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A recent microscopic theory of two-phonon Raman scattering by anomalous phonons

in transition-metal compounds is extended to one-phonon scattering from phonons

associated with a charge density wave (CD%). To lowest order in the CD% distortion

the two-phonon results can be used directly. For layered transition-metal dichalcogenides

the Raman intensities of the CD% modes result mainly from intralayer interactions. To
understand observed intensities in 28-TaSC~ anharmonicity and higher-order Raman

coefficients are included within a Landau theory. For stronger distortions a general

theory is possible, but a simple solution can only be given for a very simple model with a

single conduction band and a single CD& wave vector. The simple solution for the

Raman amplitude can bc made analytic foI' the case of onc dlIncns1on. Some conclus1ons

are also drawn for more general cases.

I. INTRODUCTION

The layered dichalcongenides of the group-V b
transition metals undergo phase transitions of the
generalized charge-density-wave (CDW) type. ' The
CDW distorts the lattice statically by an amount

roughly proportional to the onset temperature for
this phase transition. The 2H polytypes of the
compounds are typically found in normal phases at
room temperature, except for the presence of
anomalously soft LA-like phonons for wave vec-

tors q near 21'M/3 in the basal plane. Raman
data on 2B-TaSe~ show that the strongest room-

temperature peak is a two-phonon overtone of
these modes. The frequency of the peak decreases

as the temperature is decreased, in agreement with

neutron data on the soft phonon. s Below the onset

temperature To 120 K for the CDW——the soft
modes "condense" into CD% phonons, and a new

low-frequency Raman peak appears and eventually

evolves into two peaks of A symmetry and two

peaks of E symmetry at very low temperatures. If
the lattice retains the sam. e space group
(P6&/mme ) that it has in the normal phase, s then

these modes and their symmetries (2A is modes and

2Ezs modes) are just what is expected for vibra-

tions of the commensurate 3aog 3ao CDW super-

lattice studied by Moncton et a/. It has recently

been shown that the commensurate phase of 2H-

TaSe2 is orthorhombic, not hexagonal 6 but no ef-

fect of this has yet been observed in the Raman
spectra.

A s1m1lar strong two-phonon RalTian spectruD1 1s

observed in the normal phase of 2H-NbSeq. ' In
this material the soft LA-like phonons condense at
To ——33 K to form an incommensurate CDW state
w1th 8 superlattlce that 1s approximately
3ao g 3ao. Below To Raman-active CD%' modes
are seen, one each of A and E symmetry. '

Interesting R861an results have also been ob-
tained for the stronger CDW systems found in the
1T polytype, which are in distorted phases already
above room temperature. 1T-TaSq was stud1ed by
Smith et a/. ,"Duffey et a/. , '"' and by Sugai et
a/. ' '"' the most complete study is that of Duffey et
a/. There are three distorted phases. The crystal
forms in the incommensurate 1Ti phase. At 350
K the CD% wave vectors rotate into another in™
commensurate (1Ti) phase, which finally becomes
commensurate at 190—200 K (1T& phase) with a
~13ao Xv 13ao X 13co superlattice containing 169
Ta atoms. The CD% Raman spectrum in the 1T3
phase is extremely rich. ' Similar, but less spectac-
ular, Raman spectra were observed in 1T-
TaSe2, "-"

Hanamura and Nagaosa have discussed two mi-
croscopic mechanisms for the origin of the Raman
scattering from CDW photons. '4 One mechanism
involves a hybridization of the CDW phonon with
Raman-active modes of the normal phase. This
mechanism is often invoked in phenomenological
theories of light scattering at phase transitions'
wherein the order paranmter couples to Raman-
active degrees of freedom in the free energy. The



second mechanism of Hanamura and Nagaosa in-
volves scattering of photons from the electron-hole
pair excitations that accompany the CDW pho-
nons. I show here that this mechanism arises na-
turally from a previously discussed calculation of
two-phonon Raman scattering by the anomalous
phonons of the normal phase. is Such a mechanism
is also often invoked in phenomenological
theories, "which couple the polarizability fluctua-
tion 5n bihnearly to the phonon coordinates u(q):

5Iz= g~' '( q)u( q)II( —q) .

H. PRELIMINARIES
A-. Mean-field, theory

The microscopic mechanism for the Raman ac-
tivity of CDW phonon modes is closely related to
the electronic processes that within a harmonic
mean-field theory (MF 1) explain their "condensa-
tion. " A convenient description is that of Kotani
which wc generalize to three dimensions.

The Hamiltonian has the usual form in units
where A= 1:

H =Ho+H',

After the soft, phonons condense at Tc II ac-
quires a static component u, and a dynamic com-

ponent 5u for selected wave vectors such as qc and
—qo:

u( qo) =u, ( qII)+5u( qo) .
+g Nsjbs~fb~

Tllc fluctuating polarlzability will tlien contain
contributions of the form H'= g «,k+q( V( —q) Iuk)

kdgqj:

&c~,k+scak(bsI+b I) .

and thc intensity of thc I'cslllting flirst-01'dcr {IB5II )
Raman scattering will bc prop«IOBRI to thc
square of II,. Thus an appi'oxilnatc llndcrstandnlg
of the Raman activity of the new CDW phonon
modes can be simply based on om existing mder-
standing of the strong two-phonon spectra in the
normal phase. "

Section H contains a review of the CDW state
Rnd Iiltl'odllccs thc Iiotatlon Used 'to describe it.
Section III describes the microscopic theory of Ra-
man scattering in metals (in part A) and its apph-
cation to the weak CDW case (in part 8), which is
essentially an explicit elaboration of Eq. (3). An
application of the results will be made to 2H-
TRSCI, in Secs. IH C and ID D, where it will be
shown that the observed strong Raman activity of
phase modes results from intralayer anharmomcity
and from higher-order terms in the Raman ampli-
tQde. These afc discnssed %ithj.Q 8 I andaU theorys
the details of which are given in the Appendix.
Section III8 develops the theory for a strong
CDW in a simple case where results can be ob-
tained analytically. Section IIIF completes the
theory for one dimension. The discussion in Sec.
III H draws some general conclusions for more
realistic higher-dimensional strong CDW cases.

Here k Is. Rll clccti'011 wave vector, II Rnd d are
band Indices~ q is a phonon wave vector, j a pho,
non pol~zation index, md bd and c,k me phonon
md el~tron ~ihilation operatoM, rMpmtively
We make the assumption that certain expectation
valQes are QGQzero, QRIQely

&cgk+,c.k &

for a few bands d„u close to the Fermi energy and
for certain wave vectors q. For layered com-
pounds the "primary** values of q are q I, q2, and
qI, three equivalent vectors in the basal plane that
meet at angles of 120'. Harmonics are possible of
the form

where the nj are integers. In the commensurate
case 0Illy R finite Ilunlbcr of q s satisfy Eq. (6)
IIIodido a reciprocal-lattice vector," in the commens-
urate case the number is in6nite. In MFl we keep
H, as given by Eq. (4c), but interpret cjs+sc,k,g
be, Rlld b sj Rs fluctuati0118 away fi'OIB 'tllc cxpcc
tation values in Eq. (5). The latter give to H addi-
tional electron and phonon terms 5H, and 5'..
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5H, = g g(d, k+q i Vj( q—) (ak)(bqf+b ~) cdk+qc, k,
kda qj

I

5' g—g(d k+q i VJ( q} i ak)(cd k+qc k) (bqj+b ~)
qj kda

J

(7a)

(7b}

(b ~)=(b~ ) =—
0 g(dk q i

V—j(q) (ak)(cd« qc,k),
69~

by requiring the vanishing of ([bz, (H~+5H~)]) and ([b z, (H~+5H~)]} . Hence

5H, = g (d, k+q i V, ( —q) i
ak)cd k+qc,k,

kduq

where V, ( —q) is the static potential of the CDW with matrix elements

(d k+qi V( q) i—ak)= g(d k+qi VJ( —q) iak)(bqi+b qj) (9b)

The presence of the mean-field potential V, ( —q) makes the new electronic Green's function off-diagonal

ill k. Tllls fullctloll 18 defllled by
1/T

G,k dk+q. (iso„)=——, e " (T,[ck+qd(I )ck,(0)])dr, (10

where T„ is the time-ordering operator for "time" r, and co„= 21m T, where T is the temperature in energy

units and n is an integer. G obeys the equation

1
Gek;d, k+q( ~n}= 5q05de+ QGe', k+q",d, k+q(™n}&k+qe

i Ve( —q ) eke)iso„—E,a+Eo e I
I

(10b)

where 5qo and 5d, are Kronecker deltas and Eo is the chemical potential. The self-consistency condition fol-

lows by Illalllpulatlllg Eq. (10a)i

&dk q «&= ~ dk k('

To lowest order in V, me have

(ai
Gek, ek(™n)

l Nn Eek +SO

We find to first order in V, for q+0
(d,k+q i V, ( —q) i

ek)
Gek;d, k+q(lain )= (im„—E,k+Eo}(icon Ed k+q+Eo }—

(12a)

(12b)

Uiing Eq. (12b), we perform the sum over n in Eq. (11},converting it to a contour integral in the usual way.

The result is

e e ~ t I

&Cd k C'k &(I)=—
&~ k-q —&',k1

where expressions of the form fd k denote Fermi functions

f (e(xdk xo)IT
1 )

1

where T is the temperature in energy units. When Eq. (13a) is substituted in Eq. (8), which is then substi-

tuted in Eq. (9b), we obtain a homogeneous linear equation for the matrix elements of V, ( —q ). A nonzero

solution ex1sts %'hen
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2
det 5" + 0 IIJJ{q,co=0) =0,

Cl

(14)

(ck
~ VJ ( q) —

~
d, k q)(—d, k q~ —VJ(+q)

~
ck)(flak q f k—)

lljy(q, a)) = g
k4(;d Ed, k —q +ok

is the phonon self-energy.
Equation (14) determines the phase-transition

temperature in mean-field theory. It is equivalent
to the condition that in the high-temperature phase
there exists a phonon of wave vector q and renor-
malized frequency equal to zero. It is expected
that as the temperature is lowered Eq. (14) is satis-

fied 6rst for a q equal to any of the primary wave

vectors, q; in Eq. (6).

S. StRtic distortion

From the general expression for the displace-
ment uiIii(n) in the Pth Cartesian direction of the
A,th atom in the nth unit cell in layer 1 one finds

»'(qj)(&b„)+&b' )}
apl( q)=

V 2NMiaP@

The sum in Eq. (16a) is over half of all the q's
that contribute to the distortion such that the pair
( q, —q ) occurs only once. The q's of interest he
in the basal plane, and we assume that R„does
also; its origin will be at a metal-atom site. In Eq.
(16b) the e ~i(qj) are components of the phonon
eigenvector for mode (qj), Mi is the mass of the
atoms on sublattice A,, and N is the number of.unit
cells 2n the crystal.

For I T-type materials there is a single layer per
unit cell in the undistorted phase. We drop the in-
dex I in Eqs. (16a) and (16b) and write

eip{q)=eigq)e (16c)
~ +

+ei,pi{ q)*e ' "1 (16a) where the amplitudes ei p(q) and phases Pi~ are
real. One may invert Eqs. (16b) and (16c) to ob-
talil &hei) + &5 ej ) aild tlmn obtain tile matrix
elements of the static potential V, ( —q):

{d,k+q
~

V, ( q)
~
ak)= i v —N g(d, k+q ) VJ( q)

~

ak)+2coq—zg QMiei„p(q)e"I'(qj)*e
PA,

(17a)

The CD% itself if often described by parameters that represent Fourier components of electronic charge
density. ' Ionic displacements are then essentially given by the gradient of the local charge density. This
reduces the number of parameters in Eq. (17a) to those for an LA phonon. Thus Eq. (17a) may be approxi-
Qlated by

(d,k+q
~

Vg( —q)
~
ak) = i V 2¹iqM~ (d, k+q [ VL~( —q) (

ak)ee'&

where e and ({}are close to ei,p and Pi,p for A, and P corresponding to displacements of the metal atom along
q. M~ is an effective mass that is not too different from the metal-atom mass.

The undistorted structure of 28-TaSe2 has two TaSe2 layers per unit cell with a center of inversion half-
way between the two Ta atoms. Lattice vectors R„ in the basal plane will locate these centers of inversion.
The layers will be labeled by l =1,2. The inversion operation takes site A, in layer 1 into site A, in layer 2.
Equation (16c) Ilow becorlies

eig{q)=eQq) exptif{ —I)'({'ipi{q)+40)I .
Inversion symmetry is maintained in the distorted phase if $0——+ir/2 and if

Pili(q)=Pi@(q)+2q d, mod(2ir),
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where the inversion center is now at R„=d. Now introduce three nearest-neighbor lattice vectors in the
basal plane, ai, aq, and a3, making angles of 120' with one another, and making 30' angles with qi, qq, and

q3, respectively, so that

qi'ate+i =0 ai'qi =2m/3 .

Then if d is written

1=am;a;,
where m; =0, 1,2, we find for Eq. (19a)

(19b)

(19c)

/imari(qi) =Pi~(qi)+4m(mi —m3)/3, mod(2m. )+c.p. (19d)

In the spirit of Eq. (17b) we now consider a phonon "basis" consisting of LA modes in each layer. These
will be assumed to be degenerate with frequency co&. This gives

(d, k+q
~

V( —q) ~ak)= +2Xa—PqM ee g(d, k+q
~

Vi( —q) ~ak)exp[i( —1)gqi],
I

(20)

where Vi( —q) is the electron-phonon perturbation
for an LA mode in layer l.

We keep a q dependence and an l dependence to
the phases Psi in Eq. (20), as allowed by the most
general Landau theory allowed by symmetry,
namely that of Jacobs and Walker. Recent
electron-diffraction experiments performed on a
cold stage in an electron microscope by Pung et
al. show that the low-temperature commensurate
CDW state of 2H-TaSei is orthorhombic rather
than hexagonal, as thought previously. The space
group is either Cmc2i or Cmcm, which is favored

I

and which has a center of inversion. Recent
theoretical workz6 —zs has shown that Cmcm struc-
tures can be obtained for certain values of the Lan-

dau parameters. Such theories can also explain the
existence of the "striped" phase first seen in the x-

ray diffraction studies of Fleming et al. 9 and then

in electron microscope images by Chen et al. and

by Fung et a/. This phase has one commensurate

and two incommensurate wave vectors. These
theories also seem able to explain the reentrant na-

ture of the pressure dependence of the commensu-

rate states discovered by McWhan et al. '

"2
2& 2)

bki

(a) (a)

21

bki

(b)

FIG. 1. Four-vertex functions for Raman scattering.

Straight lines represent electron Green's functions. Wig-

gly lines represent phonon Green's functions. At ver-

tices 1 and 4 are matrix elements of the operator p; and

at vertices 2 and 3 are matrix elements of the operator

p„where pI and p, are projections of the momentum

along polarization directions for incident and scattered

photons, respectively.

(c)
FIG. 2. Four different contributions to the left-hand

electron loop of Fig. 1(b) for a CDW phonon. At the
right-hand vertex is a matrix element of VJ (q). The
vertical line (bk) represents a Green's function for an
excited state assumed to be unaffected by the CDW.
The line labeled ck represents the diagonal electron
Green's function G,k,I, . Those with two labels represent
nondiagonal Green's function, e.g., ck ~d, k +q denotes
the Green's function Gpk. p k+q.
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III. RAMAN SCATTERING CALCULATION
A. General

It is convenient to use a Green's-function
method that describes Raman scattering as essen-
tially the imaginary part of an irreducible four-
vertex function. 3 Diagrams similar to Fig. 1(a)
were previously used to describe two-phonon Ra-
man scattering. ' One-phonon scattering is
described by Fig. 1(b).33 In the case of interest
here, the electron lines and electron-phonon and
electron-photon matrix elements are those of the
distorted CDW state. Some progress has been
made in calculating the relevant parameters, and
a direct calculation of the electron loops in Fig.

I

1(b) may be possible.
We choose another approach that is formally

equivalent to a direct calculation but allows for a
perturbation expansion in the static CD% potential
V, . Our approach uses normal-state electron and
phonon basis functions. This means that the ma-
trix elements at the electron-photon and electron-
phonon vertices are those of the undistorted state.
The Green's functions are no longer diagonal in
wave vector. The electron Green's functions obey
Eqs. (10a) and (10b).

The electron-phonon interaction, H' of Eq. (4c),
mixes wave vectors +q in the phonon Green's
function,

Dqjqj(ico ) (((bqj+b qj ) (—bq~j'+'b qj)8—
= —J e " (T,[bqy(r)+b q J (r) ][bqj(0) +b qj(0)])dq .

0
(21)

For q equal to one of the primary qj, examination of the Dyson equation for D reveals that its off-
diagonal elements are strong only when q'=+ q in Eq. (21).

The important contributions to the four-vertex function in Fig. 1(b) take the form

&Lqj'+e' qi'L'q'i' ~

qq'

JJ

where

(22a)

(22b)

(ck
~ p, ~

bk)(bk
~ p; ~

ck) (ck
~ p; ~

bk)(bk
~ p, ~

ck)
L~ T-— +

(ico„+ico„E&k+Ep) —(icoz+ico, ico„Esl, +—Eo)—

(a) (b) (c) (qIt)
LqJ Lqj +Lqj +LqJ +LqJ

and where Lz', Lz'', Lqj", and Lqj"'' are represented by the diagrams in Figs. 2(a), 2(b), 2(c) and 2(d), respec-
tively. A similar decomposition holds for Lz .

We assume that band b couples neither to the phonons nor to V, ; this is consistent with the assumption
made earlier for two-phonon Raman scattering. ' A similar assumption was made by Hanamura and
Nagaosa. ' The Matsubara frequencies ico& and icoz+ic—o, are to be added to the electron loop at the ver-
tices 1 and 2, where co&——2m Tp, co, =2m.Tt, and where p and t are integers. Introducing co„=2m.Tn, where n
is an integer, we find

X [G,k.o k+q(ico„+ico, )(ck
~

V~'(q)
~
d, k+q)G, k,k(ico„)

+G,k,k(ico„+ico, )(d,k —q ~
Vz(q) ~ck)Gok q, ,k(ico„)], (23)

where p; =p e; and p, =p e„where Ecj is the chemical potential, and where E&l, +ED is the energy of band
b, wave vector k.

B. Weak CDW

Fo«weak V„we may use Eqs. (12a) and (12b) in Eq. (23). The result is the same as that for two-
phonon Raman scattering, ' where the diagrams are those of Fig. 5 of Ref. 16 with two changes: at vertex
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j, where there was a matrix element of VJ( —q}, there is now a matrix element of V, ( —q), and in the energy
denominators the phonon frequency ~J, e is replaced by zero.

We may therefore use the results of Ref. 16 in evaluating the sum over n in Eq. (23). We make the ap-
proximation that terms with double photon resonances dominate, which leads to Eq. (37}of Ref. 16 for
two-phonon scattering. We also make the adiabatic, or frozen phonon, approximation. We also neglect spin

effects and use time reversal arguments' to obtain [dropping exphcit reference to the wave vector k, and us-

ing d p to denote (d, k+q)]

Lqj
———QP„(ck)(c [ VJ(q) ( d+)(d+

~
V, ( —q) [c)

kcd 1+ c
(24a)

P «k)= X [«IP. Ib}(b IP lc}+«IP lb}(b IP. Ic)]

&&[s E.—~i i)'—s) '+«» E.—+rot+its) ']

with co~ equal to the average of incident and scattered photon frequencies. We may also write

,= gP;, (ck)(c
( V, (q) Id+)(d+ ( VJ( q} )c) —

E
fu+ —f.

ked d+ c

For 1T-type samples where Eq. (17b) holds for a single conduction band (c), we have

Lej, ~Ne'&(eluo)Na(q, LA),

{24c)

(25a)

u 0 ——(2co&M~ )

is a root-mean-square amplitude for the LA mode, and where ¹„obeys

(25b)

N;g (q, LA) = —gag(ck} ( (c
( Vt A(q)

~

c y })

2

k C+

We also have

, v Ne '~(—e/uo)Na(q, LA) .

(25c)

Note that if P„(ck) can be treated as a constant, N~, (q, I.A) is proportional to the phonon self-energy

II« t A(q, co =0) of Eq. {15). This idea is developed more fully in Ref. 16. Here the self-energy II is that of
a metastable normal state at temperature T ~ To. Note also that ¹,(q, LA)/v 2 equals

M, '( —q, LA, O;q, LA, O}, the matrix element for the two-LA-phonon overtone scattering in Eq. (37) of Ref.
16.

For each primary q we make a umtary transformation to b„and b), with phonon annihilation operators

representing amplitude and phase fluctuations:

vZb =be '~~b e'~

iv 2b) =b,e '& b, e'& . -—
The Raman intensity is then proportional to the imaginary part as ice, ~coc+ie of

(26b)

P (ice, )= N(eluo) g¹,(—q, LA)N;, (q', LA)*Dv+ (iso, ),

D„„(i~,)=(([b'„+(b'av')t];[(b'„)'+b'„]))
—= —J e ' (T,[b'„(r)yb'„(r)t][b'„(0)tabb'„(0}])dr .
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Anharmonic coupling will mix the bs (and b)' for the thrm different primary q's and produce amplitude
and phase modes of A ~s and Ez symmetry. Introducing the anmhilation operators bv for the A ~s mode and

bv
' and bv for the doubly degenerate Es mode, we find that the transformations are

bv ——~ bv+q3 j A 2b$2

bxl 1
I E2

7j

bxl 1 E2

{29a)

(29c)

Then Eq. (27) becomes

W(iM, )= —N{s/Qc) — g'¹„(q) D „y , D„„—~2Nfg(q3) Na(q—/)-¹,(qz)
~

+ ~Dvv
'

INa(qi) —NN{q2) I' (30a)

Since the E modes are degenerate, their Green's functions equal a common D„„. Equation (30a) can then be
written after use of symmetry arguments,

3"(,)=——,N( / ) I[JN (q, )+N (q, ) [
D"„"„+fN {q,} Ã~(q—, )(~D ]{;,)

+ IN (qi) —N~(qi) I'D;; I
e &&e. I'I

(3 la)

~h~~e e; and e, are photon polarization vectors lying in the basal plane and where N (q, ) and N (q, ) are
calculated with the x axis parallel to the primary q vector q].

Inversion symmetry holds in each layer of the IT polytypes. Since amplitude and phase modes have op-
posite parity, the amplitude-mode Green's functions D„„and Dvs appearing in Eq. (30b) will show no mix-
ing from phase modes, even with anharmonicity present. If damping is neglected, the imaginary parts of
D„"s and Dvz for ice, ~coo+i@ will give 2mst AB(coo co"„}a—nd 2cost A5(F00 —aP), respectively.

For 2H polytypes we use Eq. (20) in Eqs. (24a} and (24c) to obtain

L+s, , ~N {e/uo)e 'fe 'N;, (q, 1 1 )+e 'N~(q, 12}],

I,+ ———,V N(e/uo)e [e 'N~(q, 21)+e ~Ni, (q, 22)], (31b)

Ni, (q, /I')= —QP~(ck)(c
i V~(q) id+)(d+

i Vj( q) jc)—fa+ —f.
kid

,
&~+—&.

The inversion symmetry of the 2H structure may be used to show that

N„(q, 1 1 )=N~{q,22)

(31c)

(31d)

¹„{q,12)=N;, (q,21) .
Equation (22a) says that the four-vertex function may be written in the form

~=-(&g;g »,
where

(32b)Q= g'[Lsd&rI+b si)+L qI{&-vI+bvi-)I . -
ll

We introduce operators for amplitude (bsvl ) and phase modes (b)I) for each layer by the transformations:
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—&($0—P
e '

bq, ,——(b—qvi i—b)i },
—i(go+/ )

e '
bq, 2——(bq»+ib)g ),

i($0-Qq )
'

b-q, =
2 (bvi+'b)i »

&($0+Pq )

e 'b
q,

——2{bq» —ib)2) .

(33b)

(33c)

(33d)

This gives
' 1/2

NQ=—
2

' z IN. (q, »}(bqvi+b„''i+bq»+b„'2)+N;, (q, »}1{bqi+bJ~i+bq»+b'„2) cos(cqi+sq2}
Qo

—(b)i + b g+b)t+b)z }»n((I}qi+Nq2}1 I ~

Interlayer electronic couplings, which produce a non zero value for N„(q, 12), are seen from Eq. (34) to
make the phase mode operators b), and b)q Raman-active. %'e can estimate the magnitude of

~
N;, (q, 1 1)

~

by comparing Eq. (31c) with Eq. (15). Thus

N@(q, l2)

N;g(q, 1 1 )

II»(q, ~=0) 1 (a~'),„
IIii(q, a) =0) 2 (Qr02)„

In Eq. (35a) lli2 is the interlayer term in the phonon self-energy owing to the d electrons, and IIii is the in-

tralayer term in the self-energy. ge estimate
~
lli2

~
by assuming that it, is solely responsible for the ob-

served interlayer phonon splitting {hco )it, of (24 cm '}, and we estimate
~
IIii

~
to be ()km~), -(96 cm ')2

from the size of the anomaly in the room-temperature dispersion curve. Thus we estimate

Ng(q, 12) -0.03,
Ni, (q, 1 1 )

g'N (q}(bqvi+bvi. +b»+hvar, »
Qo

and find that the intrinsic Raman activity of the phase modes, as represented by the sin{Pqi+Pq2) terms in

Eq. (34) would give an intensity 0.1% or less of that from the amplitude modes. Thus it is probably

correct to approximately Q in Eq. (34) by
' 1/2

Q=— (36a
2

N;g(q) =Na(q, 1 1), (36b)

as given by Eq. (31c}for a single layer. Transformations like Eqs. (29a} and (29c) may then be made to A

and E amphtude-mode coordinates for each layer. Equation (36a) then becomes

IN'(qi }+N {q2)+N'{q3}l(bvi+bvi +b»+bvz )
Qo V3

+ f2'(q3) N .{qi} N'{q—2}'j{-bvi'+—bvi' +bvz+b» }
6

+ - tN {qi}—N;, (q2}1(b&i'+b~»'+b;~'+b~»' }o'2
(37)
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C. Stronger CD' effects: Anharmonicity

How then do we explain the experimental obser-
vation of four strong CDW phonon modes (2A

plus 2E) at low telnperatures in 2H-TaSCI'l3'3

Third- and higher-order anharmonic couplings act
within each layer to split each triply degenerate
set of modes into A and E amplitude modes and A

and E phase modes. Each layer lacks inversion
symmetry. These perturbations will also couple E
amplitude modes with E phase modes. In the Ap-
pendix it is shown using the Landau theory of
Jacobs and Walker that the terms that couple E
amplitude and E phase modes are comparable with
those that give the splitting between amplitude and
phase modes. No such coupling occurs for A

modes. Furthermore, the ratio of coupling to split-
ting [tan5 in Eq. (A10)] remains finite as the CDW
amplitude c' tends to zero. Since this mixing of
modes of opposite parity is large, the new coupled
modes will both be rather strongly Raman-active
but the stronger modes will be those with the
gI'cRtcf amplitude-mode chafactcI, which wc
dcnotc Rmplltudcllke.

Introducing annihilation operators Burl md B~yl

for amplitudelike and phaselike modes of symme-
try y=EI,EI in layer I, we can write the transfor-
mation in the form

B~g, —(B~pi +B~PI ) . (38d)
1

If the inversion center is at d =0 [see Eqs. (19a),
(19c) and (19d)] the resulting symmetry is that of
the high-temperature phase, P63(D6s), but if d+0,
the structure is orthorhombic (DIs). Suppose d is
perpendicular to q3. Then the E2 modes of a sin-

gle layer become As plus A„of D2s, the E 1 modes
become Bis plus B», and the 3 modes (actually A I

11lodcs) bccoIIic As pills Ag.
In thc D2p case tlm intcflaycf coupling will causc-

HEI to differ slightly from HEI in Eqs. (38a) and
(38b). This coupling will also cause weak mixing
of B„, with B"„,and of B&, with B&,. If the
latter mixing is neglected, the intensity of the Ra-
man scattering from the E modes can be obtained
from the square modulus of the coefficients of Bvr,
and B~r, after Eqs. (38a) —(38d) are substituted in

Eq. (37). The orthorhombic phase shows multiple
twinning of a scale of 1 pm or less. The resulting
expression should therefore be averaged over all
permutations of qi, q3, and q3 for fixed photon
polarization vectors e; and e, . When this is done,
wc rccovcI' Eq. (30b) with Dvv rcPlaccd by

E1E1 ~ 2 E1E1(cos gs ID&z&z +sill 8s IDyzyz

+cos 8@ID&,„, +sin OE2D&, &, ) . (39)

b I„', = cosg+„I si»p—yl, (38a)

(38b)

y 1
Bvs, s =

~2 (Bsi+Bv2) (38c)

where 8@I
——8@3——5l2. This is the reverse

transformation to that in Eqs. (Al lc) and (Al ld).
Thus far the degeneracy of E 1 and E2 is main-
tained.

We now consider the effects of the weak inter-
layer coupling. Its static effect is extremely impor-
tant. As recent theoretical work has shown, it
causes the reentrant lock-in transition under pres-
sure, ' and its competition with intralayer terms
causes the stripes and textures in the incommensu-
rate states. ' ' A dynamical effect of interlayer
coupling is the splitting of the degeneracy of CDW
modes in layers 1 and 2. ' lf the low-temperature
phase has inversion symmetry, the number of
Raman-active modes does not change, but for
y=A, E j., and E2 there is a splitting i.nto Raman-
active symmetric (s) and infrared-active antisym-
metric (a) states whose annihilation operators obey

D. Higher-order Raman coefficients

The above treatment of Raman scattering from a
weak CDW is inconsistent in the following sense.
Whereas we essentially expanded the Raman am-

plitude to second order in CD% phonon coordi-
nates and took terms bilinear in static and dynamic
displacements, it was necessary to consider third-
and fourth-order terms in the free energy in order
to discuss properly the CDW lattice dynamics. If
third- and fourth-order terms are important for the
free energy, they should also be important for the
Raman amplitude. Just as the factor that multi-

plies P;, in Eqs. (25c) or (31c) integrates to give the
phonon self-energy [Eq. (15)], so that the Raman
amplitude scales with the self-energy, so do the
thild- of highcf-ofdcf terms in thc intcgfal fof thc
Raman amplitude that have two-photon energy
denominators scale with the respective higher-order
electron-mediated, higher-order anharmonic-

coupling coefficients. This was shown explicitly in
Ref. 16 for the third-order case. Thus to each
term in the Landau expansion of the free energy
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there should correspond a term in the amplitude
for scattering of a photon polarized along the i
direction in the basal plane into a photon polarized
along the s direction in the plane. The second-

order intralayer coefficient 2+85 of the Landau

expansion of the free energy Eq. (A lb) corresponds

to

where

and

~o
a~ = (b„,+b„, ),

e S

(b»+b«).A

e S

(41a)

(41b)

We expect an approximate proportionality between

~D' ~e 'and ~D ~e of Eq. (A3a). Similar

expressions may be written for the isotropic parts

of the Raman amplitude associated with the 6, X,
E, and M terms of the free energy; the lowest-order

contribution is from D-like and E-like terms and is

proportional to e . Such terms are necessary to ex-

plain the nonzero intensity of the A phase mode.

They will also make an important additional con-

tribution to the Raman amplitude from the A am-

plitude mode, and their anisotropic counterparts

will make important additional contributions to the

Raman amplitude from the E amplitude and phase

modes. Such expressions can be explicitly worked

out, but they will have far too many parameters to
be useful in data analysis.

The above considerations about intensity of the

coupled amplitude and phase modes suggest that

the data of Refs. 3 and 5 on 28-TaSe2 at low tem-

Ngg(q, 1 1)=¹g,(q, 22)

of Eq. (31c), and the interlayer coeffiicent I. of Eq.
(Alc) corresponds to N~(q, 12). To the term
6

~ P~z ~

in the free energy there should be a Ra-
man amplitude 6;,(j)

~ 1(IJ ~, where the tensor

G„(j)has principal axis along qj &
I Ajflj+I I

'
should correspond to

&'(1+2)
I Pljflj+ i I

'

where the tensor Ez(j+2) has a principal axis
along q~+2. In each case we expand to first order
in the 5$~~. The D term produces only an isotropic
tensor and will lead to a Raman amplitude for
layer 1 of the form Qn5;„where

QD = —ID'
I
e l cos(l))D+2~m/3+3&)v 3&q

—sin(lI)D+ 2n m /3+ 38)~3' ],

perature be interpreted as follows: The 80-cm ' A

peak and the 50-cm ' E peak correspond to ampli-
tudelike modes, and the 40-cm ' A peak and the
63-cm ' E peaks correspond to the phaselike
modes. The recent data of Sugai et al. ' ' ' sup-

port this assignment, which is different from the
original one made by Holy et al. ; they assigned
the higher-frequency mode of each symmetry to
the amplitude mode. Sooryakumar et al. and

Sugai et al. ' ' ' studied the evolution of the
CD% Raman modes as the temperature is raised.
There is considerable broadening and some soften-

ing. The A modes seem to merge together, and
perhaps the E modes also, as the transition tem-
perature to the striped phase is approached from

below. There is a suggestion that the A phase
mode loses intensity more rapidly with rising tem-

perature than do the other modes' '"' but more
precise data are needed to reach a firm conclusion.
(See note added in proof. )

E. Stmng COW

The electronic Green's function 6 that appears
in Eq. (23) cannot be approximated by Eqs. (12a),
and (12b) for a strong static perturbation V, (q). A
solution for Gk k+q can be obtained for a single
electronic band coupled to a single primary q.
Then k will couple only to k+ q if k is in the
"left" half of the Brillouin zone near —q/2. The
approximation is exact if 2q is a reciprocal-lattice
vector.

For simplicity we let

v, =(k+q
~
v,A( —q) ~k) (42a)

be real and independent of k, and set the phase lI)0

of the CDW equal to zero. Then by Eqs. (17b)
and (25b) we have

v X (e/uc ) Vq
=5 .

Equation (10b) has the solutions

&~n —~k+q
Gkk(ice„) = 6' 1COll

l 0~ —Ek
Gk+q k+q (~ ~n ) = 6' lCOll )

(42b)

(43a)

(43b)

6 , kk(+~qll~) Gk+q, k(&~ll ) ~/~(&~ll ) ~

(43c)

&(iso„)=(iso„Ek)(iso„Ek+q)——b, . (43d—)

This can also be written
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B'(ENH )=(imH —El )((NH E—l ) I

E, .z =El'(k, k+q)

Ek+Ek+ ' E& -E&+s
ASM' '+ — +~'

2

statcL Note tllat El is greater than E& by at least
the CD% "gap" 25.

c evaluate thc ~«gy Esk and the momentum
nlatrix elements in Eq. (23) for k =yq/2. e as
sume that these matrix elements are real. %C
rcwrltc 'tllc sccolld tcrlll ln the second factor of Fq.
(23) by ma&ing the replacement of lt y q for k.
This gives (dropping the phonon polarization indexjbut keeping the band index b of the excited elec-
'tronic s'tate)

I.,"'+I.,"'=L '",+I-'",=V~ g g(qt2 I Jp; I »e/»(b e/2 I Ip. I
e/'»

2imH —El —. Et+ 1msx&g S (iNH+im()8 ((NH)((NH Es,q/1 &N)s Eo)

The sum over n in Eq. (45) can be written as
two t«lns of the fo((m

a=re
(im„QNim—„a)(im—„c)(im—, d)—

-2(fl ft)-
(El E2 )(b E )&

(48b)

In one of them a =El, @=ED im,„and—
Q=E) i,m-In th.e other term iL~E)„
c=El im„and —g =El. Il, as given by Eq. (46),
can then be evaluannl with the result

fs f»
(Q —((()(b —g, Nk —4 )

(f» f,)(a+c —b . iI.)——+-
(b —a)(b —g, )(jjf—tt Nd —c)

Hele f&„f», and f, (=f ) are Fermi functions for
the enclgies b, a), and C. Thc Matsubam freQUcn-
cles im~ and lm( do not colltrlblltc 'to f(s» f»I slid
f,. Extracting the part of Eq. (47a) with two pho-
ton energy denominators (Fz) gives a total contri-
bution from both F terms of

I
z +

(b —E) ) (b —Ez)

In Eq. (4Sc) ys is the width of state (b,qf2). P.
similar expression holds for

I (8+I (») I (()) +L (»)

Thus

Ls =—Vs''I g E E
wh«e E(,z obey Eq. (44b) and where

~a=2X(e/2li l »«2)(»eel J. I e/»

(Es E- 'N( i—ra) '— —

where fl and fz are the Fermi functions

(
(I) 1 Eol/T I)— Upon comparison of Eqs. (49a) and (49b) with

the one-band weak CD% result Eqs. (25a)-(25d)
and (24b) we see that the main change is the sub-
stitution of
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f1 f-z

E1

(49d)

In the case of the 2H layered compounds we

must use a two-band, two-phonon-mode model,
and there are four coupled components of the elec-

tron Green's function, but only two of them are

strongly coupled if interlayer interactions are weak.

F. The case of one dimension

Within mean-field theory the self-consistency

condition Eq. (11) gives, using Eqs. (9b), (8), and

(42a) and (42b) the "gap" equation

(50a)

Equations (50)—(52) may also describe Raman
scattering in systems such as
KiPt(CN)4 Brp 1 3H20 (known as KCP) where
onc-dimensional Fermi-surface Qcst1ng 1s poss1-

ble even in a three-dimensional material. A
low-frequency Raman study by Steigmeier er al
found a line of A 1 symmetry at about 44 cin
This was interpreted ' as the amplitude mode of
the CD% associated with an incomplete distortion
having a new unit cell 2a &(2a && 6.7 (c/2), where
e/2 is the average sparing between Pt atoms along
the "one-dimensional" chains. " There is no long-

range order transverse to the c axis; one should
think of nearly frozen regions of fluctuations into
a distorted phase from which CDW phonon modes
can bc obscrvcd.

The band structure of KCP along the Pt chain
directions is s-like and free-electron-like near the
Fermi energy, and the resulting phonon softening
in the normal phase has a very sharp Kohn anom"

aly. Thus the CD& is of the original Peierls type
and not one associated with narrow d band as with
the transition-model dicha1cogenides.

In onc dimension th1s 18 BCS-like and g1vcs fol
hnear E(k) near the Fermi energy:

b(T=O) =hp Ese——

where Es (assumed &pkp) 18 'the width of the band

and where

(50c)

Integrating Eq. (49a) in the one-dimensional case

g1VCS

ln(Es/5),
fi-fz
E1—Eg Eg

(51a)

(51b)

hpPavN pPq

ig
(52)

If the mean-field gap equation (50a) holds, then for
any dimension

G. Roje of anhazIBonicltJJ foI' strong CD& case

McMillan has argued that a BCS-like gap equa-
t1011 1s 1nvalid 111 tile tlansitloil-Iiletal d1cllal-

cogenides, where phonons over a large region of q
space are soft. ' Anharmonic coupling among
these modes then leads to a phonon contribution to
the entropy that dominates the electronic contribu-
tion (due to excitations across the CDW gap) im-

plicit in Eq. (50a). A simplified version of
NcMillan's argument has been given by Ingles-
fleld, who points out that quartic anharmonicity
will stabilize the normal phase to temperatures
below that given by the harmonic mean-fiel
theory [see Eq. (14)]. McMillan performed numer-
ical calculations for 2H-TaSe2, ' taking anharmon-
ic parameters from experiment and found a value
for the gap b, about 6 times larger than implied by

Eq. (50b). He did not use the correct Landau
parameterization allowed by symmetry and
thus his numerical results may be in error.

The anharmonic phonon entropy model ' was
inspired in part by infrared data that suggest a
large CDW gap 2hp of about 0.25 eV for 2H-
TaS@. Other optical data and calculations sup-

port a gap of this magnitude but this interpreta-
tion of the data has not been universally accepted. 6

If anharmonicity does increase hp, Eq. (51b)
shows that in one dimension there will be a rela-
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tively weak (logarithmic) decrease in the Raman
amplitude. In higher dimensions this decrease will
be even weaker than logarithmic.

H. Remark about 1Tpolytypes

The present theory %ill be inadequate to describe
the very strong distortions found in the 1T
transition-metal dichalcogenides. The commensu-
rate (1T3 ) phase of 1T-TaS2 is a semiconductor. '

An interesting model for this state has been pro-
posed by Fazekas and Tosatti. 7 They argue that
12 of the 13 conduction electrons in each distorted
13-atom cluster will be paired in covalent bonds.
The remaining electron undergoes localization
when the 1T& phase is formed, giving a Mott insu-
lator On.e should then regard the cluster as a
quasimolecule, find its normal vibrational modes,
and their coupling to the interband electroQic excl-
tations of the cluster. Such an approach is needed
to explain the multiplicity of sharp, strong Raman
lines observed in this phase. ' In the higher-
temperature incommensurate phases the strongest
feature is a single, rather broad band, ' and the
calculation of the last section might serve as the
start for a micmscopic theory.

energy in a metastable normal state at temperature
T & T0, and only amplitude modes will have ap-
preciable intensity. In 2H-TaSe2 the observed,
rather strong intensity of phase modes is due to
third- and fourth-order intralayer anharmonicity
and closely related second- and third-order terms
in the Raman amplitude. In strongex CD% sys-
tems an increasing CD% gap increases the denomi-
nators of the scattering smphtudes and therefore
reduces them somewhat, but qualitative results
should be similar to the vveak CD% case. For ul-

trastrong CDW's which pmduce a metal-insulator
transition, the pxesent theory @ril be inadequate.¹teadded in proof. In a recent paper N.
Nagaosa and E. Hanamura I'Solid State Commun.
41, 809 (1982)] have also discussed Raman scatter-
ing in 28-TaSeq and 28-Nbse2 using a Landau
theory with third-order coupling coefficients. Al-
though they used an earlier version of the Landau
theory ' and assumed an hexagonal commensurate
state, they reached some of the same conclusions
reached here, namely that intralayer anharmonicity
hybridizes E amplitude and E phase modes but not
the corresponding A modes.

IV. CONCLUSIONS

In the weak CDW state the part of the Raman
amplitude that is linear in the CDW order parame-
ter is closely related to the intralayer phonon self-

The author thanks W. L. McMillan for many
helpful discussions and N. Nagaosa for a useful
conversation. This research was supported by the
National Science Foundation under the MRL
Grant DMR-80-20250.

The free energy per unit area per two-layer section may be written

E=F)+E2+E)2,
where the free energy for layer / is

(Ala)

2

Fg gA IgijI——+8 i +8 Plj +C. a W'ij +6
I Aj I

'+&
I AgA, +i I

'

Re( 3 +lfllA2413+~lglj+Mlkjllj+lflj+2) (Alb)

and the interlayer term is

Fi2 ——2Re+Lfijp2j . (Alc)

the CDW displacements in Eq. (Alb) as pmpor-
tional to

l q R
~aAi&

If the phase $0 in Eq. (18) is n'/2, we may ta—ke
Thus we may assume that the equilibrium order
parameters obey
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4; =«xpt i—ki(qj }]

42 =eexp[i02(q )] .

The phases obey

Pi(qj )=2nnj /. 3+8,
$2(qi) =2irnj l3+8,

(A2a)

(A2c)

(A3a)

etc. Invariance of E under the inversion operation,
which sends pij into $2J, requires that

D2 ——D), (A3

etc. F+', the zero-order value for E is obtained by

substituting Eqs. (A2) into Eqs. (A3). For layer 1

we obtain

FP'= 3(3+85 )e +3(G+E)e4

+3e ReM eRe(D+3E—), (A4a)

M= (M ( exp[i( —Psi+2irm/3)],

D= (D ( exp[ —i(PD+2mm/3+38)], (A4c)

E= fE /exp[ i(PE+—38}7,

where nj and nj are integers In. Eq. (Alb), Di, Ei,
and MI are complex. We write

Di ——{D /e

The equilibrium value of m will require
knowledge of the Landau parameters ~M (, )D ),
/sr, and Pn. Available Se NMR results of Suits
et al." and unpublished ' 'Ta Mossbauer data by
Pfeiffer favor m =m =1. The values of n& and

n& will then be those that minimize the zero-order
interlayer term

FI", = 2 ~L,
~

2
(A6c)

(n in2ns) =(100),

(nin2ni) =(010) .

This state, denoted by McMillan as ppl(100;010),
has inversion symmetry about the midpoint be-
tween two Ta atoms at d = a2+ a3 ( — ai),
which is parallel to q2 —q i. It therefore obeys
Eqs. (19a)—(19d}with

(mim2m & )=(011) .

The orthorhombic axes are along d and q&.
To Eqs. (A2a) and (A2b) we now add the fluc-

tuations

Xgc os[ 28+2m. ( nJ +n }l3 PL —] .

McMillan has argued that PL, -0 and that 8 can be
selected so that Ei2' is minimized for m = 1, m =1
states with parameters such as

with

m =n~+n2+n3,

modulo 3. We also introduce

(A4e)

5)ij (ai i P~ )e e——xp[ —i Pi (qj )], —

5gz& (a~+iP~ )ee——xp[ig2(.q&')] .

(ASa)

(ASb)

In the notation of Eqs. {33)we have, for instance,

QJ
—— (bvi +bvi ) for q =qj,

e
(ASc)

Im(D+ 3E)=0, (A5a)

which is independent of the amplitude e. We can
then write

Re(D+ 3E)=I', {A5b)

find that E~2o~ is given b
m replaced by m in EqL (A4b) and (A4c).

We neglect F~q' and minimize I'~ ' with respect
to 8. This gives

Qo
P~= (b)i+be) for q =q/.

e
(ASd)

We now consider E' ', the second-order terms in

5$~J. We transform aj and P& into symmetry
coordinates ar and Pz where y=A, Ei, and E2, by
transformations identical to Eqs. (29a) —(29c). We
introduce the parameter p~, which equals the effec-
tive mass M~ divided by the area of a unit cell and
find:

p(2)
2

' = (NAv)2'+(Neo)2(aE21+uE2)
I = )D+3E) . (A5c)

Minimization of (A4a) with respect to e then gives

2(A +852 )+4(G+E)e' « 4& ReM =0 —(ASd—)

+{y)'Pg +(oiP())'(P~i+P~2)

+(v$) (+EiPEI +&x2PE2)
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where

pe(co„) =ge (6+X R—eM} I—'e, (A9b}

(co»)'
tan5= E 2 E 2(co~) —(co„o)

—3 Im(eM+ 3E)
e(2E —46+ReM)+9 ReE —I' (A10}

pe(cop) =31'e,
(A9c)

p (cono) =( 86 4E—)e +2I'@+@Re(7M@ 9E—}

p'(coyo) =9eRe(eM+E),

pe(co») =—6elm(eM+3E} .

(A9d)

(A9e}

Equations (AS} have been used to obtain Eqs.
(A9b) —(A9e). These results agree with those of
«ly et a/. when their restricted set of Landau
parameters are used and with Rice ss if his restric-
tion to phase modes only is maintained. Note that
no az pz cross term appears in Eq. (A9a). Its coef-
ficient, —21m(D+3E), vanishes by Eq. (ASa).

The E amplitude and E phase modes are seen to
mix. The amount of mixing is governed by the
parameter

Note that this has a finite limit as e~O.
The Raman data suggest that the higher-

frequency E mode is the phase mode, since it has
the weaker intensity ' ' ' and rapidly weakens as
the temperature is raised. Thus we assume that

co~ & co& and find new phaselike and arnplitude-

like modes whose frequencies obey

and

E2 E2 E& E2q +y =&0+co~0, (Al la)

. 5
psJ psi cos +aEJ sl Il

2

5 5
a@J

—
pEJ. sin —+—aEJ cos ~

(A 1 lc)

(Al ld)

(~f}'—(~„')'=( [(~f„)'—(~ o)']' +(~»)'}'~',

(Al lb)

and whose coordinates pzj and az are given by
the transformation

~J. A. Wilson, F. J. DiSalvo, and S. Mahajan, Adv.
Phys. 24, 117 (1975).

~J. E. Smith, J. C. Tsang, and M. W. Shafer, Solid State
Commun. 19, 283 (1976).

3E. F. Steigmeier, G. Harbeke, H. Auderset, and F. J.
DiSalvo, Solid State Commun. 20, 66I {1976).

4D. E. Moncton, J. D. Axe, and F. J. DiSalvo, Phys.
Rev. Lett. 34, 734 (1975); Phys. Rev. 8 +1, 801
(1977).

5J. A. Holy, M. V. Klein, W. L. McMillan, and S. F.
Meyer, Phys. Rev. Lett. 37, 1145 (1976).

6K. K. Fung, S. McKernan, J. W. Steeds, and J. W.
Wilson, J. Phys. C 14, 5417 (1981).

7J. C. Tsang, J. E. Smith, and M. W. Shafer, Phys. Rev.
Lett. 37, 1407 (1976).

R. Sooryakumar, M. V. Klein, and R. F. Frindt, Phys.
Rev. B +2, 3222 (1981).

R. Sooryakumar, D. G. Bruns, and M. V. Klein, in
Proceedings of the Second Joint US USSR Sytnposi-
um, edited by J. L. Birman, H. Z. Cummins, and K.
K. Rebane (Plenum, New York, 1979), p. 347.
R. Sooryakumar and M. V. Klein, Phys. Rev. Lett.
45, 660 (1980).
J. E. Smith, J. C. Tsang, and M. V. Shafer, Solid State

Commun. +1, 283 (1976).
(a) J. R. Duffey, R. D. Kirby, and R. V. Coleman,
Solid State Commun. 20, 617 (1976). (b) S. Sugai, K.
Murase, S. Uchida, and S. Tanaka, Physica 105B, 405
(1981).
J. C. Tsang, J. E. Smith, M. W. -Shafer, and S. F.
Meyer, Phys. Rev. B 16, 4239 (1977).

' E. Hanamura and N. Nagaosa, Physica 105B, 400
(1981).

~5V. L. Ginzburg, A. P. Levanyuk, and A. A. Sobyanin,
Phys. Rep. 57, 151 {1980).
M. V. Klein, Phys. Rev. B 24, 4208 (1981).

' A. Kotani, J. Phys. Soc. Jpn. 42, 408 (1977).
'sW. L. McMillan, Phys. Rev. 8 12, 1187, (1975); +1,

1197 (1975).
K. Nakanishi, H. Takatera, Y. Yamada, and H. Shiba,
J. Phys. Soc. Jpn. 43, 1509 (1977).
K. Nakanishi and H. Shiba, J. Phys. Soc. Jpn. 43,
1839 (1977).

W. L. McMillan, Phys. Rev. B 16, 643 (1977).
22K. Nak@nishi and H. Shiba, J. Phys. Soc. Jpn. 44,

1465 (1978).
238. A. Jackson, P. A. Lee, and T. M. Rice, Phys. Rev.

B 17, 3611 {1978).



M. V. KLEIN

2~A. E. Jacobs and M. B. Vfalker, Phys. Rev. 8 21, 4132
(1980).

25T. M. Rice, Phys. Rev. B 23, 2413 (1981).
26M. B. %'alker and A. E. Jacobs, Phys. Rev. B 24, 6770

(1981); (in press).
27P. B. Littlewood and T. M. Rice, Phys. Rev. Lett. 48,

27 (1982).
&8%. L. McMillan (unpublished).
2~R. M. Fleming, D. E. Moncton, D. B.%&Khan, and

F. J. DiSalvo, Phys. Rev. Lett. 45, 576 (1980).
30C. H. Chen, J. M. Gibson, R. M. Fleming, Phys. Rev.

Lett. 47, 733 (1981).
3jD. B. Me%ban, R. M. Fleming, D. E. Moncton, and

P. J. DiSalvo, Phys. Rev. Lett. 45, 269 (1980).
s2A. Kawabata, J. Phys. Soc. Jpn. 30 68 (1971).

I. P. Ipatova and A. V. Subashlev, Flz. Tverd. Tela
(Leningrad) 18, 2145 (1976) [Sov. Phys. —Solid State
18, 1251 (1976)].

34G. Campagnoli, A. Gustinetti, A. Stella, and E. Tosat-
ti, Phys. Rev. Lett. 38, 95 (1977); Nuovo Cimento
38B, 562 (1977); Phys. Rev. B 20, 2217 (1979).

35P. A. Lee, T. M. Rice, and P. %.Anderson, Sohd
State Commun. 14, 703 (1974).

3sS. Sugai and K. Murase, Phys. Rev. 8 +5, 2418 (1982).

37A review appears in One-Dimensional ConduetoI's,
edited by H. G. Schuster (Springex, Berlin, 1975).

&sM. J. Rice and S. Strissler, Solid State Commun. Q,,
125 (1973).

~sL. N. Bulaevskii, Usp. Fiz. Nauk 115, 263 (1975) [Sov.
Phys. —Usp. 18, 131 (1975)].

4'. Horovjtz, H. Gutfreund, and M. Weger, Phys. Rev.
8 +1, 3174 (1975).

~'E. F. Steigmeier, R. Loudon, G. Harbeke, and H. Au-

derset, Sohd State Commun. &1, 1447 (1975).
~28. Renker, L. Pintschovius, %. Gliser, H. Rietschel,

R. Comm, L. Liebert, and W. Drexel, Phys. Rev.
Lett. +, 836 (1974).

~3See the article by L Fritsche and M. Rafat-Mehx' in

Ref, 37, p, 97.
44J. E. Inglesfteld, J. Phys. C 13, 17 (1980).
~5A. S. Barker, Jr., J. A. Ditzenberger, and F. J. DiSal-

vo, Phys. Rev. 8 Q„2049 (1975).
J. A. VA'lson, Phys. Rev. B 12, 5748 (1977).

P. Fazekas and E. Tosattl, Philos. Mag. 8 ~3 229
(1979}.

~88. H. Suits, S. Coutuxie, and C. P. Slichter, Phys. Rev.
B +2, 5142 (1981).


