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The theory of the anomalous skin effect in metals is generalized to obtain the direct
generation of ultrasound by electromagnetic radiation incident on a metal surface, in the
presence of a magnetic field. The nonmonotonic behavior of the acoustic flux as a func-
tion of the magnetic field, observed experimentally, can be explained within the frame-
work of the free-electron model assuming that the electrons are scattered diffusely from
the metal surface. The reason for this behavior is traced to the variation of the relative

phases of the collision drag force on the bulk ions and that on the surface with increasing
magnetic field. Quantitative studies indicate that the decrease in acoustic flux occurs
wheri the product of the cyclotron resonance frequency and the collision time is approxi-
mately 3' . The relations between existing theories of direct generation of ultrasound
have been investigated within both the free-electron approximation and the effective-mass

theory. %e conclude that, besides the collision drag force, the Lorentz force, and the

Bragg reaction force, an additional "deformation" force acts upon the positive ions. The
latter can, to a considerable extent, cancel the effect of the Bragg reaction force.

I. INTRODUCTION

The phenomenon of ultrasonic generation in
metals by direct coupling of an electromagnetic
wave to the phonon field has been studied by
Gantmakher and Dolgopolov, '

by Larsen and Saer-
mark, by Houck et al. , and by Abeles. " Larsen
and Saermark investigated the excitation of shear
acoustic waves in aluminum using radiation in the
radio frequency range incident normally on the
surface of the sample; a uniform magnetic field
oriented perpendicular to the surface of the metal
and of sufficient strength to allow the propagation
of helicons was present. Houck et al. performed
similar experiments on silver, aluminum, and lead
telluride using electromagnetic radiation in the
same frequency range. They showed that the
acoustic generation does not depend on the excita-
tion of helicon waves in the normal sense but is al-
ways present. In the experiments carried out by

Abeles short microwave pulses were made to im-
pinge normally on an indium film in a microwave
cavity located over a germanium slab as substrate.
The generation of acoustic waves was demonstrat-
ed by showing that the echoes of the pulses are de-
layed by exactly the transit times of shear acoustic
waves within the germanium slab.

The theory of this phenomenon was investigated
by Kaganov and Fiks, Quinn, Southgate, and
Alig. These studies are based on the theory of the
anomalous skin effect because, as we shall see, it
is only when the mean free path l of the electrons
is long compared to the penetration depth 5 of the
electromagnetic wave that the effect is appreciable.
For this reason the experiments are carried out at
liquid-helium temperatures.

The mechanism of ultrasonic generation can be
described as follows. In the presence of the elec-
tric field E of the electromagnetic wave the posi-
tive ions in the metal experience a force yeE where
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ye is their charge. They also experience a second
force arising from the transfer, through collisions,
of the excess momentum of the electrons; this is
called the collision-drag force. When I (5 these
two forces cancel one another. However, when
l &&5 they are separated in space and produce a
shear stress on the metal, thereby exciting a
transverse-acoustic wave. The spatial separation of
the electric and collision-drag forces depends, of
course, on the way in which the electrons are scat-
tered by the surface of the metal. Following
Reuter and Sondheimer we use, initially, the free-
electron model of a metal assuming that a fraction

p of the electrons is reflected specularly from the
surface and the remaimng fraction 1 —p is scat-
tered diffusely. In specular refiection, the momen-
tum component perpendicular to the surface is re-

versed while the tangential components are con-
served. In diffuse scattering we suppose that the
velocity of an electron after scattering is directed
in a random direction toward the interior of the
metal.

The theory of direct ultrasonic generation for
p=O was given by Ram Mohan et al. 'o They
showed that the efficiency of conversion of elec-

tromagnetic radiation to acoustic fiux is of the
same order of magnitude in the two limits p =1
and p =0. For parameters appropriate to potassi-
um in a field of frequency of 9 MHz the conver-
sion efficiency for diffuse scattering is only 40%
larger than for specular scattering. "

The phenomenon described above is weak be-
cause of the electrical neutrality of the metal.
However, in the presence of a large uniform mag-
netic field Bo, the electrical current density in the
metal acquires a component perpendicular to both
Bo and I. The resulting collision-drag force on the
positive ions 18 parallel to Eg Bo and proportional
to

I Bo
I

giving rise to an acoustic wave polarized
in this direction with amplitude proportional to

I Bo I.
Experiments on potassium and aluminum in a

magnetic field normal to the surface of the sample
and in the direction of propagation of the incident
radiation have been earned out by several investi-
gators. These experiments show that the
acoustic amplitude increases linearly with the mag-
netic field at large fields in agreement with the
theoretical prediction. However, at relatively low
magnetic fields a nonmonotonic variation of the
acoustic amplitude as a function of Bo ls ob-
scr vcd.

In the experiments reported in Ref. 14, the

acoustic wave is produced on a surface of a slab
normal to Bo and detected by electromagnetic in-
duction at the opposite end. To establish the nota-
tion used in the present paper, we denote the am-
plitude of the shear wave by the real part of

g=g(z)e '"'=(g (z),g, (z),0)e ' ',
where we have taken the origin of the Cartesian
coordinate system x,y,z at a point on the surface of
the metal and let the material occupy the region
z gO. The x axis is selected parallel to the direc-
tloil of polarlzatloll of the illcldellt 1'adlatloll. Tile
data in experiments of the type reported in Refs.
13—15 are displayed giving the values of g at the
far end (with respect to the face of incidence) of
the slab but are corrected to their values at z=0 by
taking into account the attenuation of the acoustic
wave. In our treatment we neglect the attenuation
of the acoustic wave so that we designate the mea-
sured quantity by g( oo ). In general, even in the
absence of ultrasonic attenuation, g(0) and j( oo )

are different. This was first demonstrated by Bab-
kin and Kravchenko. '

To analyze their experimental results Chimenti
et al. '" made use of the free-electron model and
the assumption of specular reflection (p =1).
While the theory is in agreement with experiment
for large magnetic fields, it fails to account for the
low-field behavior. '

Kaner and Fal'ko's made a calculation of g(0)
which exhibits a behavior similar to that shown in
thc experimental results. ' However, as we have
pointed out above, what is actually rn.easured is
g( oo }; this quantity does not exhibit the nonmono-
tonic behavior observed experimentally. Banik and
Overhauser'9 calculated g(0) and g(oo) in the
free-electron model. In the same publication they
also took into account the reaction on the positive
iona of the force responsible for the Bragg reflec-
tion of the electrons. Within the framework of the
free-electron model and taking p =1 they find that
neither g(0) nor j(oo ) exhibit the experimentally
observed low Bo behavior. In the course of the
present investigation we performed similar calcula-
tions leading to identical conclusions. Since, as we
shall prove, the treatments of Kaner and Fal'ko'
and of Quinn and Chimenti et al. ' are completely
equivalent within the free-electron model, we must
conclude that the nonmonotonic variation of g~(0)
as a function of 80 given in Ref. 18 results from
the mathematical approximations made.

One of the purposes of this paper is to discuss
the theory of this effect when the electrons are
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scattered diffusely at the surface of the metal. We
conclude that a nonmonotonic variation of g~( ao )

occurs in this case. Since this behavior appears in
the free-electron model, it must be a universal
phenomenon applicable to all metals under extreme
anomalous skin-effect conditions (1 »5}. The
physical origin of the effect is the following. The
collision-drag force is essentially proportional to,
but 180' out of phase with, the electron current
density. Thus, its phase varies with the depth in
the metal and with the magnitude of the applied
magnetic field. In addition to the direct force yeE
on the positive ions we have also a surface stress
because the electrons, upon being scattered by the
metal surface, transfer to it, on the average, their
tangential momentum. While the phase of the sur-
face force does not change as the magnetic field in-
creases, the y component of the collision-drag force
changes phase when Bp reaches the value for
which co,v approaches unity. Here co, is the cyclo-
tron frequency of the electrons and r the average
time between successive electron collisions. A
quantitative study shows that this change in phase
occurs when (co, co)v=3—'~ under anomalous
skin-effect conditions. Here co is the angular fre-
quency of the incident radiation and, hence, of the
phonon generated. Thus, as this condition is
reached we expect that f~( 00 } will decrease. Banik
and Overhauser'9 took into account the surface
force but calculated it using the electric field pro-
files obtained with the assumption of specular
scattering at z=0. In the present work the electric
field has been calculated exactly using the Wiener-
Hopf method. P

Section II contains a description of the purely
electrodynamic calculations used in the present
work. Section III is devoted to the calculation of
the acoustic amplitude generated by the incident
radiation. Section IV gives an alternative formula-
tion of the problem having the advantage of
displaying the Lorentz force on the solid directly.
In Sec. III this force is separated into a force on
the positive ions while the force on the electrons is
partially concealed in the collision-drag force. In
Sec. IV A we demonstrate the equivalence of the
approaches of Kaner and Fal'ko' and of Quinn;
we have followed the latter in Sec. III. Sec. IV B
takes up the discussion of ultrasonic generation
when the electronic states are described by Bloch
wave functions rather than by free electrons. In
this part we make use of Holstein's ' microscopic
theory of the collision-drag effect. The results of
the theory yield the forces on the positive ions in

the metal, including the Bragg reaction force in
agreement with the work of Fiks. We show,
however, that failure to take into account the ef-
fect of deformation on the electron spectrum may
partially or totally invalidate theories making use
of the Bragg reflection force. This subject will be
discussed also in Sec. IV B.

II. ANOMALOUS SKIN EFFECT
IN A MAGNETIC FIELD

where the second equality is obtained using the
Faraday law of induction.

In our numerical calculations we used parame-
ters appropriate for potassium and the experiments
of Chimenti et al 'These are c. ollected for ready
reference in Table I. We expect

i Z+
i
=Zp(a)5/c), (2.2)

where

5=(4u~c /3~coco~)' (2 3)

is of the order of the skin depth, uF is the Fermi
velocity, roz is the electron plasma frequency and
Zp ——(4n/c) =376.73 0 the impedance of the vacu-
um. The parameter (A@5/c) =(2m 5/A, ) is of the or-
der of the ratio of the skin depth to the wavelength

In this section we review the theory of the
anomalous skin effect in the presence of a magnet-
ic field normal to the surface of the metal in a
manner suitable for our further developments.

We consider a plane-polarized monochromatic
wave of angular frequency co incident on the metal
surface at z =0. The presence of the uniform
magnetic field Bp=(0 0 Bp} causes a lotatioil of
the plane of polarization inside the material. The
electric and magnetic fields of the wave are taken
as the real parts of E(z)e '~' and B(z)e
respectively. The electron current density is denot-
ed by j (z)e ' '. Instead of E„(z) and E~(z) we
use the quantities

E+ (z)=E„(z)+i'�(z)

describing the circularly polarized components of
the field. Similar combinations are defined for the
other vector quantities involved. Associated with
each circular polarization there is a surface im-
pedance defined by

Z+ =+ =, , (2.1)
vari E+(0) 4~ipi E+(0}

c 8+(0) cz E'+(+0)
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E (z) E e ilies /c +R e ilies/c (2.4)

where R+ is the amplitude of the reflected wave.
The boundary conditions at z =0 require

in empty space of the incident radiation. This is
about 10 so that ~Z+

~
&&Zp.

The electromagnetic wave in the empty region
z & 0 is of the form

ed in a Fourier series in the azimuthal angle (I).

The Fourier coefficients f'+' are, therefore, func-
tions of z, v, and 8. In the free-electron model
only two Fourier components are different from
zero as indicated in Eq. (2.8). Keeping only that
part of f'" which is linear in the electric field and
taking

A'k= —e(E+c 'v t&Bp)

and

E+(0)=2EoZ+/(Z++Zo) =2EoZ+/Zo

(2.5)

we find the differential equations

Bf'," 1 —ta, Bfo+ f'+ ' ———,e tan8E+, (2.9)
Bz vs cos8 Be

8+ (0)=+2iEpZpl(Z+ +Z() ) +2iEp . (2.6)

Since the mean free path l and the penetration
depth 5 are large compared to the de Broglie wave-

length of the electrons at the Fermi surface, we use
the distribution function f(k, r, t) to provide a
description of the dynamics of the electron gas. In
equilibrium f equals the Fermi distribution fp(ek)
where e=ek is the kinetic energy of an electron of
wave vector k. Making the assumption of the ex-
istence of a constant relaxation time r, f satisfies
the Boltzmann equation

f+i f+-. f+ '=0, g7)Bk+ Br+
where Bf/Bk and Bf/Br denote the gradients of f
in k and r space, respectively. The velocity
v =5k/m of an electron with wave vector k can
be expressed in spherical coordinates (v, 8,$) with z
as the polar axis. We express f in the form

f f +f(1 )e l40)—'

where

a+ =(p)+Nq )r, (2.10)

where

z
X f de+(g)exp(u+g)

Xexp( —u+z), (2.11)

u+ ——(1 ia+ )/v—r cos8 (2.12)

and Ii+ are arbitrary functions of v and 8 to be
determined by the boundary conditions. Since
when z tends to infinity f'+' must approach zero,
F+ ——0 for v, =vcos8&0. If v, =vcos8&0 we
determine I'+ by the condition

fp+f+ (v„v„,v, ;z=0)e(1) —isn't

with tp, =(eBplmc) the cyclotron frequency of the
electrons. The general solutions of Eqs. (2.9) are

(,), Bf()
f+ = F++ —,e tan8

BE

f +(f(1)e -i/+ f(1)et' )e iut—(2.8) =p[fp+ f'+'(v„, u~, —v„z =0)e ™]
where the deviation of f from fo has been expand- +(1—p)fo (2.13)

TABLE I. List of material parameters for potassium used in this work.

Physical parameter Symbol Value

Experimental frequency
Electron concentration
Density of potassium (5 K)
Fermi velocity
Relaxation time
Mean free path
Skin depth
Sound velocity
Plasma frequency
dc conductivity

P
UF

I
5
S

Np

CTp

5.636)& 107 s
1.402X10"cm '
0.91 gcm
8.633X10 cms
1 646)(10—io s
1.421)&10 2 cm
2.357)&10 4 cm
1.780)& 10 cm s
6.670)& 10'5 s
5 831)(102o s



25 DIRECT GENERATION OF ULTRASOUND BY. . . 7145

describing the scattering of the electrons at z =0.
This yields

e B o
F+ ———tan8 f d(E+(g)[p exp( —u+g)

2 Be

+exp(u+ g) ]

(2.14)

for U, &0. These equations provide a complete
solution of f and hence give us a means to calcu-
late the components of the electron current density.
The simplest expression for j+(z) is obtained ex-

tending the definition of E+ (z) to negative values

of z by the convention E+(z}=E+(—z). Physical-

ly this is equivalent to extending the metal to both
sides of the plane z=0 and replacing the incident
electromagnetic wave by rf current sheets localized
at z =0. The result is

j,(z)=pcro f G, (z —g)E, (g)dg

+(1—p)oo f 6+(z g—)E+(g)dg,

(2.15)
where

I'/2 . 26+(z)=(3/4i) f sin 8tan8

Xexp(u+ ~z
~
)d8. (2,16)

Here I is the mean free path vFr, era ne——rim, the
dc electrical conductivity of the electron gas of
concentration n, and now u+ takes the value in
Eq. (2.12) with U replaced by uF. The result (2.16)
was obtained assuming that the Fermi-degeneracy
temperature is large compared to the temperature
of the specimen. Thus, all calculated transport
coefficients have, in effect, their zero temperature
values. The Fourier transforms of 6+(z) are

6+(q) = f 6+(z)exp( iqz)dz —=(—,) f (1 ia++—iPcos8) 'sin 8d8

(1 ia+)—+ [P +(1 ia+)—]
3 3 2 . 2

2P2 — 4P3

1+(P—a+ )
arctan(P —a+ ) +arctan(P+ a+ ) ——ln

I+(@+a,)'
where

=ql .

Since (co5/c) «1 we can neglect the displacement current density in the Maxwell equations. We obtain

E+(z)= (4nico/c —)j+(z)

(2.17)

(2.18)

(2.19}

which allows us to solve for the components of E+(z) in conjunction with Eqs. (2.15). The solution is par-
ticularly simple for p =1. We find

ao 1 co
2

4''l No oE+(z)= f E+(q)exp(iqz)dq = — E'+(+0) f —
q — G+(q)

27T C2
exp(iqz)dq . (2.20)

g=P(i +a~)

and write 6+(q) in the form
n

6+ = (i+a+}——y ln
3i . i 1 g —1 1+(
2 — g2 2(3 1 —g

(2.21)

(2.22}

The logarithmic function in (2.22) has essential
singularities at g= -t 1. We cut the g plane along
the segments (—ao, —1] and [l,oo) and select the

We calculate the components of the electric field

by performing a contour integration. For this pur-

pose we introduce the complex variable

I

Riemann sheet associated with this function such
that G+ is meromorphic in the finite g plane ex-

cept along the cuts. We further require that, when

P is real, 6+ coincides with the values in (2.17).
This is accoinplished by selecting the branch of
In[(1+()/(1 —g)] which vanishes at (=0 and
such that for

~ g ~
& 1,

ln =ln +in.(sgn Imp), (2.23)
1+0 0+1

J

where sgn Imp=+ I if Imp&0, respectively. Some

details are given in the Appendix. The com-
ponents of the electric field for p =1 are
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with

E+(z)= (4—~~5Eo/3c)

3 I
2 5(l ia—+)

(2.24) Z+ =1.709X10 (1—i1.78)ZO,

while Eq. (2.30) gave

(2.31)

using the approximate expression (2.30). The exact
calculation for 80 ——S00 6 gave

im z(1 —iv 3)
e+ ——exp( —z/5)+ 5+exp

3 25

(2.2S)

Z+ ——1.706' 10 (1 i—1 70.S )ZD .

It is interesting to compare these results with the
surface impedance obtained by Reuter and Sond-
heimer for p = 1 in the limit I »5, namely

and

im z(1 —l~3)
3 25

Z=ZO (1—iv 3)
3 3c

=1.706X10 (1 iv 3—)ZO . (2.33)

in z(1+i~3)
3 25

(2.26)

Here I+——1 if (co, +co)r & V 3, and zero otherwise,
while 6 =1 if (co, co)r& —v 3, and zero otherwise
The quantities I+ are

1

I+ —— D ' to+ 31—t2

X expf (iz/5ta+ ){2/n )'/ ]dt, (2.27)

The results (2.31) and (2.32) are obtained for
I/5=60. 2S while (2.33) holds in the hmit l/5 ap-
proaching infinity.

Figure 1 gives the profiles of E,(z) and E„(z) for
several values of 80 taken at a given instant of
time. In Fig. 2 we display similar results for j„(z)
and jy(z).

In the case of diffuse scattering (p =0) from the
surface we require the solutions of the equations

with

a+ {2/n )'~—3[l/5(i+a+)] (2.28)

E+(z)= (4sicoo—sic )

X I G, (z g)E, {g)dg—. (2.34)

,an(i

(rs+)'(1 —r'}' . (2.29)

We used the Wiener-Hopf method to solve Eqs.
(2.34) for E+(z) and E (z}. The method has been
given in detail in Ref. 10. The only difference is
that now we have two equations in which we for-
mally replace co by co+co, (except in the factor
4mi confro/c and in co /c; the latter arises from the
displacement current and is neglected anyway).

These expressions are approximate in the sense that
the zeros of the denominator in Eq. (2.20) have
been calculated in the limit of large I/5 The ex-.
pression for E+ is approximate but valid for all

co, . However, that for E (z) is only valid if
co, & co. From the expression for E+ (z) we find

Z+=Zo I-gv 3+v 3
c05 I

c 3 5(i+a+)
1

X J, D+'(ra+)'(1 r')dr— 4
z/6

t
&W OWtl

(2.30)

To verify the accuracy of the approximations used
we calculated Z+ exactly using Eq. (2.20) and then

FIG. l. Electric field at a fixed instant of time as a
function of z j5. z is the distance from the surface and
5 the penetration depth. The vertical dashed hne indi-
cates the penetration depth 5. Electrical field is in arbi-

trary units.
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jx at 0.5 kG

j„at 0.6 kG

jy at 0.5 kG

jy at 0.6 kG

and the ionic contribution net. The latter is negli-

gible in our study of ultrasonic generation and is
disregarded in the calculation of the rf electric
field inside the material. We shall, however, write
our equations in more generality than is necessary
for the problem at hand so that the theory can be
utilized in studies in which there is no incident
electromagnetic radiation. An example of such sit-
uations appears in the theory of ultrasonic attenua-
tion. Equations (3.1) and (3.2) yield immediately

~ k+ co yeBoco i ymco
2

Bz s Mcs Ms w

FIG. 2. Current density as a function of z/5, in arbi-

trary units.

Since the results parallel exactly those in Ref. 10
we do not reproduce them here. The fields E„(z)
and E„(z) were calculated numerically for use in
the calculations of Sec. III but are not explicitly
displayed.

III. GENERATION OF SHEAR
ACOUSTIC WAVES

= —(ym/ne~) J, (3.2)

where the last equality defines J, the total current
density, the sum of the electron current density j,

In the absence of external fields, the equation of
motion of the displacement field g ( r, t ) of the lat-
tice is given by

$2g $2g
z2

where s is the velocity of shear acoustic waves. In
the presence of the rf field E and the uniform
magnetic field Bo the equation of motion of the
positive ions is

2

Mg =Ms
2 +yeE+ g XBO+F, . (3.1)

az2

Here M is the mass of the positive ions. As with
the case of the electron we neglect the Lorentz
force arising from the rf magnetic field. The
collision-drag force F, arises from the transfer of
momentum from the electrons to the positive iona
through collisions. %e suppose that the electrons
have average velocity g after each collision so that

F, =(ym/r)(( v ) —g )

(ym/ne~)—( j +ne g)

where

2
@'+(z), (3.3)

Ms

5 + =E+ —0'p J+ (3 4)

The requirement that for large z,

g+(z) =)+( oo )exp(i coz/s ), (3.6)

i.e., that there be no reflected wave, gives

B+ (iye/2Ms——co) f 8'+(g)exp(icogls)dg . (3.7)

We obtain A+ through the knowledge of the strain
g'+(+0) at the surface, i.e., from

g'+(+0) =(ico/s)(A+ B+ ) . — (3.8)

The third term in the left-hand side of Eq. (3.3)
can be neglected in comparison with the second.
In fact, for potassium at the frequency co=5.6
X 10 sec ' the two quantities become comparable
for a field Bo —-2.3 X 10 G. If this term is not
neglected there is a slight difference in the veloci-
ties of the acoustic waves of right and left circular
polarizations; this gives rise to an acoustic rotatory
power.

The fourth term in the left-hand side of Eq. (3.3)
can also be neglected since it yields a correction to
the ultrasonic amplitude of higher order in the
parameter ym /M. In studies of ultrasonic at-
tenuation by electrons it cannot, however, be
neglected. Dropping these two terms we solve Eq.
(3.3) by the method employed by Kartheuser and
Rodriguez in their similar study of acoustic gen-
eration in superconductors. %e obtain

g+(z) = A+ exp(i coz/s ) +B+exp( i coz /s )—
Z—(ye/Msco) f g'+(g)

X sin[co(z —g)/s]dg .

(3.5)
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g+( oo ) = (i—s /co )f+(+0)

+(iye/2Msa) )8'+(a)/s ), (3.9)

where 8+(N/s) 1s thc Fourlcl transform N +(q) of
g'+(z) evaluated at the wave vector, q =ro/s, of the
shear acoustic wave of angular frequency co. The
components of the lattice displacement at z =0 are

g+(0) =g+( oo ) (—ye/Ms') f g'+(g)sin(mg/s)dg =(+( oo ) (y—e/2nMsco)9' f (q —q, ) 'g +(q)dq,

(3.10)

where 9' indicates that the principal value of the
integral is to be taken. For p = 1, g~(+0)=0 as
we shaB presently see, and

2yeE& 1 —6+ (q, )
+(oo)=

q, (4~ice—oo/c )G+(q, )

i yecEO
[6+ (qo) —11

271COO' s
(3.11)

In Eqs. (3.10) and (3.11) we have set

q~ =67/s .

When co&~m„G+(q, )=-6* (q, ), and

l fecEO
(g„(oo ),gy( oo ))= (X,I'),

(3.12)

(3.13)

where X and F are the real and imaginary parts of
6+ (q, )—1, respectively. In Figs. 3 and 4 we give
graphs of the amplitudes of g{oo ) and g(0) as
functions of Bo for the parameters given in Table
I. Notice that g~(0) does not exhibit a nonmono-
tonic behavior even for col/ sq, l = 10.

For future reference we give here the limiting
behavior when ro, r&y 1 Then, 6+.-(1 ia+)—
and, neglecting cor we find g„(oo)=0 and

iEo8os(m)=—
2$'psN

(3.14)

where p is the mass density of the metal.
If the electrons are scattered diffusely at the sur-

face (p =0) we obtain the surface stress from the
components of the shear stress tensor

TJ"=(4~ )
' f dkmu;ujf"'. (3.15)

The ij component of this tensor gives the i com-
ponent of electron momentum transported per unit
time across the unit surface perpendicular to the j
direction. Thus, the components of the tensor T"'
give the forces acting across a surface because of
the deviation from the state of equilibrium. The
complete stress tensor is

TJ = (4m.3) 'm f d ku; U/f

=
5 net 5(y+ Trj{~ (3.16)

Here eF is the Fermi energy. The first term in Eq.
(3.16) gives the uniform pressure exerted by the
electron gas in equilibrium. The tensors T& and

T;J are symmetric. In the present problem the
only nonvanishing components of TJ

' are T'" and

Tyg . T11e comblnatlons T~ +ET~ afe

C

10
Lu
D

6
X

E

Al

10
LUn

n
X

0 1 'I.S
Bo(kG)

2.5 0.5
Bo(kG)

FIG. 3. Magnetic field dependence of the acoustic
amplitudes at z = op for specular scattering (p =1): a
solid line for q, /=4. 5 and a dashed line for q„l=10.

FIG. 4. Magnetic field dependence of the acoustic
amplitudes at z =0 and for specular scattering (p =1):
a solid line for q, 1=4.5 and a dashed line for q, l =10.
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T+ g=T~ +LTD
(1) (1) ~ (1)

e/2 ' z 00= —(3ne/4) f sin'gdg f d(E+(g)exp( —u~1(—z1)—f d(E+(g)exp( —u+1(—z1}

0
+p f d(E+(g)exp( —u+1g —z1} (3.17)

~here u+ (1——ia—+)/lcosg as before. The components of surface strain are immediately obtained by

fp(+0)=(ps ) 'T~",(z=0)

=(3ne/4ps )(1—p) f sin gdg f g+(g)exp( u g)dg . (3.18)

'c )2-

~mls

LLI
O
s- 8-
IL

(~)l——-- If{oil

I

0.5 1.5
Bo("s)

FIG. 5. Total acoustic amplitude as a function of the
static magnetic field in the case of diffuse scattering

=0).

Thus, as stated above, for p =1, f+(+0}=0.
These results, together with those af the previous
section, allow us to calculate g+(0) and g+( ap ) [see
Eqs. (3.9), (3.10), and (3.18)]. In Fig. 5 we show
the amplitude

14'& ~ }
I
=[14'(~) I '+14y(~ }

I

']'"
as a function of Bp. The quantity

1
g(0)

1
is also

of interest because it is accessible experimentally
through Mossbauer studies such as those carried
out in copper foils doped with Co by Perlow
et a/. For this reason we also show

1 g(0}1 as a
functian of Bp in Fig. 5. These numerical calcula-
tions, which are rather complex, were made using
the parameters in Table I and q, l =4.5. We could,
of course, adjust the collision time ~ in such a way
as to obtain a better fit ta the experimental data of
Ref. 14. However, this seems hardly worthwhile
since it is difficult to simultaneously adjust the
values of

1
g( oo }1 at Bp ——0 and at its minimum

with a single parameter. The main conclusion of
this investigation is that it demonstrates the possi-

I

bility of obtaining a nonmonotonic behavior of
1
j( ap )

1
as a function of an applied magnetic field

within the free-electron madel.
The physical reason for the drop of

1 g 1

.at
Bp 0.6 ko in Fig. 5 can be understood as arising
from the change in the phase of g» near this value
of Bp. In fact, while the phase of the surface farce
remains fairly constant, the collision force changes
sign as a function of Bp at positions within the
skin depth. This can be seen by inspecting Fig. 2
and remembering that the collision force is propor-
tional to the current density [Eq. (3.2}]. The
behavior of j» as a function of Bp, shown in Fig. 2
for p = 1, also occurs for p =0.

IV. ALTERNATIVE THEORY
OF ULTRASONIC GENERATION

A. Free-electron model

f +k f +v f +—(f—f,)=0,
Bk Br

(4.1)

The approach given in Sec. III has the advantage
of simplicity. Hawever, from the macroscopic
point of view we recognize that the most important
farces acting on the metal are the elastic stresses
and the Lorentz force per unit volume c ' J XBp.
Inspection of Eq. (3.1) does not immediately exhib-
it this force. We expect that the force per unit
volume neE+(n/y)F, can be written as the sum

+
of c j XBp and additional smaller forces respon-
sible for the amplitude of the generated ultrasonic
wave present even when Bp ——0. Separation of
these forces is accomplished by the method used by
Kaner and Fal'ko. ' The purpose of this section is
ta demonstrate the equivalence of their procedure
to that adopted6 in Sec. III.

We start with the Boltzmann equation
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where the colhsion term in Eq. {2.7) has been re-
placed by one in which f does not relax to the
equilibrium condition but to a "local" distribution.
The local distribution is one in which the electrons
have average zero velocity in the frame of refer-
ence in vvhich the lattice is instantaneously at rest.
Thus we write

f e
(qXQ ), af ~~v. Bf + 1 f(1)

Bt Ac' Bk Br

'BfQ [eE v+ —(gXBO} v
BE C

~ 4

+mg. v+mv E.v] . (4.9)

-'+

f0=f0(Ek —~v 0»
wlicl'c v =4k/ni ls tllc velocity arid Ek ls tllc kinet-
ic energy of an electron of wave vector k in the
laboratory frame of reference. In the general case
in which compressional waves are present, there
are local fluctuations of the electron density. Re-
laxation, in this case, gives rise to diffusion
currents. We need not, however, be concerned
with this question since the waves are transverse
and thus the density fiuctuations are absent. We
now define f"' by

f=fc+f"'. (4.3)

Substituting Eqs. (4.2)—(4A) into Eq. (4.1) and
making use of

We note that this is identical to the quantity f"'
used in Sec. II if g =0, but is not equal to the de-
vlatloil of f floin tlm equlllbrlum-dlstrlbutlon. Tllc
effects arising from the tendency of the electrons
to screen the motion of the iona are, to a consider-
able extent, expressed in the form of fc. As before
we neglect the I.orentz force on the electron from
the rf magnetic field so that

0

A'k =—eE—(e/c) v &80 . (4 4)

In derivinjl Eq. {4.9) we have retained only hnear
terms in E and g. Equation (4.7} follows from Eq.
(4.2) and the fact that the crystal is not subject to a
rigid rotation, i.e., that

Bg; BfJ

Bxg Bx.

The electron current density j is given by

j = e(4m —)
'ffv dk

e(4iri—) 'f fov dk

—e(4n')-' ff("vdk .

The first term, containing the distribution of elec-

tron velocities centered at g, gives the contribution
to the el(x:tron current resulting from the screening
of the ionic motion alone, i.e., —net. Hence,

4—e(4(r ) ff vdk=j +net= J . (4.10)

We now multiply both sides of Eq. (4.9) by
—e v V ', where V is the volume of the spo:imen
and sum over all electron states. The first term in
the left-hand side of Eq. (4.9) gives

BJ
Bt

. aud the second gives

Bfo - afo=—nip v
Bt BE

(4,5) J &80
PFEC

af(l afo
=A(v —g)

Bk BE
(4.6)

af, af, aj, af,=—Ptg U =—'PFE EJU' p

Bx( BE ~ Bx( BE

(4.7)

after two integrations by parts; the i component of
the vector resulting from the third term yields

QU(V' =—e g QU(UJf
e Bf B 1

V ~
'

Br . )Bxj Vk

B7'(1'=-—xni J 1 BXJ

and finally, the fourth term simply results in

Bg( Bgj'
+

axe Bx '

is the strain tensor, %ve obtain

All contributions originating from the first three
terms on the right-hand side of Eq. (4.9) have the
same structure and are obtained using
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e Bfo ne
&;uj' ——5IJVk3em

The last term in Eq. (4.9) does not make a contri-
bution to the average because it results in an in-

tegral of an odd function of v. Combining these
results me obtain

- =Zs' - +—' +—JXB,—V T~'&,B'g B'g m B

Bet e Bt c
{4.12)

which is identical to that of Ref. 18 for the free-

electron model. It can also be demonstrated direct-

ly from Eq. (3.1,7) that

'I

t ~

E+—jXBo+—f . {4.11)
PB C 8

Combining Eqs. {3.1), (3.2), and (4.11}we obtain
the desired equation of motion

—T',",=—neE, (z)+ (1—la )J, ,
Bz 8T'

which combined with Eq. (4.12) gives (3.3).
Before leaving this subject it is nceessary to veri-

gf that, to 6rst order in the small quantities g and

E, the expressions for T&J" used here and in Sec.
III are the. same. This follows from

4 0 0 4 1 0 4

T;= gu CJ—{fo+f"')=Tij"+ Xfcl—{RI—0 ){uj ky)+{u—i —4~4';+{RJ. f~)k—+4;0,]

Clearly this equals

{1)
TII , nep5;J+—T;J. +nmggg~

and the two quantities denoted by the symbol TJ"
Rl'c cqllal to first order ill g.

B. Effective-mass theory

The wave vector k of a Bloch electron in a crys-
tal 111 tllc prcscllcc of R If field E RIld a constant
magnetic 6eld Bc obeys Eq. (4.4) (we neglect the rf
B field). The quantity haik is not, however, the
momentum. Thus, the force has an additional
coirlpoilcnt duc to thc actloll of tllc periodic crystal
potential. This is called the Bragg force, and
equals

where m v is the expectation value of the mo-
mentum. of the particle. Now, we know that
V=A 'Be/Bk so that in the effective-mass theory

m m B~e

g Bk;BkJ
' (4.16)

=(a—I) (Wk)
dv dk
df df

=—e(a —I).(E+c ' v XBo) .

(4.15}

Here a is the effective-mass tensor defined by

and I the unit tensor. Because of the law of action
and reaction the positive ions experience tlM addi-
tional average force

j X80
ye(a I) E——

Pl8C

Thus, the force on a positive ion is, after taking
111'to accoullt tllc colllsioil force,

m -. nM~
dt {v) . g - y.

= f drc 'JXBO f 0"d—S{6 {5)

—f, ,
T dS.

Here cr is the elastic stress tensor arising from the
matter inside V and T is the quantity defined in
Eq. (3.16},except that now we are dealing with

(4.18)

F=ye[a E—(nec) '(a —I) ( j XBS)

(m/ne r) j ]—+(ye/c)g XBS
4

(ym/I)—g . (4.17)

The last two terms can be neglected in a study of
ultrasonic generation.

To gain a better understanding of these ques-
tions me cut out a simply connected volume V iii-
side the metal. I.et S be the surface bounding V.
The rate of change of the linear momentum of all
particles illsldc V ls cqllal fo thc fol'cc Rctlllg 011

the volume V minus the momentum flux through
the surface S. This can be expressed by the follow-
ing equation:
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Bloch electrons. The sign of the second term in
the right-hand side of V is due to the fact that this
is the force on the matter within V exerted by its
surroundings. The form of T is however the same
as before. Transforming the surface integrals into
volume integrals by means of the divergence
theorem and noting that the result is valid for any
volume, we obtain

yg~'~ ~ $ ~ ~ N1 8)g= —V ~+—JXBp+— —~ T
y C e Bt

(4.19)

We have replaced T by T"' since the equilibrium
part of T has zero divergence. Strictly speaking,
the momentum balance equation (4.18) should con-
tain the contributions due to the electromagnetic
field. However, the electromagnetic momentum
tensor is quadratic in the field variables and, thus,
of higher order than the terms kept in Eq. (4.18).

There must, of course, be a relation between this
result and the total force obtained in Eq. (4.17).
To study this question we describe the states in a
single band as solutions of a one-particle
Schrodinger equation in the periodic potential
U(r ). These states are characterized by a wave

vector k and have energy which we denote, as be-

fore, by ek. In the presence of the phonon field
with strain tensor e,j, the one-electron energy eI,

experiences a (time-dependent) change

be(k) = g epLIJ(k),
ij

(4.20)

fo=fo(ek —mk vk) (4.21)

However, in Eq. (4.21) vk is not the expectation
value of the velocity in the Bloch state k, namely
fi 'Be/Bk, but rather the expectation value of the
velocity for states in which the acoustic wave pro-
duces virtual transitions to other bands. Holstein
proved that vk is

1 BE' m B
vk ~+0 0 vk

~ ak ~ ak
(4.22)

In a linear theory such as that to which this paper
is devoted, we do not make a distinction between

vk and A' BeiBk when either is multiplied by j
or E. As shown by Holstein, this result leads to
the conclusion that fp carries a current density

net, —i.e., the opposite of the ionic current densi-

ty. This follows immediately from

where the quantities L,&(k) will be investigated
later on in this section. We employ next the re-
sults obtained by Holstein ' in his study of the
collision-drag effect. He showed that the electron
distribution function relaxes to the "local" equilib-
rium value

e 1 Bek m-'
gfp(ek —mg'V)Vk= ——gfp(ek —mg'V) f+ ——g' v = —net .~ k V I I Bk ~ Bk

(4.23)

To set up a transport equation we describe the
electrons in the states with wave vector k taking
into account the virtual transitions caused by the
acoustic wave. The appropriate transport equation
assuming, as before, the existence of a constant re-
laxation time is

l

and, to first order in small quantities,

e - 1 - BfoE+—vk )& Bo
fi c Bk

e' 0eE v+ —g&(Bp v
C BE'

where we write v whenever it is not necessary to
distinguish between vk and R 'BelBk. We find,
after some simple transformations,=0 . (4.24)

-- ~+—vkXBo -+v + (f fo)--
Bt A' c"

We proceed in the same way as in Sec. IV A by let-
ting f=fp+f"'. By virtue of Eq. (4.23), the aver-
age of vk over the distribution f'" is proportional
to the total current density J. The second term in
Eq. (4.24) requires the consideration of the result
stated in Eq. (4.22). In fact,

o - Bfo
=(vk —C)

Bk

(&)f"' (vXB )— —

eE v+ —(g XBp) v
C

8 0+m('v+m v j'v
BG

(4.25)
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10

a E+—gXB,+—
g . (4.26)

ttt C 8

Equations (4.19) and (4.26) yield
~ ~

pg= —V o

) ~&0 m+ne a.E— (a—I}+—a g
Pf8C

Nl ~ 7l8~ ~ N2Pf ~j+ k&&BO-8f' C 'r
(4.27)

Equation (4.27) is identical to Eq. (4.17) except
for the additional contribution (m/e)a g. This
arises because the tendency of the electrons to
screen the motion of the ions subjects them to the
additional force mg. The reactions on the ions is
equivalent to an additional effective electric field

(m/e) g. However, this contDbution together with
the last two terms in Eq. (4.27} is negligible when

dealing with ultrasonic generation in metals.
An additional question concerns the dependence

of the stress tensor cr on the fields E and g. Cer-
tainly the most important contribution to 0. is that
occurring when the strain e J is applied statically.
The components of the stress tensor are obtained
from

(4.28)

where F is the free energy of the system per unit
volume. Now, the free energy in the dynamic situ-
ation can be regarded as time dependent. It can be
separated into a contribution E' ' equal to the
equilibrium value and the quantity F"', the addi-
tional free energy due to the effect of the acoustic
and electromagnetic waves on the electron energies.
Thus we have

F p(0)+p(&)

=F' '+ —+he(k)[f(k) —fo(k)]~ k

Multiplying both sides of Eq. (4.25) by —(e/V) vk
and adding over all electron states we obtain

BJ I~ 8 ~ ~ 8+—J+ a (J &Bo)— 7'T
Bt r mc m

constants. The second term, which vanishes in the
free-electron model, has been investigated by
Fiks.~ We follow the method of Bir and Pikus.
When a uniform strain e is applied, the lattice po-
sitions n of the crystal are transformed into
(I+e) n. In general, the crystal symmetry is al-
tered. Difficulties in the use of ordinary perturba-
tion theory are circumvented by making the coor-
dinate transformation

r '=(I+e) 'r =(I e).r— (4.31)

such that the lattice positions of the strained crys-
tal have the same coordinates in the new frame of
reference as those of the unstrained crystal had in
the old. The Hamiltonian of an electron in the de-
formed crystal is

2

H(e)= +U(e r),2' (4.32)

+U(e(I+e) r'). (4.33)

In general,

U(e LI+e) r')=U(r')+get)U))(r')+. . .

(4.34)

The electron energy spectrum of the strained crys-
tal is obtained by solving the Schrodinger equation
for the Hamiltonian

IQ

H(e)= +U(r')+ $e" U" ——p'p'.
2m .. " " m

EJ

IQ

+U(r )+ye)D
27tl

(4.35)

which, we must remember, possesses the symmetry
of the original crystal in the primed reference
frame. The second equality in (4.35) defines Dz.
To first order in e the energy eigenvalue of H(e)
associated with the solution of

where U(e r) is the potential energy of an electron
at r when the deformation has been applied.
When expressed in the new coordinate system H(e)
has the same symmetry as the unperturbed crystal
(e=0). In this reference frame, since p'
=(I+e) p,

p 1H(e}= ——pe;Jp''p')
SJ

(4.30)

Here ofJ is related to e,z by the ordinary elastic

cr t)o~(J'+ g—he(k}(f fo) . —
V k Beg» t2

2@i
+U(r') 4k =&k'4k

J

(4.36)
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eI, + ge,;(k'lDJ l
k') . (4.37)

mation all effects arising from the Bragg force
cancel. In fact, from Eqs. (4A5) and (4.27), using
an isotropic effective mass m', we obtain

yexp[ik'(I+e) 'FJ

Therefore, gk belongs to the wave vector

k =(I+e) 'k'

(4.38)

(4.39)

and to energy ek. The difference in energy be-

tween the expression (4.37) and ek gives the shift
of the energy levels of the electron upon applica-
tion of the stress. This change equals

be=ek ek+ g—ej(k'lDO l
k')

EJ

= gegJL, J.(k), (4A

with

L;(k)=-' k Bk'+k Bk' +(klD-Ik)

The eigenvector Pk is of the Bloch form

uI, (r ')exp(i k'r '), and, when written in terms of
the original coordinate system is

6 = uk l(I+e) 'r j

(o)
~ l . Ele ~

pg= —V o +ne E— j + gXBo
Oo C

nm ~ m m—81
e Bt

(4.46)

l geCEOPlg„(e&)=, Re —1
2rruoom'sM G+ (q, )

(4A7)

where now oo ne r——lm' is the dc electrical con-
ductivity, Thus, it appears to be superAuous to at-
ternpt an explanation of the experimental results
based on the effo:t of the Bragg reaction force in
the absence of a more accurate knowledge of the
deformation force.

However, we have made attempts to fit the data
of Ref. 13 by neglecting the deformation force.
From Eq. (4.27), taking o =cr+' and a =(m lm*)I
'wc Obtain

(4A1)

This equation gives the general expression for
L;J(k) In th.e deformable ion model, we suppose
that the potential at a point in the deformed crys-
tal equals that at the original position, i.-e.,

U(e (I+e) r ') =U(r ')

and, hence, UJ =0. Then, in the effective-mass ap-
proximation, with an isotropic effective mass m*,

(4.48)

Li(k)=(m* m)u;ui —.
Combining this result with Eq. (4.30),

(4.43)

cTgj =cTgi + g (m —m)uguj(f fo), —(0)

(4.44)

which, when substituted into Eq. (4.19) yields

1 Ptl 8 )qg= —V.~~'&+ —J XB,+-
6 8 Bt 0.5

~4
l

1 t5

(4.45)

This result agrees with that obtained by Kontoro-
vich and, Glore recently, Fiks. In this approxi-

FIG. 6. Magnetic field dependence of the x com-
ponent

l g„(cc )
l

of the acoustic amplitude for different
values of the ratio m*/m. The lower scale shows the
parameter b =u,z/q, l and the solid line represents the
experimental data "of Rcf. 13.
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FIG. 7. Magnetic field dependence of the y com-
ponent

~ g/( oo )
~

of the acoustic amplitude for different
values of the ratio m*/m. The lower scale shows the
parameter b =co,~/q, / and the solid line represents the
experimental data of Ref. 13.

FIG. 8. Magnetic field dependence of the total sound
amplitude for different values of the ratio m /m. The
lower scale shows the parameter b =co,~/q, / and the
solid line represents the experimental data of Ref. 13.

m'c and the electrodynamic part of the problem
has been solved assuming specular scattering at,

z =0. The result of this analysis is shown in Figs.
6—8. In these figures the experimental data of
Wallace et al. ' are shown in solid lines. The data
have been adjusted to coincide with the theoretical
prediction for (co,r/q, l) &&1 given in Eq. (3.14)
which is the same as that obtained from Eq. (4A8)
even when m'Qm. Figure 6 shows g„(oo) as a
function of Bo. We notice that to fit g„( oo) for
Bc=0 we require an unrealistic effective mass
m* = m/7 and that, as seen in Fig. 7, the corre-
sponding value of g„(oo) is too small compared to
the experimental value. The dip at (co,r/q, 1)=1
arises because of a change in phase of g~( oo) by
180' at that value of the magnetic field. Figure 8
shows

~
g( oo )

~
for the values of m'/m =0.14 and

0.2 as in the previous figures together with the ex-
perimental results. In Figs. 6—8 we have also
shown, for convenience of reference the results us-
ing m'=m. Similar conclusions were reached by
Banik and Overhauser.

tions has prevented us from making a detailed fit
of the theory and experiment with hmited
resources. The nonmonotonic behavior is clearly
exhibited. in Fig. 5 using the parameters of Table I.

We proved, in agreement with Banik and
Overhauser that, in going beyond the free-
electron model invoking the Bragg reflection force
it is not possible to successfully account for the ex-
perimental data in potassium. However, a more
important theoretical limitation arises from
neglecting the reaction forces due to the electronic
deformation potentials. These forces, which are
difficult to evaluate with certainty, cancel the
Bragg reflection force if we employ the deformable
ion model. Thus, the nonmonotonic behavior ob-

tained using the Bragg reflection force appears to
be illusory. In a subsequent paper the authors of
Ref. 28 proposed a dynamic two-carrier model to
explain the data obtained in aluminum films. '~

They included the effect of the Bragg refllx:tion
force but omitted the deformation forces.

V. CONCLUSIONS

Chimenti et al. ' showed that the low magnetic
field behavior of acoustic generation by elec-
tromagnetic radiation cannot be explained by the.
free-electron model assuming the electrons are scat-
tered specularly at the surface of incidence. We
have shown here, however, that the nonmonotonic
variation observed is expected if the scattering is
diffuse. The complexity of the numerical calcula-
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APPENDIX

The results in Eqs. (2.24) —(2.29) are obtained. by
transforming the variable of integration from q to
g, using definition (2.21) in the integral (2.20). The
path of integration is a straight line I froln

between arguments +0 and 2m —0. The integrals
along the arcs tend to zero at the appropriate lim-
its. The zeros of the denominator of the integrand
in Eq. (2.20) are calculated approximately as the
roots of

g'=(sgn Imp)(ll5)'(I —ia~) '. (A2)

to

l&—oo exp +t'//+
2

l&
ao exp +if+

In the case of diffuse scattering (p =0), the cal-

culations were rather complex so that the details

are not reproduced here. It was also necessary to
find the zeros of

where

1 —ia+=(1+a~)'~ exp( if+—) ~ (Al) f2+ (i+a—+) (l/5) —+ D —1 1+
P 2g'

The integral is evaluated by completing the con-
tour by arcs of circle at infinity lying to the right
of L, two segments just above and below the cut
(1, co) and a small circle around the essential singu-

larity (=1, described in an anticlockwise fashion

This function appeared, however, under a natural
logarithm (see Ref. 10). For this situation, the ap-
proximation (A2) was not made but the zeros were
obtained numerically by iteration.
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