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Semiclassical approach to quantum-electromagnetic excitations in metals. II
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The quantum-electromagnetic absorption in metals as a function of the external mag-

netic field is calculated. The theory, whose fundamental aspects were stated in a previous

paper, is carried out at finite temperature. A numerical fit to the experimental results

found in bismuth is made with a single free parameter. Finally the role of this parameter

is discussed.

I. INTRODUCTION

Recently, following a semiclassical approach,
some of the authors' were able to state the basic
equations for the absorption and the dispersion of
an electromagnetic wave propagating in metals
under quantum conditions. These are the follow-

ing: 0»co, et »1, eq »kq T, where 0 is the cy-
clotron frequency, co the electromagnetic wave fre-

quency, w the relaxation time, eF the Fermi energy,

k~ the Boltzmann constant, and T the absolute
temperature. The existence of a quantum-
electromagnetic excitation was experimentally
pointed out by noting an oscillating behavior
[quantum-electromagnetic oscillations (QEO)] of
the microwave absorption in bismuth. The periods
b,(1/H) (where H is the external magnetic field in-

tensity) of the oscillations were related to the
cross-sectional areas of the Fermi surface. The
theory of Ref. 1 correctly took into account the ex-

istence (in the presence of an external magnetic
field H) of many values of the wave vector k, each
one related to a particular Landau level below the
Fermi level, and explained a set of experimental re-

sults previously found in bismuth. However, not

all the experimental results were explained. In this

paper we present an improvement of the theory
which allows us to take into account more explicit-

ly the presence of many k values, and moreover to
consider more accurately the resonance linewidth

in the numerical calculation of the microwave ab-

sorption. In particular, since the surface im-

pedance derivative of the metal was also measured,

the numerical fit is carried on calculating the ab-

sorption coefficient derivative dI'/dH as a func-
tion of H.

II. BASIC EQUATIONS

Let us shortly summarize here the general as-

pects of the theory developed in the previous pa-
per. ' In order to calculate the conductivity, the
Boltzmann equation in the presence of both a stat-
ic magnetic field H and the electromagnetic (em)
wave was used. The equation, linearized in the
wave field, was solved in the relaxation-time ap-
proximation. For the em field the time and space
dependance E-exp[i(k r —cot)] was assumed. In
the high-frequency limit, co~&&1, and high external
magnetic field, A'0 » (ks T,fico), each diagonal
term of the conductivity tensor could be split in
two parts. The first one (quantum part) gave the
absorption contribution of the electrons that did
not change the Landau level (hn =0). For these
electrons the interaction with the em field was can-
sidered as a quasiparticle electron-photon interac-
tion with energy and momentum conservation.
The second diagonal term gave the classical contri-
bution of the electrons. The nondiagonal terms of
the conductivity tensor gave the Hall part. The
quantum conditions were taken into account in a
semiclassical way by replacing the integral de

0
with the sum A'Qg„, where n is the Landau quan-

tum number. In the following, the condition
4n =0 corresponding to RO » fico is considered in
the quantum term. As a conclusion, in the con-
ductivity tensor terms of the following type appear;
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where I'u gives the Hall contribution and I's is the
quantum term. The remaining quantities are de-
flllcd ill tllc pl'cvlolls papcl' Rlld 1'ccallcd'ill thc
Appendix. In I

&
the n sum runs over the Landau

levels while the i sum runs over the possible values

of co/k; i.e., it depends on the em dispersion law

al =co(k). From a physical point of view this is a
consequence of the fact that, a priori, many values
of the electron momentum p, along H satisfying
the conservation law exist. As we shall clarify in
the following, the possible k values of the em wave
which are simultaneously excited depend on the
external magnetic field. This is a peculiar charac-
teristic of the microwave absorption which distin-

guishes it from other types of.absorption, e.g., ul-
trasounds. This effect allows the explanation of
the experimental aspects of the QEO. Besides, the.
term cosh is present in Eq. (1) and this fact is
well known in the quantum effect. l In fact g„ in

Eq. (1) gives, as a function of H, the oscillating
behavior WM1 tllc period 6(1/H) directly lclated to
the cross-so:tional areas of the Fermi surface.

When the calculated values of the conductivity

0;I, are put in the Maxwell equations, it is possible
to obtain from the consistency conditions a set of
equations for the absorption and dispersion of the
em field. Introducing the complex variable
al/(ku, )=a+ip, where u, is the Alfvcn velocity of
the electron-hole plasma, one obtains the following
quatlons:

1 —(a —Pl)[1+c2Gl(a,P)]+ciPG (a,,P)=0,
(4)

2p[1+clGl(a, p)]+ci G (&,P)=o,

where

+a, (u/N)'"c'
(b~+byy }'~ 4nc~mc ks T

f'(&)(a a )' ' e',
a, cos8

2 ax ayy

(a +a~)l
N

G(a,P)= g (n+ —, }lcosh 2a(x„—ate+Pl),
e=o (7)

z 2n, cos 8
Xn= 2

Ug Ptl 0
&p.—(n+ —) (~ a )'~'

where the, product ci G(a,P) is essentially the
quantum term, cl is proportional to the angle be-
tween the principal planes of the.energy constant
surfaces, and the plane of rotation of H, x„ is the
velocity (in units of u, ) of the electrons of the nth
Landau. level at c=a'~. . The other: quantities are
given in the Appendix. We recall that in Eqs.
(4)—{8)an ellipsoidal dispersion law for the car-
riers has been used. Introducing the variable
g=~l —Pl, one obtains:from Eq. (4),

S'.(P= 1—g'[1+c&G (g)]

c iGl'f)

2[1+clG {g)]
(9)

whose solutions g;, allow to calculate tile absorption
which is found to be

P(H) =-g el 6 (g;)
(10)

2[1+clG (gj)]
where g&.runs .over the possible solutions of Eq,
(9). The values g; for which Eq. (9) is satisfied are
included in the range 0—1 and are less than or
equal to the number n~ of Landau levels below the
Fcrllll lcvcl Ill otllcl' wol'ds, tllc brRnchcs co( k ) Rrc
a priori nz at the most. The function E{g)strong-
ly depends on the magnetic field H intensity. As
can be seen. in Fig. 1, E(g) presents a minimum for
each value of n In this figure E. (g) is plotted for
different values of H.

In the previous paper, '
.io order to calculate

P(H) we supposed that the values g'& were approxi-
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pIO. 1. Behaviors of the function E(f} for different
values Of the external magnetic field H.

Ai(H)= Mx& [I+el(i+ 1) ]

c i(i + —,)'
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The coefficient M will be considered as a free
parameter in the further numerical fit.

Using the hypothesis of Eq. (11),G(g&) is calcu-
lated first and then p(H),

(c1 /2A; }g (n + , )~5-«

mated by those for which the function E(g}shows
a relative minimum; in other words, the limit
T~O was assumed (thermal-line width equal to
zero}. The theoretical conclusions were only quali-
tatively in agreement with the experiments, while
some results were not explained. In the following
we shall carry out the calculation of dp/dH, tak-
ing into account the width of the thermal line in
E(g)=0, and show how it is possible to fit the ex-

perimental data with one parameter only. In par-
ticular the theory will be able to explain the QEO
modulations which, as we have shown in Ref. 4,
cannot be related to the simultantxlus presence of
different charge carrier pockets in momentum

space, but are a pecuhar feature of the QEO.

We remember that the i sum runs over the possible
solutions of E(f)=0. The Kroenecker 5«, in Eq
(13), come from the following approximation. The
values g; are given by

gt ——x; +—(arccoshA; )'/1,
8

and G(fi) is

G(g;)=g (n +-, )'

Xcosh a x, —xt +—(arccoshA;) /
Q

In the llypotllesls of a col11plete sepal'ation between
the spikes, the relation

To clarify the problem let us consider Fig. 1,
which gives the function E(g). It consists of a set
of spikes along the line y =1—g. The spikes,
when the solutions exist, intercept the g axis in two
polllts whicll give 'tile vallles gi 'to be llltrodllced 111

Eq. (10}for P(H).
The width of these spikes is due to two possible

causes: (i) the finite value of the temperature,
analytically present in the quantum part of the
conductivity with the term cosh 1, and (ii) the fin-
ite value of the relaxation time r. In a previous
paper we put both mr +e& and T~-O. Here we
disregard the second condition and assume T~.
In order to do this let us suppose that each spike is
a function of f of the form

(16)

is valid, and the term

coshIa [x„—x; +—(arccoshAi)'+]I

is always very large compared to I except when
i =n. Assuming the validity of Eq. (16) one ob-
tains Eq. (13).

The calculation of derivative d I'/dH of the ab-
sorptioii coefflclellt I =u p(H) with respect to H
is now straightforward and is reported in the Ap-
pendix. A numerical analysis of dI'/dH by vary-
ing H has been carried out for different values of
the parameter M.
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At this point the role of M has to be stressed. It
is present as a factor in the amplitude A;(H) of the
lines in the function F(g). It is clear that, in the
calculation of dI'/dH, only the lines which have

amphtude such that E(g) crosses the g axis give
contribution to the absorption. So, in the numeri-
cal fit a condition must be imposed to the ampli-
tude A;(H) which will analytically select the values
n in the sum of Eq. (13). As previously stated,
from a physical point of view not all the possible
values of k, for a fixed em frequency co, are simul-
taneously excited. Also, since A;(H) depends on
H, one understands the twofold role played by the
external magnetic field. Because of the vanishing
of the argument of the hyperbolic cosine, H gives
the occurrence of the resonances and by means of
A;{H) the amplitude of them. The role of the
parameter M is fundamental for the comparison of
the experimental results obtained for bismuth with
the numerical fit in two respects:

(i) The disappearance of oscillations with in-

creasing H as given by the experimental results
shown in Fig. 11 of Ref. {2),

(ii) the modulation of oscillations.
In Fig. 2 we report the experimental behavior of

the surface impedance derivative dR/dH as a
function of M (for a certain value of the angle 8
between H and the normal to the sample surface)
and the theoretical curves for three different values
of M. The choice of M is carried out by imposing
that the conditions (i) and {ii) be fulfilled. In Fig.
2 the value is M =1.1. The same procedure is

used for the measurements taken when H rotates in

the trigonal-bisector plane. The theoretical curves
together vnth the experimental ones are given in
Fig. 3 for different values of 8. The values found
for M are also reported.

IV. CONCLUSION

The improvement of the theory in the semiclas-
sical approach, obtained by means of a careful
evaluation of the linewidth of the resonance, en-
ables one to explain a set of experimental results of
the microwave absorption in bismuth. In particu-
lar the main result of this paper consists of the
fact that, with only one parameter M, we can fit at
the same time both the magnetic field range in
which the oscillations disappear and the periods of
the modulations. This is summarized in Fig. 3,
~here the agreement between experimental and
theoretical curves is surprisingly good.

Beyond the fact that we are able to explain the
experimental results, some comments on the role of
the parameter M are necessary. Varying M the
theoretical behavior of dI'/dH as a function of H
presents the following characteristics:

(i) For low values of M there are no oscillations
due to the fact that the function F(g) is always
different from zero.

(ii) With increasing M a large peak appears for
H =4 ko.

(iii) By further increasing M the oscillations ap-

y =86

-"86

hw
CO

FIG. 2. Theoretical behavior of the absorption
derivative dI /dH as a function of H for different
values of the parameter M. The value I=1.1 gives the
best fit of the experimental results. 8 is the angle be-
tween the magnetic field H and the normal to the sam-
ple surface.

I I I I
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Nlagnetic Field H (kG)

FIG. 3. Experimental and theoretical fit for different
values of the angle 5.
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pear with a modulation superimposed on them
(Fig. 3).

(iv) For high values of M the oscillations are
present without modulation and do not disappear
for high values of H.

To clarify more precisely the physical meaning
of this parameter one has to solve the conductivity
equations without the condition co~~ 00. This is a
very hard problem whose solution will be attempt-
ed in the future.

APPENDIX

Assuming for the carriers an ellipsoidal dispersion law centered at the origin of the momentum space with
the z axis along the external magnetic field,

1=( 11P~+ 22P»+a33P*+&12P~P»+2a13P~A+2a23P»P, )
2mo

the quantities defined in the paper are as follows:

f (8)= [(a„)'/ sinasin8+(a )'~ cos8(y„cosa+y» sina)] /mo

+[(a»)'~2cosasin8+(a»)'~ cos8(y„cosa —y, sina)] /mo,

a,
Vs

&Nl p

a„=allcos a+u22 sin a+a l2sina cosa,

ay =u 1 lsin a+e22 cos a —a l2sina cosa,

a, =a33+Q22y» +0127xy» +0 1 1 dz F13Yx 1223y»

a„a»(sin8+y» cos8}2

A'+a B'

axay x

g y2+a Bt2
X

agcos a+aysin a
+ 0 ~ ~

axay

a„(y„cosa+y»sina) +a„(y» cosa —y, sina)
b~ —— +

away

2ay —sin 8+a„
a„ay electrons

+ ~ ~ ~

(where the ellipses represent an analogous term for holes)

and a is the angle between the principal planes of the energy constant surface and the plane in which H ro-

tates,

(nil u22)+[(u 11 22) ++12]2 2 1/2

tana=
Q l2
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