is general and could
be extended to crystals containing more complicat-
ed molecular units. A simplification of the present
model is that the molecular electronic densities are
represented as sums of spherically symmetric func-
tions. Thus, only small modifications to the equa-
tions derived by Muhlhausen and Gordon' for
monatomic ionic crystals are necessary for the
molecular case.

One of the approximations in the original elec-
tron-gas model is to take as the electron density a
superposition of densities calculated from gas-
phase Hartree-Fock wave functions, which is ap-

propriate in regimes where there is no significant
distortion of the density. In ionic crystals, where
there are large electrostatic potentials due to the
charges in the system, the electronic density of the
molecular ions can have large anisotropic distor-
tions. We treat these distortions by including a
term in the Hamiltonian which approximates the
effects of the potentials, and by determining the
molecular wave function by Hartree-Pock methods
as usually applied to small molecules. We discuss
below how these distortions in the electronic densi-

ty can change such molecular parameters as the di-

pole moment. The method used here for molecules
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is similar to that used for spherical ions in the
Muhlhausen-Gordon theory aud by others. ' "

In Sec. II the appropriate equations for the cal-
culation of the crystal energies are presented. In-
cluded in this section are: a review of the modi-
fied electron-gas theory, a discussion of the method
of representing the molecular densities, and a
derivation of the model. In Sec. III we describe
thc QumcficR1 1Ilcthods Used herc 1Q calculat1ng the
crystal energy. Section IV is devoted to a discus-
sion of the model used here for incorporating the
distortions 1Q the clectI'OQ1c charge dlstflbut1ons
due to the crystal fields. Also included in Sec. IV
is a discussion of the thermodynamic cycles ap-
propriate for this model. Application of the model
to Rlka11 and Rlkallnc-earth hydfoxldcs 18 made 1Q

Sec. V.

II. THEORV

In this section we present the appmpriate equa-
tions for the calculation of the binding energy of a
molecular crystal. We restrict the discussion to
crystals involving hnear molecules, and in particu-
lar to ionic crystals, where dispersion energies
make small contributions to the binding energy.

The model used here is similar to that of the
Muhlhausen-Gordon model for simple ionic crys-
tals. ' I.ike Muhlhausen and Gordon, we divide
the binding energy Wz into four components

systclll, tllc total dcllslty ls pcs =pg +ps, where pg
Rnd p~ are the component densities. The cner~r is
a sum of terms corresponding to the kinetic, ex-

change, correlation, and electrostatic energies of
the system.

The electrostatic energy between two systems
can be readily evaluated in terms of the electron
densities and the nuclear charges. The electron-gas
terms al'c of tllc forlll

~ = I dr Ip~s(r)E;[p~s] -p~( r)E tp~ 1

-ps( r lpslI

where the density functionals E; are for thc ex-
change, kinetic, and correlatioll cllergies, respective-
ly.' 'The integrations in Eq. (2) are earned out nu-

Incr1cally.
Thc functionals pl'esclltcd hclc wcic dcrlvcd for

a uniform electron gas, while in a system of in-
teracting molecules the electronic density is clearly
not umform. In an attempt to correct the func-
tionals to deal with this nonuniformity, Waldman
and Gordon have introduced scale factors for the
functionals (the modified electmn-gas model,
MEG). '0 These scale factors are uniquely deter-
mined for an interacting system by requiring the
energy functional to give correct results for the
corresponding energy term for the atom isoelec-
tronic to the system.

8. Representation of molecular densities

where 8'x, W», and 8'c are the exchange, kinetic,
and correlation energies calculated fmm the MEG
theory. The total electrostatic energy 8'z consists
of a point Coulomb (Madelung) term and a term
corresponding to the electrostatic energy due to the
overlap of two charge distributions. Since the en-

ergy as calculated here is the energy of a unit cell,
the binding energy is obtained by dividing the total
energy by n, the number of formula units per unit
cell.

A. Thc modified electron-gas thcopf

In the GK model, the interaction energy between
closed-shell systems is evaluated as a functional of
the electronic density of the systems. The total
clcctI'on density 18 RpproxlIIlatcd by a sum of den-
sities of the interacting systems, where the com-
ponent densities are taken from Hartree-Fock cal-
culations on thc 1ndiv1dual systems. In a two-body

For the calculation of the MEG pair potentials
the electron densities of the interacting systems are
needed. For atomic systems, where the densities
are spherically symmetric, the density can be cal-
culated from a Hartree-Pock wave function as a
function of distance and can then be represented by
a onc-dimensional 1ntcfpolRt1on. Fol molcculcs thc
pmblem is not quite so straightforward. For linear
molecules a two-dimensional interpolation scheme
could be Used, as is done in other electron-gas pro-
grams. ' ' A large number of points is needed,
llowcvcr, to gct a good rcprcsclltatioll of tllc dclisl-

ty. For this reason, and for simplification of the
numerical calculations, we have chosen to represent
the molecular electronic densities as a sum of
spherically symmetric functions centered at various
points along the bond.

Recently, Parker, Snow, and Pack presented R

program for the calculation of linear molecule-
linear Inolccule pair potentials, using the electron-
gas model, where they found it useful to expand



7224 R. LeSAR AND R. G. GORDON

the density (calculated from Hartree-Pock theory)
of at least one of the molecules in a basis of Slater
functions. ' ' We have taken the same type of ap-
proach here. For a linear molecule with m nuclei
the density p(r) is expanded as a sum of n spheri-
cally symmetric functions (n & m) located along the
axis at r;,

(3a)

where

N
n; —1 4,

' —Z; r)p(r)= g apr '~ e
p=]

(3b)

px(r) = g g gp;, (r —r,jl),
i j=1 ]

(4)

where here and below the sum over i is a sum over
the molecules in the unit cell, the sum over j is a
sum over the centers in molecule i and the sum
over 1 is a sum over the lattice vectors. The vec-
tor,

rij1 rj+ri+rl ~

locates the jth center of the ith molecule in the
unit cell denoted by r1. The molecular densities
used here are determined from Hartree-Fock wave
functions found in calculations on the individual
molecules. The methods used to approximate the
effects of the crystal environment on the charge
distributions will be described below. The spheri-
cally symmetric densities pij are tabulated at the
beginning of each calculation and found when
needed by a cubic-spline interpolation.

The coefficients Ia,& ) are determined by a linear
least-squares minimization of (1 —p'/p), where a
modified version of the Parker-Snow-Pack pro-
gram is used. ' By choosing the appropriate func-
tions and number of centers, fits with a relative
standard deviation of less than 1% were possible
for most systems.

For a molecular crystal, the total density is writ-
ten as a superposition of densities due to the indi-
vidual molecules and takes the form

ni

where the sum over j is a sum over the centers in
molecule i. The integral in the first term is over
the unit-cell volume V and represents the total en-

ergy of the unit cell, while that in the six:ond term
is over all space and contains the self-energy terms
of the individual molecules. The density pE is
given in Eq. (4) and is the total electronic density
from all molecules in the crystal. We can rewrite
these terms in a more computationally efficient
form by first writing the integral in the second
term as a sum of integrals over unit ceHs and then
using the periodicity of the denisty to find'

Wk —— r EkPE r

n.

Each electron-gas interaction energy is calculated
as a three-dimensional integration over a unit cell.
Since the electronic densities fall off exponentially
at long distance, the sums in pE and in the second
term of Eq. (7) converge rapidly.

2. Electrostatic energy

The total charge density can be expressed as

ni

pr(r)= $ $ $9J5(r rgjl) 'a)(r—&i)v—)l-
i j=1

where Zi~ is the nuclear charge of the (ij)th center
and 5(r) is the Dirac 5 function. The total elec-
trostatic potential

@T(r)=f dxpr(x)/~ r —x
~

can be written as

C. Molecular crystal energies

1. EIectron-gas terms

The electron-gas interaction energy per unit cell
for the kth component can be written as

where

@J(r)=f dxpj(x)/~ r —x
~

.

The total electrostatic energy per unit cell can be
written as'
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ni

WT ———, g g f dr [Z;15(r—r;J)
The electrostatic interaction energy Wz is the to-

tal energy minus the molecular self-energy terms
and can be written as

—pg. (F—r ~)]Or(F) .

It is convenient to introduce the terms Q;1, the to-
tal number of electrons on each center, given by

Qg~
= f d r p(i ( r ),

and the total charge on each center N&, given by

NgJ Zg~
——Q;J —.

where, after integrating over the 5 functions and
rearranging we have

i nm

wM =-,' g g g g g'N, ,N, /I r,,—F „I

i j=1 m p=l

(10)

n- "m

~np =
2 g g g g g &rgGmp(~ig rmpI—)+NAG(g(~i) —Fmp()

i j=l m p=l

+ f dr pj(r rj)[G p—(rj —r p~) —G p(r rpt)]—

Gg~(r) =Q,q/r 4;~(r) . —

The prime on the sums over 1 indicates that the i =m term is not included for 1 =0. This restriction en-
sures that no interactions between centers on the same molecule wiH be included.

The term W~ is the form of the interaction energy of a lattice of point charges, the Madelung energy, ap-
propriate for molecular crystals. We note that the evaluation of this term is an exact evaluation of the
nonoverlap part of the electrostatic interaction in the molecular crystal, to any desired accuracy, for the
given charge distribution. This term can be evaluated by a method based on the Ewald double-sum formu-
la.~' We have, following a derivation similar to that given by Muhlhausen and Gordon for monatomic crys-
tals '

+mp i k r —k~/4z2
8 8

k

nm

+ —,g g g g g'NJN perfc(a p I F~ —r p~ I )/I r;J —r p~ I

i j=l m p=l

n; n;

2 X g g Nij+iperf(& pI Fij' r'p
I

)/'I &ij &ip I

i j=l p=l

where k is a reciprocal-lattice vector, V is the unit-cell volume, erf and erfc the error and complementary er-
ror functions, respectively, and a;J a parameter chosen for quick convergence of the summations. The total
electrostatic potential at a site is given by

nm

@ (F;.)=g g g'[6 (r; —F I)+N erfc(a p IF& —r ~ I)/I r; —r
& I]

m p=l
n
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The second term, 8'„~„is the interaction energy
due to the overlap of the charge distributions, the
nonpoint Coulomb energy. This term can be
evaluated in the method similar to that used by
Muhlhausen and Gordon for atomic ionic crys-
tals. ' This method involves splitting the expres-
sion into a number of terms including summations
in the direct and reciprocal lattices and an integra-
tion over the unit cell. Details of the formulation
of this method for molecular crystals are given
elsewhere. We found that while this method
worked well for crystals with small unit cells, there
were convergence problems for large unit cells.
For this reason, the nonpoint Coulomb energy was
evaluated for crystals with four or more molecules
per unit cell as a sum of pair interactions between
the spherically symmetric functions representing
the electron densities in separate molecules or ions
[the term within the large parentheses in Eq. (11)].
The potentials between the different centers are
calculated by a Gauss-Legendre quadrature at the
beginning of the calculation and evaluated when

needed by cubic-spline interpolation. Because the
pair interaction terms go to zero exponentially,
evaluation of this term by summing the pair in-

teractions is about as time consuming as the more
complicated method of Muhlhausen and Gordon. '

III. NUMERICAL INTEGRATION METHODS

The three-dimensional integrations over the unit
cell can be performed with a number of techniques,
such as by Gauss-Legendre quadratures. We have
chosen, however, to take advantage of the periodi-
city of the integrand and use one of the "number-
theoretic" methods which have been developed. In
particular, we shall use a method taken from Con-

roy, which is similar to methods proposed by
Korobov and Haselgrove. In this method the
integration is performed along vectors in the
periodic space in directions which have been op-
timized by Conroy for given numbers of integra-
tion points. We find that we can get convergence
of the integrations over the unit cell with either
1154 or 3722 total points, depending on the size of
the unit cell and number of molecules in each unit
cell.

The electron-gas terms in Eq. (5) involve an in-

tegration over the unit cell, and have integrands
that are sharply peaked around the nuclei. In par-
ticular, the kinetic and exchange energy integrals
have integrands that are generally quite small

throughout the unit cell but that can increase by
more than an order of magnitude near the nuclei.
It is difficult to evaluate accurately the regions
around the sharp peaks with numerical integration.
In order to improve the accuracy of the numerical
integration we replace the sharply peaked functions
near the nuclei by a smoother function in a small
sphere about the nuclei. A correction term is
evaluated to account for the change of function.
When this procedure is followed, the integration
becomes numerically much more stable. '

The kinetic and exchange contributions to the
interaction energy are of the form of Eq. (5),

n!3

' n/3

where n =5 for the kinetic energy and 4 for the ex-
change.

We replace the highly peaked density p,z by a
smooth function fJ in a small sphere V& of radius
d,j about each center in the unit cell and obtain the
new density h,z,

pgi (r), r )dgj

h;~(r)= '

f;~(r), r &d;~ .

The integral I„becomes

In=In[V h1+ g g ( In[~mr f)+—In[Vms pl»
m @=1

where the latter terms correct for the replacement
of the true integrand. The notation [V,ff indicates
to integrate over the volume V with the function f
describing the density near the nuclei. Since it is
assumed that the radius of the sphere around a
center is small, the total density is expanded near a
center about the density associated with that
center.

We have found that when fitting a molecular
density with spherical Slater functions, densities
centered along the bond (between the nuclei) must
be included to get good fits. However, the magni-
tude of the density near the origin of these bond
charges is small and generally quite smooth. We
can therefore expand the total density near the nu-

clei in a molecule in terms of small deviations
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from the function centered on the nucleus. In gen-

eral, no approximations to the integrand need be
made for those centers not centered on the nuclei.
Because of the spherical symmetry of the charge
densities, the derivation of the correction terms is
quite similar to that given previously for mona-
tomic crystals. ' We include the present derivation
to show explicitly the assumptions made in the
molecular case. We expand the total density near a
center mp as

nl

pr(r)= g g gp&I(r r,&i+—rmp)
i j=1

n;

=p p(r)+ g g g"p;, (r —~;,v+ r p»
i j=1

where the " indicate only the l =0, i =m, and

j p term is omitted from the sum. By our earlier
assumptions, we can take

n.

as small, and expand to find

=p"p'(r) l+ bp+—75P

We define

n;

g pij ( r —1'
gy( + i'mp )

i 1 j=1

n/3
nppt

g pmj(r —rmj+rmp)
j=1

' n/3
l

+ g g g pg~(r —ry+rmp)
i 1 j=1

n/3

where the ' means no i =m term for l =0. Letting

gmp= g pmJ(r rmj +—mp 'pmp "
j=1

where the " means no j=p tenn and expanding the first term in B we find

n/3nl

I„[V,p] C f p" (r)(b ——g p) —gg' g p;J(r r,Ji+r p)—
i 1 J=

The last term is a sum over the densities due to other molecules evaluated near the mp center, which we as-
sume are negligible with respect to p p and are dropped. We are left with

n,.

I„[Vp,p]=" f dr p'"p ' (r)g g g'pj(r —r;~i+r p),
i j=l

where the ' means no i =m term for I =0 in the summation. Since the summation contains terms that are
centered on different molecules, we can write a Taylor-series expansion of these terms as

~ ~

+ + g lJ
p~(r rlJi+ rm—p) =pij(rmp rtgl)+-dr

ni

n[ mpyp] 3 g g g pgg(rmp —riJi) f dl'pmp (r) .

I. r'(rmp ~ij'1)]/
I rmp ~iJIl'

r=
~ rmp —rijl l

Since pmp is spherically symmetric, an integration over the dot product is zero. and we find

Since the terms multiplying the integral are due to
densities on other molecules, these correction terms
are small. We have reduced the rather complicated
correction integrals to sums of densities times in-
tegrals that have to be evaluated only once per
center. The correction term I„f Vmp, f] has the
same form with f replacing p. We choose as the
smoothing function

fg~(r)=a~i+b~ir ~ r dv—.. 2

where the constants are chosen to fit the density
and its first derivative at r =d;J.

With this smoothing procedure and correspond-
ing corrections the stability of the numerical in-

tegration over the unit cell is greatly improved.
Muhlhausen and Gordon'3 provide a number of
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numerical tests for atomic ionic crystals that show
the improvement in thc numerical integration
found with this procedure. Details of the correc-
tion terms nt&essary for the numerical integration
if the nonpoint Coulomb energy is not evaluated as
a sum of pair integrations are available.

IV. CRYSTAL CHARGE DENSITIES
AND ENERGETICS

A. Charge densities

As outlined in Scc. D A, thc clcctron-gas model

takes as an approximation to the total electronic
density of a system the sum of the densities of the
component atoms and molecules, where for most
systems the densities of the gas-phase molecules

are used. One method to improve the model is to
improve the description of the densities, keeping, if
possible, the additive density approximation. The
necessity of these improvements depends on how

much the component densities differ from the den-

sities of the gas-phase mole:ules.
For interacting neutral systems, the interactions

between molcculcs are smaB unless the intermolec-

ular distances are very small. For these systems,
the deviation of the component densities from their

gas-phase densities is small and a perturbative ap-

proach can be made. Vhth this approach, very

good results have been obtained with the electron-

gas model for intermolecular potentials between

neutral molecules. '

The component ions within ionic crystals, how-

ever, are subject to very strong electrostatic poten-
tials and potential gradients. These potentials can
cause relatively large distortions in the electronic
distributions of the ions. In monatomic iona, the
usual approach to treating thcsc distortions has
been to consider two effects, an isotropic compres-
sion or expansion of the ions and an asymmetric
distortion due to field gradients. For monatomic

ion)c crystals with high symmetry, the compression
of the negative ions seems to be the dominant ef-

fect. Muhlhausen and Gordon, ' following the
work of Watson' and Pachalis and Weiss, ' ap-

proximated this compression by adding a term to
the atomic Hamiltonian corresponding to the po-
tential due to an external shell of charge. The
charge density of this system is found with the
Hartree-Pock SCF method. IQ thc Muhlhauscn-

Gordon model, the charge on the external shell was

taken to be the opposite of the charge on the ion it
surrounds (for system neutrality). The radius of AE, =E,—Eg . (13)

the shell was chosen to match the potential due to
the shell at the ion's nucleus with the potential at
that nucleus duc to all charges in the crystal other
than the ion itself (site potential). With the use of
these stabilized densities, significant improvements
in the agreement between the calculated and exper-
imental crystal properties were obtained.

In molecular ionic crystals, there is no simple
analog to the atomic case, since there cannot bc a
simple isotropic change in the density. %c can,
however, approximate the effects of the crystal en-
vironment by adding to the molecular Hamiltonian
terms corresponding to the interaction with a set of
external point charges, chosen in such a way as to
match thc site potcnt1al 1Q thc crystal. IQ particu-
lar, we match the site potential found at each
center along the bond in the molecular ion with a
set of six external charges, chosen to keep the axial
symmetry of the molecules. For molecules orient-
ed along the z axis, the six charges mould be locat-
ed at (0,0,z ~ ), (0,0,—z2), (+a,O, b), and (0,+a,b)

with charges q ~, q2, and q„respectively. The sum
of the external charges (q&+q2+4q, ) is chosen to
be opposite the charge on the molecule or ion. The
parameters z„z2, a, b, q~, and q2 were found by a
nonlinear least-squares fit to the crystal site poten-
tial. For example, for LiOH discussed below, the
crystal site potentials were found to be OA74,
0.462, 0.449, and 0.322, while the potentials due to
the set of external charges were 0.458, 0.463, 0.461,
and 0.319 at the positions along the bond [—0.2,
0.0 (0 atom), 0.2, 1.85S7 (H atom)]. The parame-
ters mere —4.545, 4.785, 1.302, 0.12, 0.440, and
0.112, respectively. The electronic densities were
found by use of the Hartree-Fock SCF method on
the molecular ion plus the external charges.

The calculations on the molecular iona were per-
formed using the POI.GAL. program of Stevens.
Since the external charges have no electrons or or-
bitals associated with them, inclusion of these
charges has little effect on the running time of the
SCF calculations. To preserve cylindrical symme-

try, only s and p functions are used.
The energy of the stabilized ion (E,) can be

found by subtracting from the total SCF energy of
the system (molecular ion plus external charges)
the interaction between the external charges and
the electrons and nuclei of the molecule, as well as
the interactions between the external charges. The
difference between the SCF energy of the gas-phase
ion (Es) and the stabilized ion is the stabilization

energy AE, :
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8. CFgstal energies

The total crystal binding energy per formula
llillt Ws 18 glvcil ln Eqs. (1)p (5)p (11)p Rnd (12).
This energy can be minimized with respect to the
lattice parameters of the unit cell and the positions
and orientations of the molecule in the unit cell.
We find the optimal stabilization by an iterative
process. First the lattice energy is minimized us-

ing an electromc density for the gas-phase molecu-
lar ion. The site potentials along the molecular
bond found in this calculation are matched by the
potentials due to a set of external point charges.
An SCF calculation is then performed on the com-
bined system. The resultant wave function is used
to find the molecular density which is then fit to a
sunl of spherical Sister functions as described in
Sec. II 8 and another minimization of the crystal
binding energy is performed. The site potentials
found at this minimum are compared with those
due to the external charges that stabilized the ion.
If the deviation between the two sets of potentials
is less than a few percent, we stop the process. If
not, the new site potentials are matched by external
charges and the steps are repeated until there is
agreement between site potentials in successive cal-
culations. In practice, self-consistency is obtained
with no more than one or two iterations. The
binding energy of the self-consistent calculation is
EB

The dissociation energy of the ciystal is defgjcd
Rs thc process of golllg fl'0111 ious in the crystal to
free iona in the gas phase. Since the binding ener

gy we calculate is the energy of the iona in the
crystal going to stabilized iona, the dissociated en-

ergy is given by

D~ =—Eg —m ~&, ,
where III is the number of formula units of the sta-
bilized ion in the ionic molecule. The iterative
schcilic ls R 11111111111zatloilof this dlssocfatloll cllcr-

gy. As the molecules are stabilized, their size
shrinks. The molecules in the crystal can then get
closer together and the binding energy increases in
magnitude. The stabihzation energy also increases
in size as the molecules are further stabilized. As
the signs of the two energies are opposite, there is
a mimmum I the d18sociation enelgy curve. Be-
cause the dissociation energy curve is flat near the
minimum, and there are inaccuracies in the energy,
it is not possible to find the best wave function for
the crystal of interest. The point of self-consis-
tency is used as a good approximation to the true
mimmum.

A crucial test for any theory of molecular crys-
tals is that it be able to account not only for gen-
eral structural features such as lattice size, but also
the relative positions and orientations of the atoms
and molecules in the crystals. These orientations
depend not only on the long-range interactions but
the short-range interactions as well. Theoretical
pl'cdlctlolls of hydrogen positions have bccll Iiladc
for a number of hydroxide crystals, 17 2s but they
have neglected completely the effects of the short-
range forces. Here we apply the theory to a series
of crystals involving hydroxide iona, the alkali and
alkaline-earth hydroxides. In particular, we shall
examine the success of the model in predicting
structures and energies, as well as the relative im-
portance of the dipolar versus repulsive forces in
determining the hydroxide orientations. The parti-
tioning of the energy into long- and short-range
contributions will be discussed in detail for
Mg(OH)I crystals.

The model used has been outhned in Secs.
11—IV. The correction factors for the MEG
theory (Sec. II A) were taken as appropriate for the
nearest-neighbor pair. For example, for NaOH the
correction factors for 20 electrons (16 valence)
were used and for KOH those for 28 electrons (16
valence) were used. In the case for NaOH, the
correction factors are appropriate for all pairs in
the crystal, while for KOH the correction factors
used are intermediate bet@veen those appropriate
for the K-K and OH-OH interactions. As noted
by Muhlhausen and Gordon, il the results are not
very dependent on the choice of correction factors.

The electronic density of the gas-phase OH ion
used in the first step of the iteration cycle was cal-
culated from the wave function of Cade, which
was better than a double-g wave function with
added p- and f-polarization functions. 19 This wave
function gives energies close to the Hartree-Fock
limit. Some molecules properties calculated with
this wave function are given in Table I.

The wave function used to calculate the stabi-
lized molecular densities had the same basis as the
gas-phase wave function of Cade but without the
added d and f functions. These functions were
dropped to preserve cylindrical symmetry in the
Hartree-Fock SCF calculations which included the
external charges. As a check of the basis set, par-
tial optimization of exponents were carried out in a
calculation of the gas-phase ion. The SCF energy
and dipole and quadrupole moments are given for
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TABLE I. Comparison of OH properties. All quantities are in atomic units. The OH
bond length is RoH and the SCF energy (after subtracting the interactions saith any external
charges) is Escp. The electrostatic moments p (dipole) and 0 (quadrupole) refer to the oxy-

gen atom with a molecular orientation O-H.

%ave function &oH

1.781
1.8557

—75.41754
—75.40762

OH (2)
OH- (3)
OH- (4)
OH- (5)
QH (6)

1,8557
1.8557
1.8557
1,8557
1.8557

0.6597
0.6336
0.6521
0.6124
0.7099

1.7574
1.8101
1.6743
1.8063
1.8751

—75.37908
—75.39496
—75.377 36
—75.39919
—75.38697

'Reference 29.
'The wave function OH {1)is the present free-molecule wave function. The others are the

wave functions used to calculate the electronic density for the calculations on: (2) LiOH, (3)
NaOH, and Sr(OH); (4) Mg(OH), (5) KOH, and RbOH; and (6) Ca(OH),

comparison with the result of Cade in Table I.
The bond leligtll used ill tile presen't calclllatloll

was from crystal x-ray diffraction data. The stabi-

lized wave functions were generated as described in

Sec. IV. The exponents were optimized for one
stabilization and used in all subsequent calcula-
tions. Selected molecular properties as calculated
from these wave functions are given in Table I.
Molecular electronic densities were fit to four
spherical functions centered along the bond with
relative standard deviations in the fits of about
3%. Four centers were the minimum number

found to give a reasonable representation of the
molecular densities. Convergence of the interac-
tion cycle is shown in detail for the case of NaOH.
All charge densities for the positive ions were cal-
culated from available wave functions.

2. I.iOII

The structure of I.iOH has been determined by
neutron diffraction to be tetragonal with two mole-

cules per unit cell (space group of P4/nmm). ss

The experimental parameters are given in Table II,
where the lithium atoms are in positions +( —,, —,,0),

1 3
the 0 and H atoms in +(—,, —,,z), and the structure

sho%vn in Fig, 1.
Tbe lattice energy %'as minimized %'1th respect to

the parameters a, e, and zo, vnth the lithium ions
and hydroxide orientations fixed. As a cheek of
the structure, the orientations of the hydroxide ions
were varied, with the most favored structure being

that shown in Fig. 1. The calculated properties are
given in Table D and compared with the experi-
mental results. The calculated dissociation energy
is within the experimental error and the lattice
parameters within 2% of those determined at 298
K.

In Table I are listed the molecular properties of
the wave function used for the converged result for
I.iOH. The dominant change of the crystalline hy-
droxide ion relative to the free molecule is an in-
crease in the dipole moment relative to the oxygen
atom, indicating a shift in electronic density to-
wards the oxygen atom.

Thre: modifcations for NaOH are known; the
low-temperature (T& 573 K) orthorhombic phase,
the n phase, and higher-temperature monoclinic
and cubic phases. s The structure of the. a phase
has been determined by neutron diffraction to
have four molecules per umt cell with .space-group
Bmmb and special positions

1 1 3 3 1+(- —z) (- —-+z)

The structure is shorn in Fig. 2 and the experi-
mentally determined lattice parameters and energy
in Table II.

In Table II are hsted the results of calculations
with the gas-phase wave function of Cade ' and
two stabilized wave functions, where the lattice
parameters a and e and the positional parameters
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TABLE II. Results for LiOH, NaOH, Mg(OH)2, and Ca(OH)&. All quantities are in
atomic units. The lattice parameters are a and c, the positional parameters of the metal and

oxygen atoms are denoted by z and zo, respectively, the crystal electrostatic site potentials
at the 0 and H atoms are 4o and 4H, respectively, the energy to separate the crystal to sta-
bilized atoms and molecules is —Eb, and the crystal dissociation energy is D, . The wave
functions used here are denoted by OH (2), etc., and properties of these functions are given
in Table I.

zm ZQ 4p D,

LiOH:
free ion
OH (2)
experiment'

7.356
6.716
6.709

7.754
8.645
8.183

0.162 0.433 0.327 0.3728 0.3728
0.166 0.464 0.333 0.4187 0.3903
0.194 0.3888

NaOH:
free ion
stabilized OH
OH (3)
experiment'

6.879 22.442 —0.086 0.116 0.364 0.315
6.672 22.442 —0.089 0.114 0.376 0.311
6.502 22.221 —0.090 0.114 0.383 0.318
6.424 21.499 —0.086 0.116

0.3182 0.3182
0.3307 0.3248
0.3460 0.3334

0.3382

Mg(OH)2.
free ion
OH (4)
experiment'

6.521
6.088
5.938

8.874
9.549
9.006

0.222 0.445 0.292 1.0267 1.0267
0.192 0.469 0.313 1.1544 1.0939
0.222 1.1333

Ca(OH)2.
free ion
OH (6)
experiment~

7.142
6.946
6.777

9.673
9.144
9.221

0.189 0.395 0.262 0.9722 0.9722
0.218 0.414 0.283 1.0391 0.9978
0.235 0.9961"

'Reference 32 at 298 K.
"Reference 42 at 0 K. The uncertainty is about +0.0016.
'Reference 33 at 298 K.
"Reference 42 at 0 K. The uncertainty is about +0.0016.
'Reference 34 at 298 K.
fReferences 43 and 42 at 0 K. The uncertainty is about +0.0037.
N'Reference 39 at 298 K.
"References 43 and 42 at 0 K. The uncertainty is about +0.0033.

zN, and zo were varied. The orientations of the
hydroxides were checked and found to favor the
orientations shown in Fig. 2. Also given in Table
D are the calculated crystal site potentials and the
potentials from the external charges in the stabih-
zation calculation. Examination of the dipole mo-
ment given in Table I shows that there is a shifting
of the electronic density towards the oxygen atom
as the molecules are stabilized. As the wave func-
tion is stabilized by larger potentials from external
charges, the spatial extent of the wave function de-
creases and the crystal can pack more tightly. The
increased binding energy from this more tightly
packed crystal is offset by the energy necessary to
stabilize the OH molecule and cause a shift in
the electronic density.

3. Mg(OHjz

The crystal structure of Mg(OH)z (Brucite) has
been determined by neutron diffraction as hexa-
gonal with one molecule per unit cell and space
group P3m 1. The crystal structure is shown in
Fig. 3 and corresponds to having atoms in the spe-
cial positions

Mg +: (0,0,0),
O(H): +( —,, —,,z),1 2

with the orientations of the hydroxides as shown in
Fig. 3 and the oxygen positions as listed in Table
II.

The results from calculations on the Mg(OH)z
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45
L|OH

FIG. 1. Crystal structure (Ref. 32) of LiOH. The
shaded spheres are the I.i atoms, the large open spheres
are O atoms, and the small open spheres are the H
atoms.

crystal are given in Table II. The agreement with

experiment is reasonable (within about 3.3% in lat-

tice parameters and 3.5% in dissociation energy)

though the error is somewhat larger than for some

Q

FIG. 3. Crystal structure (Ref. 34) of Mg(OH)z aud
(Ref. 39) of Ca(OH)2. The shaded spheres are the
Mg(Ca) atoms, the large open spheres are O atoms, and
the small open spheres are the H atoms.

of the other hydroxide systems studied.
To examine the relative importance of the elec-

trostatic and repulsive forces in determining the
orientations of the hydroxide molecules, a calcula-
tion was performed in which all molecules and
atonls bllt one wel'e ftxed 111 the theoret1cal
minimum position and one molecule rotated about
the 0 atom in the xz plane. The energy curves
from this calculation are shown in Fig. 4, where

0. le-

MOCOHQ
I

(N

aN,

FIG. 2. Crysta1 structure (Ref. 33) of NaOH. The
shaded spheres are the Na atoms, the large open spheres
are 0 atoms, and the smaB open spheres are the H atoms.

30 80
.@ CDKQREESD

FIG. 4. Variation of energy of Mg(OH)2 as a func-
tion of rotation of the hydroxide ion (with so ——0.222) in
the ce plane. 0 is the angle between the orientation vec-
tor of the hydroxide ion and the e axis. E~ is the
Madelung energy, Eq the binding energy, and E~ the to-
tal short-range repulsive energy.
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the electrostatic, repulsive, and total energies are
shown as a function of angle of hydroxide orienta-
tion relative to the z axis, 8. While the electrostat-
ic forces dominate in determining the preferred
orientation, the short-range forces have a decided
influence on the shape of the energy surface, espe-
cially at large 4.

Since we find reasonably good agreement with
the experimental results using a completely ionic
model, this suggests that the covalent nature of the
bonds is small. This view is supported by recent
work by Haycock et al. , who studied Mg(OH)2
with x-ray emission, x-ray photoelectron, and
Auger spectroscopy and report that the spectra in-
dicate the strongest interaction is between the 0
and H atoms of the hydroxyl group. They do sug-
gest, however, that there is some covalent character
to the Mg +-0 atom interactions and some hydro-
gen bonding between layers of the brucite struc-
ture. From our reasonably close agreement with

experiment, these covalent effects seem to be much
less important than the ionic forces and the shift-
ing in electronic density due to the strong electro-
static potentials, though they could account for the
somewhat larger errors in our Mg(OH)2 calcula-
tions.

4. XOH

The two known phases of solid KOH are the
monoclinic a phase and the higher-temperature
(T& 517 K) cubic P phase. ' The a phase has
been studied at room temperature by x-ray diffrac-
tion and at 93 K by infrared spectroscopy by
Ibers et al. , with the experimental parameters
given in Table III. X-ray powder patterns at 140
K indicated that the room-temperature structure
remained at the lower temperature. While they
could not positively assign the hydrogen positions

TABLE III. Results for KOH, RbOH, and Sr(OH)2. All quantities are in atomic units.
Notation is as in Table II.

4o D,

KOH:
OH (5)'
experiment

7.185
7.483

7.276 12.290 106.7 0.347 0.301 0.3109 0.3025
7.446 10.715 105.9 0.3020'

RbOH:
OH (5)d

experimentb
7.606 7.500 12.521 107.3 0.327 0.282 0.3007 0.2923

0.2944'

Sr(OH)q.
OH (7) 17.823 11.605
experiment~ 18.688 11.567

7.420
7.405

0.389 0.278 0.9823 0.9570
0.9416'

'The positional parameters found here are: K: (0.1.44, —,0.290), 0: (0.374,—,0.750), H:
(0.456,0.25,0.907).
Reference 37 at 298 K. The heavy-atom positions are reported as K+: (0.175,—,0.288) and
0: (0.318,0.25,0.770).
'Reference 42 at 0 K. The uncertainty is about +0.0016.
The positional parameters found here are Rb+: (0.143,—,0.293), 0: (0.377,—,0.751), and H:

(0.523,0.25,1.044).
'Reference 44 at 298 K. The uncertainty is about +0.0033.
The Sr~+ positions were kept at the experimental values. The hydrogen atom positions were

found to be: H (1): (0.422,0.198,—) and H (2): (0.473,0.859,—). The oxygen positions were
found as 0 {1): (0.400,0.354,—) and 0 (2): (0.369,0.859,—). The site potentials given here
are the average of the values for molecule types 1 and 2.
~Reference 40 at 298 K. The heavy-atom positions are reported as Sr +: {0.161,0.096,—), 0
(1): (0.395,0.344,—), and 0 (2): {0.369,0.865,—). The hydrogen-atom positions suggested in
Ref. 27 are: H (1): (0.396,0.186,-), H (2): (0.462,0.815,—).
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from the single-crystal x-ray data, packing argu-
ments and analysis of the infrared spectra could be
used to infer likely positions.

The structure of the KOH crystal, giving the po-
sitions of the potassium and oxygen atoms, is
shown schematically in Fig. 5(a). The heavy atoms
are in special positions

(x,y, z);(x, —, +y,z)

with the oxygen atoms aligned in the zig-zag chain
shown in Fig. 5(b). From structural analysis, Ibers
et al. suggest that the hydrogen atoms are in one
of the structures shown in Fig. 5(c), with structure
2 most consistent with the vibrational spectra.
From analysis of the spectra, an 0-H —O-O angle
of 4'+2' is suggested. This structure, where the
O-H —O-O angle is set to 0', is shown in Fig. 6(a).

%e determined the crystal structure by minimiz-

ing the binding energy with respect to the lattice
parameters (a,b,c,P}, the positional parameters for
K+ and OH, and the orientation of the hydrox-
ide ions. The structure found with this minimiza-

tion is shown in Fig. 6(b) and the parameters given

in Table III. Comparison of the experimental
structure with the calculated structure shows rath-
er large differences. While the calculated dissocia-
tion energy is in good agreement with experiment,
the angle between the a and e axes is somewhat too
large in the present calculation as is the e axis.
The volume of the calculated phase is, however, in

better agreement with an error of about 2.6% (0.7
cm /mole). The real nature of the discrepancy is
shown in comparison of the structures in Fig. 6.
The orientations of the hydroxide iona found here
(perpendicular to the O-O zigzag chain) is quite
different from that suggested by the experimental

study. As a test of this large difference, a calcula-
tion was performed where the energy was mini-

mized with all the heavy-atom positions and lattice
parameters held constant and just the orientations
of the OH ions varied. The energy minimum

was found with the hydroxides at an intermediate
orientation between that suggested by the experi-
mental study and the theoretical minimum found
here, with an O-H —O-O angle of about 23' (as op-
posed to the 4' that Ibers et al. suggest ' s). The
difference in energy between the theoretical
minimum [Fig. 7(b}] and the calculation where

only the orientations were varied is about 0.3
kcal/mole and that between the theoretical
minimum and the experimental structure about 0.6
kcal/mole, indicating that the energy surface of
this crystal is very Aat.

FIG. 5. From Ref. 37. (a) Projection of the KOH
structure on the ue plane. The shaded spheres are the K
atoms and the open spheres the 0 atoms. (b) View of
the oxygen octahedron surrounding the K atoms show-

ing the O-O zigzag chain. (c) Sketch of possible H atom
positions along the chain of O atoms.

Because of the differences between experiment
and theory in the case of KOH, the structure was
calculated with two representations of the stabi-
lized electronic density of the OH ion. The pre-
liminary calculations were performed with an elec-
tronic density of OH calculated from a 3.7% fit
of the stabilized wave function. The results were
checked at the theoretical minimum by a calcula-

FIG. 6. Structure of KOH. The shaded spheres are
the K atoms, the large open spheres are 0 atoms, and
the small open spheres are the H atoms. (a) From Ref.
37. The hydrogen atom positions are placed along the
O-O zigzag chain. (b) Present results.
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tion using a more accurate representation of the
hydroxide density with a relative standard devia-

tion of about 03%. The difference in dissociation

energy as calculated with the two representations is
about 0.0028 a.u. (0.9%). The dissociation energy
in Table III was found with the more accurate rep-
resentation of the density at the positions found
with the 3.7% fit.

The structure proposed in the experimental
study, is surprising in that a ferroelectric ordering
of the hydroxide ions [Fig. 6(a)] is predicted. Our
results [Fig. 6(b)] predict a structure in which the
hydroxides have antiferroelectric (dipolar) ordering.
The energy of these two structures is quite similar;
however, at low temperature the present structure
should be favored. This structure could be
checked by infrared polarization studies on single

crystal, which should show no hydroxide absorp-
tion along the crystal axis parallel to the
hydroxide-ion orientations.

5. Ca(OH)z

frared study of Sr(OH)z and Ba(OH)2, further in-
formation about the hydrogen positions was ob-

tained. ' Perhaps the best indication of the hy-

droxyl orientations comes from a theoretical study

by Gicsc, whO used an clcct1'ostat1c model to ex-
amine a series of orientations. The experimental
structure was determined to be orthorhombic with
a space group of Pnam and four molecules per unit
cell. The heavy atoms are in the special positions

1 1 1 1

(x,y,z); (-, +x, —,—y,z); (x,y,z); ( —,—x, i +y,z).
The experimental parameters and the orientations
predicted by Giese are given in Table III.

The results of our calculations are given in Table
III and the structure in Fig. 7. Comparison with
the experimental lattice parameters and energy
show a reasonable agreement with an average error
in lattice parameter of about 1.7% and dissociation

energy of about 1.6%%uo. The orientations found here
are quite similar to those found in the study of
Gicse using an electrostatic model. These calcula-
tions were performed with a fit of the electronic
density with a relative standard deviation of about
0.4%.

The crystal structure of Ca(OH)z (portlandite) is
the same as that for Mg(OH)2 discussed above.
The structure is shown in Fig. 3 and the results for
Ca(OH)2 are given in Table II. The present results
are quite good with a relative standard error of
about 1.32% in lattice constants and 1.5% in dis-
sociation energy.

6. RbOH

Ibers et u/. report th. at on the basis of an x-ray
powder pattern R5OH 18 1sostructu1al %1th

KOH, i7 though no other information on values of
the lattice constants is available. Calculations were
performed on RbOH in the structure found above
for KOH and a minimum was found with the
structure as given in Fig. 6(b) with parameters as
in Table III. We note that the same orientations
were found for the OH ions as in the KOH crys-
tals. The agreement with the experimental dissoci-
ation energy is good (0.7%).

8. Discussion

A summary of the results of the calculations on
the alkali and alkaline-earth hydroxide crystals is
given in Table IV. Listed in this table are the per-
cent errors with respect to the experimental results
for the zero-pressure molar volumes, lattice param-
eters (averaged for each compound), and the disso-
ciation energy. Most of the molar volumes deter-
mined here are larger than the experimental
volumes, while the errors in dissociation energies
are somewhat random. For all cases in which
there is a significant (& 1%) error in the dissocia-

y &r(o&&z

The room temperature of Sr(OH)z has been stud-
ied with x-ray diffraction. Because of the low
scattering of the hydrogen atoms, their positions
were estimated by packing arguments. Iri an in-

Sr(OH)p

FIG. 7. Structure of Sr(OH)2 with heavy-atom posi-
tions from Ref. 40 and hydrogen-atom positions from
the present results. The shaded spheres are the Sr
atoms, the 1arge open spheres are 0 atoms, and the
sma11 open spheres are the H atoms.
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h%( [I f
)

LiOH
NaoH
Mg(OH)2
KOH
Ca(OH)2
RbOH
Sr(OH)2

2.0
1.9
3.7
4.1

1.3

5.9
5.9

11.5
3.6
2.3

—4.1

0.4
—1.4
—3.6

0.2
0.2

—0.7
1.6

TABLE IV. Summary of OH results. The errors
.given are percent deviations from the experimental
values reported in the text. The average of the errors in
the unit-ce11 parameters is b, %( ~1

~
), that of the molar

volume is 5%V, and that of the dissociation energy is
6%a,.

were used. The results for the KOH crystal sug-
gest that use of a better ftt would change the cal-
culated results by about 1%.

For all crystal systems studied, a change in the
dipole moment of the hydroxide ion consistent
with a shift in the electronic density towards the
oxygen atom was observed. These changes in di-

pole moment ranged from about 20 to 40% of the
free-moltx;ule value. Anderson and Santry found
similar changes (about 20%) in the molecular di-

pole moments in solid HF and HCI. using an SCF
perturbatlve approach. These changes in

molecular properties due to the crystal environ-

ment suggest that theories of molecular solids that
depend on gas-phase densities may be significantly
ln error.

VI. SUMMARY AND CONCLUSIONS

tion energy, the errors in energy and volume have
the opposite sign. This anticorrelation is expected,
since if, for example, the short-range forces are
overestimated, the lattice expands (b, V ~0) and the
electrostatic binding energy decreases in size
(dd), & 0). Overall, there is an average error of
5.6% in molar volume, 2.5% in lattice parameters,
and 1.1% in dissociation energy.

There are a number of effects that contribute to
error in the theory. For one thing, dispersion ener-

gies are only partially accounted for by inclusion
of the correlation energy in the GK functional
(Sec. II A). The correlation functional gives in-

correct long-range behavior (exponential instead of
I/R ) and therefore underestimates the attractive
forces. The neglect of these forces is partially can-
celed by a neglect of the vibrational zero-point en-

ergy. Muhlhausen and Gordon' found for cubic
crystals that the neglect of the dispersion energy
gave an error of less than 10 kcal/mole, which was

mostly canceled by the zero-point energy, except
for heavier systems (e.g., MgO and CaO). Other
error comes from the error in the representation in
the electronic density in the calculations. There
are two parts to this error. First, the system of six
external charges in the Hartree-Pock calculation
only partially accounts for the true crystal environ-

ment. Inclusion of repulsive forces and a better
description of the crystal site potential may change
the electronic densities somewhat. Also, for most
of the calculations on the hydroxide crystals, fits
of the stabilized wave functions to about 3—4%

The electron-gas theory for molecular crystals
presented here has been shown to give good agree-
ment with the lattice geometries, hydroxyl orienta-
tions, and dissociation energies of the alkali and
alkaline-earth hydroxides. Partial indusion of the
effects of the crystalline environment on the elec-
tronic distributions, through a simple electrostatic
model, gives great improvement over calculations
with gas-phase free-ion distributions and provides a
way to study the effects of the crystalline environ-
ment on molecular properties. In particular, the
electrostatically induced contraction of the negative
(hydroxide) ionic densities results in contraction of
the theoretical lattice size and an increase in bi.nd-

ing energy, relative to the use of a free-ion wave
function. Additional contraction effects on the
electronic distributions due to Pauli repulsion from
neighboring ions were not considered. Thus, the
model still tends to give unit cells that are slightly
too large. Inclusion of dispersion energies and the
vibrational zero-point motion is expected to im-

prove the results.
The orientations of the hydroxyl molecules in

the alkali and alkaline-earth hydroxides have been
found to be determined mainly by the dipolar elec-
trostatic forces. The site potential due to the other
atoms and molecules tends to increase the dipole
moment of the OH ion relative to the 0 atom,
indicating a shift in electronic density towards the
oxygen atom. This increase in dipole causes in-
creased stabilization of the crystal due to larger
electrostatic forces.
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