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Local-field effect in optical reflectance from adsorbed overlayers
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The importance of the local-field effect in differential reflectance spectroscopy is
demonstrated by means of numerical calculations done for the system of argon adsorbed

on an alumina substrate at two coverages. The calculations show that peaks in dif-

ferential reflectance are not simply proportional to the adsorbate coverage, and their loca-

tions (in energy) change as the covenge is changed. Two models are considered for the

substrate dielectric response —a local dielectric constant, and a nonlocal response based on

the semiclassical infinite-barrier model. The local-field effect is shown to exist indepen-

dent of the model considered for the substrate didectric response. Connection is made

with the available experimental data wherever appropriate.

I. INTRODUCTION

It was pointed out by Bagchi, Barrera, and Das-
gupta' that the local-field effect might be impor-
tant in the interpretation of certain aspects of the
differential refiectance spectra obtained from weak-

ly adsorbed species on a metal substrate. They
focused attention on experiments ' done with
rare-gas atoms, chiefly argon adsorbed on alumi-

num, and showed that the local-field effect, i.e.,
the modification of the electromagnetic field at a
given adsorbate atom because of the presence of
other adsorbate atoms, could explain the observed
movement of the optical-absorption peaks as the
adsorbate covcragc % as changed. Their Icsults
mere iQ qualitative agreement with the experimen-
tal data.

The treatment in Ref. 1 was brief and was based
ofi R local scrcclilng niodcl foi tlic nlctal substi'Rtc.

In this paper we present a more detailed account of
the theory, and also consider the nonlocality of the
dielectric response function of the background met-
al. We find that the main conclusions of Ref. 1

(hereafter referred to as I) hold even with the in-
clusion of nonlocal effects. This certainly but-

tresses the claim Q1adc in I about the ilnportance
of local-field effects in differential reflectance spec-
tioscopy.

The physics of the problem under investigation
can be discussed simply in the following terms.

Consider an ordered two-dimensional array of ad-
sorbed atoms located at I R; J I outside a metal
surface, where the metal is assumed to occupy the
rcg'ion z p 0. FGI 8 t%0-dIGlcnslonal square all'Sy

of lattice parameter at, the atomic locations are
given by

%'herc —Oo Q E,J Q Qo, and zo denotes t11c scpara
tlon bchvecn thc adsorbate plane and thc nletal
surface. %hen an clcctroHlagnctlc %ave ls Incident
upon the system, each adsorbed atom feels an elec-
tric field which is the superposition of the external
field (without adsorbates) and the dipolar field pro-
duced by all other atoms. This net field polarizes
the atom, giving it a (time-varying) dipole moment

p8, %herc

p =3(to) (E'+Ed;u), (1.2)

tx(oI) being tllc atomic polafIzabillty tclisol; Rild E
and Ed;P the external and dipolar fields, respective-

ly, at the location of the atom. We have assumed

llcrc that tlic IIlcidcilt ligllt Is monochromatic, llav-

ing an angular frccluency to, and that its wave-

length A, =2nc jto is much greater than at so that
the variation of E parallel to the surface can be
ignored. The dipolar field at an adsorbate site can
be dceomposcd into two terms,

(1) (2)
EdIP=EdIP+Ed P
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where Ed;p is the contribution to the dipolar field
arising from dipoles in the adsorbate plane, and,
Ed;~ denotes the contribution to the field from im-

age dipoles induced in the metal. Both these
fields, in turn, depend on the dipole moment p. If
Ed;& can be expressed in terms of p, Eq. (1.2) may
be solved for p as a function of the external field
E, thereby permitting us to define a dielectric

response tensor%, for the adsorbed layer. The dif-
ferential reflectance from such a system. can then
be computed with the aid of microscopic formulas
that were derived preciously, and the result com-
pared with experiments.

The dipolar field at an atomic site, say the one
specified by (0,0, —zo), from all other dipoics in
the adsorbate plane is given by

dO

E (I)
23~p(R" —R )](R; —R )—p(R; —Roo)

5(R,~ —Roo)

=z(p, «i') g&
—[x(p.«i')+y(S, ~«') l(k~2»

where gc denotes the well-known two-dimensional

sum evaluated by Topping,

=—9.0336. . . . (1.5b)

The prime in all these sums indicates that the term
with i =j =0 must be omitted. It is far more diffi-
cult, though, to evaluate the image field Ed;„'. This
was done in I within the local screening approxi-
mation and ignoring retardation effects. That pro-
cedure is discussed in some detail in this paper.
We also try here to go beyond the local screening
approximation by utilizing the results of recent
studies done by several authors on the theory of
the dynamical sero:ning of a dipole by a metal sur-
face. In this paper we shall present results based
on the semiclassical infinite-barrier (SCIB) model,
which has distinct advantages over the other
models discussed in the literature. ' The formal-
ism developed. by Feibelman7 uses a random-phase
approximation (RPA) jellium description of the
metal, and calculates the induced field correctly
only if the dipole is far from the metal surface.
This is a severe limitation, and excludes some of
the more interesting effects of nonlocality, e.g., the
dispersion of the surface- and bulk-plasmon modes,
and the electron —hole-pair excitation for large
momentum transfer Q parallel to the surface. The
work of Metiu and collaborators is not particular-
ly well suited to study the screening of an ordered
overlayer of osciHating dipoles. The SCIB model, '

on the other hand, while not treating the diffuse
nature of the metal surface correctly, includes the
most important effects of nonlocality; it can be
solved easily for arbitrary distance of the dipole

(1.5a)

Wc Rsslllllc foi' tllc sake of sllilpllcity tllRt tllc
polarizability of an adsorbed argon atom is isotro-
pic and is given by the free-atom formula, "*'

e' f.
a(co) =—g

(C0 —N —if CO)J J J
(2.1)

I

from the surface and for different metals and it
yields physically coiilprc11clislblc icslllts. That is

why we use tliis model in ollr calculation
Since the actual problem is fairly complicated,

we shall make certain simplifying assumptions at
the outset. We shall restrict ourselves entirely to
the system of Ar adsorbed on Al, and consider
lilalnly p-polarized llgllt fol whlcli thc electric Acid
lies in the plane of incidence. Furthermore, we
shall assume the polarizability of the adatom to be
isotropic, i.e., a(co)=a(~)1, and given by the atom-
ic value in free space. While this is indeed a hmit-
ing assumption, it is not possible as yet to compute
the dynamical polarizability of an adatom very ac-
curately We also feel that the effects we discuss
in this paper will- remain even if a(co) is changed;
what will change are the location of absorption
peaks and the magmtude of their shift caused by
changing coverage. The manner in which we com-
pute a(co) for Ar is described in sonic detail in Sec.
II. Section III discusses the nonretarded screening
model of I, and presents results on differential re-
flectance based on that model. In Sec. IV we
present results of numerical calculations based on
the SCIB model for the dynamical screening of os-
c&llatmg Chpoles. Section V summanzes our con-
clusions, and suggests ways of verifying the
theoretical idea.



cc(co)= 6(27.2)duo

fsp,
„Esp „—(Aco)1—iR y„co

where fop „refers to the oscillator strength of a

single electron for transition to a final state labeled

by v with the associated transition energy Esp
The sum in Eq. (2.2} consists of two parts: a

discrete part for which v=ns or nd, where n is the

principal quantum number )3 and s and d refer

to angular momentum values, and a continuum

part where the transition energy exceeds the energy

of ionization. For the discrete part of the sum we

use the best theoretical and/or experimental values

for the oscillator strengths and transition energies

available in the literature. These are tabulated

in Table I for 3 & n & 6, which is the range of

(2.22)

TABLE I. Table of values of transition energies and

oscillator strengths of argon atom used in these calcula-
t2ons.

Ep~ „(eV) f3p-v

4s
5s
6s
3d
4d
Sd
6d

11.57
14.33
14.96
14.076
14.89
15.29
15,48

0.055
0.0082
0.0031
0.196
0.081
0.043
0.022

in terms of the transition frequency coj and oscilla-
tor strength f& for the jth transition. Here yJ is a
phenomenological damping term. No first-princi-
ples calculation exists for the dynamical polariza-
bility of an argon atom adsorbed on the surface of
a simple metal such as Al. In this calculation,
therefore, we replace f~ and coj by their values in

free space. This approximation, although drastic,
is by no means an absurd one. Theoretical calcula-
tions' show that the static polarizabilities of
noble-gas atoms brought near a jellium surface
differ very little from their free-space values at
separations )2 A. Also differential reflectance
data at dilute coverage of adsorbates show

optical-absorption peaks that lie close in energy to
what is found in free atoms. However, the inter-

pretation of the data is difficult, owing to large
background signals. At optical frequencies we

need to be concerned only with transitions of the
six 3p electrons comprising the outer shell of ar-

gon. Expressing energy in eV, Eq. (2.1) may be
rewritten as (ao —fP/pne, —the Bohr radius},

discrete transitions that we consider. For the con-

tinuum part of the sum, we approximate the curves

for df Ide given by Cooper. '
by piecewise linear

functions suitably truncated so as to have the
correct area under them as computed theoretically.

Thus for 3p~ continuum d transitions, we assume

ECEOA —Be,
de 0~ &&&o

(23)

where e is the kinetic energy of the excited electron,

A =1.6(Ry) '=0.1176(eV) ', (2.4a)

B= 1.45(Ry) =0.0079(CV) (2.41)

eo ——1.1 Ry=14.96 CV . (2.4c)

Clearly hco=e+I, where I is the ionization energy.
For I we use the experimental value' of 15.76 eV.
Cooper's calculated value' of 16.06 eV differs
from it by only about 2%. For 3p-+ continuum s
transitions, we assume

0.80,

0, 6'& 6'o
(2.5)

where eo——1 Ry=13.6 eV. The approximations of
Eqs. (2.4) and (2.5}yield

g fop I ——0.08,
{s,}

gf1p E„=ogg
IE I

(2.6a)

(2.6b}

111 agrccnlc11t w1th Coopc1' s calculations. F111ally,

in the continuum range of transitions, we set
y„=0+ and replace the sum over v by appropriate
integrals over e. The integrals are easy to carry
out and yield logarithmic functions.

The resulting electronic polarizability cz(co) of
argon is a function of the photon frequency co, is

complex, and depends on the choice of y„ for the

discrete transitions. In many of the calculations

reported below, we choose A'y„=0. 5 eV for all v to
account for the substrate-induced broadening of
the adsorbate energy levels in an approximate
manner. All y's of course need not be the same,

and we shall discuss this point and its impact on

our calculations later. At this stage we simply
note that from Table I, the lowest excitation ener-

gy of a free argon atom comes from 3p~4s transi-
tion. The oscillator strength for that transition,
however, is almost a factor of 4 smaller than that
for the first allowed d transition (3p~3d). The
basic assumption that we make in using the free-
atom polarizability for the adsorbed argon atom is



LOCAL-FIELD EFFECT IN OPTICAL REFLECTANCE PROM. . .

that, the above rnentioiied featui'es survive, at leas't

approximately, even after the atom is adsorbed.
The assumption appears to be justified experimen-
tally, where differential reflectance for dilute cov-
erage of Ar on Al shows peaks whose positions
corrclatc well %'1th thc optical"absorption peaks 1Il

the free atom. This is especially true of the
3p~4s transtion. The 3p~3d transition, howev-

er, is masked by a rising background. How the os-
cillator strengths are affected by adsorption is
much less clear. Since an argon atom chemisorbs
weakly on a metal surface, we do not expect its 3p,
and possibly 3d, states to be modified greatly by
adsorption. The excited 4s state, though, is clearly
alkalilike and mould be perturbed by the metal.
Nevertheless, we feel that the experimental data
justify, albeit qualitativdy, our procedure of using
the free-space polarizabihty to describe the re-
sponse of the adsorbed argon atom.

Lct us lmag1nc thRt argon atoms arc adsorbed on
the surface of Al in an ordered two-dimensional
array. The experiments that we shall focus on here
were carried out on substrates of polycrystalline
Al, and the structure of adsorbed overlayers of Ar
on the them is not known. %'e assume the over-
layer geometry to be square for simplicity; that
suffices for our purpose here since the present
study of the local-fidd effect is aimed primarily at
a qualitative, physical understanding of it rather
than at quantitative answers. I.et the square array
have a lattice parameter a~, the atomic locations
being given by R;J of Eq. (1.1). As discussed in
Scc. I, lOng-wavelength clectrOIDagnetlc waves 1n-
cident on the system will induce in each adatom a
dipole Inoment p which depends on both the exter-
nal and dipolar electric fidds. The dipolar field

I

[cf. Eq. (1.3)] consists of two parts, a part E~"
arising from dipoles lying in the adsorbate plane,
and a part Ed;p coming &om dynainical screening

(&)

of the metal. It is straightforward to calculate
Ed';~, and the result is given in Eqs. (1.5). It is
much harder to deal with the dynamical screening
of the metal, and some form of approximation
must be introduced. In this and the following sec-
tion, we examine some of these approximations.

It %vas assumed ln I that the dynam1cal screcn1ng
of an osrillating point dipole by a metal surface
could be described by the classical theory of im-
ages. ' This section will be devoted to studying the
consequences of that assumption. The next section
will be devoted to the question of nonlocal correc-
tions. According to ihe classical image theory, a
dipole p located at R =(ia"i jui —zo) in front of a
metal surface will induce an image dipole

(e—1)—
( —z. —u&s. )(e+1)

located at
R "=(iud jui, zo)

where E and J arc illtcgcrs lying bet%'cen —co and
+ ao, and 6'=E(co) is tlie flequency-depeiideiit,
complex dielectric constant of the metal. The im-
age theory is, in fact, valid in the nonretarded lim-
it, so that in applying it to the present situation,
we would ignore all retardation effects. The in-
duced dipolar field E~@~~ at the adatom site speci-
fied by (0,0, —zo) is now given by a sum similar to
that in Eq. (1.4) with pr replaring p, R;J replacing
R,J, RIld the tcII i =j=0 now 1ncludcd 1Q thc suIQ
to account for the effect at a dipolar site of its own
image. The Cartesian components of the induced
dipolar field are given by

[E~;p];=(p;/ai g'I/2, i=x,y (3.3)

[I~p]*=V.«i')4 ~ (3 4)
where-

(3.5)
3(»0«i)' —[i'+j'+(2zo«i)'1

(&+1)
g 1 [i +j +(2zo/ai) ] /z

A large body of literature' "exists on dipolar sums of this type. The particular two-dimensional lattice
sum of interest here was carried out by Mahan and I.ucas. '9 The sum can be converted into a more rapidly
convergent series:

2 in16m g g (i2+j )'~ exp[ (4~zola')(i +—j )'~ ] .(&+I); o,
(3.6)

Combining Eqs. (3.3) and (3.4) with Eqs.
(1.2)—(1.5), we can express the induced dipole mo-
ment on an adatom as a function of the external

electric field E . It is convenient to introduce a
length pm'ameter d, which denotes the equivalent
thickness of the adsorbate layer, such that the
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volume per adatom is al d. %e say nothing physi-
cally about the size of d since the final results are
independent of it. Let us define

(3.7a)

(3.7b)

and hence its effective dielectric constant. Using
the continuity of the normal component of the dis-
placement field and the tangential component of
the electric field, which allows us to identify E,,
E», and E, with the macroscopic fields E„,E»,
and B, in the film, we have

the latter being the dipole moment per unit volume
in the adsorbate layer. Then, after a modest
amount of algebra, we obtain

E;+4~I';=@;E;, i=x,y (3.10)

(3.11)

l =X,f
(3.8)

As a result, we find that the adsorbate fllm may be
characterized by an anisotropic dielectric tensor
whose components satisfy the relations

e; —1=4Irr(aild)/[1+(1 /2)(go —gi)],

(3.9)
l =X~/ (3.12)

The frequency dependence of r is suppressed in
these equations along with that of gi ( through e).
It will be displayed explicitly whenever it is neces-

sary to do so.
We now use Eqs. (3.8) and (3.9) to define the

macroscopic electric field in the adsorbed layer,

(3.13)&g —1=—4Irr(&I/d)[1 —r(go+pi)] .
These dielectric response functions are all that are
needed to conlpute tile dlffelelitlal reflectaIice of
light from an adsorbate-covered metal surface. 4

The results, for s- and p-polarized light, respective-

ly, are given by

N=4 d cosH) Im
C

N=4 d cosH Im
C

—I

e—1

(e—sin 8;)(e„—I)+e sin 8;(e, ' —1)

(1—e)(sin 8 —E'cos 8 )

(3.14)

(3.15)

Here 8; is the angle of incidence of light. As men-

tioned earlier, the differential reflectance is in-

dependent of the thickness d of the adsorbate layer
since both (e; —1) and (e, ' —1) are inversely pro-
portional to d.

Figure 1 shows the differential reflectance per
unit coverage, i.e., (hR»/R»)/8 with 8 being the
coverage for p-polarized light incident on argon-
covered Al at two values of the converage, viz. ,
8=25% and 100%. The adsorbate geometry on
the metal surface is always assumed to be given by
a square lattice; only the lattice parameter a~ dou-
bles in magnitude on going from full to quarter
coverage. The angle of incidence is taken to be
45'. The input parameters in the calculation, apart
from the dimensionless polarizability r(u), are the
lattice parameter al, and the distance zo from the
surface, and the complex dielectric constant e(co)
of the substrate metal. We choose ai ——4 and 8 A
for full and quarter coverage. The former value

corresponds approximately to a monolayer cover-
age as suggested by experiments on the physisorp-

l.o

0.8

~ 0.6

0.4

I I l

l0.0 1 l.0 l Z.O l3.0 l4.0 l 5.0
Wav (eV)

FIG. 1. Calculated differential reflectance per unit
coverage of' p-polarized light from the system of argon-
covered aluminmn at two coverages. Sohd line refers to
a full monolayer and dashed line to a quarter mono-
layer. The calculations are based on a local model for
the substrate dielectric response. All discrete transitions
on the adatom have been assumed to have the same en-

ergy width of 0.5 eV.
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1.0

„0.6
CL

+ 0.4

a)=4A
Qg-„eg,

I5.08.0 l2.0 l5.0 l4.0
flea (eV)

FIG. 2. Calculated differential reflectance of s-
polarized light from the system of argon-covered alumi-
num at two coverages. Solid line refers to a full mono-

layer and dashed line to a quarter monolayer. The cal-
culations are based on a local model for the substrate
dielectric response. All discrete transitions on the ada-
tom have been assumed to have the same energy width

of 0.5 eV.

0

tion of argon on graphite. We take zo ——2 A in
these calculations. The dielectric constant of
aluminum is taken from a Kramers-Kronig
analysis of the experimental reflectance data.
Figure 2 shows similar results for the differential
reflectance of s-polarized light for two coverages of
argon on aluminum. Note that the differential re-
flectance of Fig. 2 has not been norinalized to unit
coverage. The results of the two figures are very
similar, indicating that the prominent peaks arise
from structures in Im(e„—1). Our finding is con-
firmed by the recent experimental data Mod. el

calculations 3 show that additional structures in
the differential reflectance of p-polarized light,
coming from the term involving (e, ' —1) in Eq.
(3.15), are important near the longitudinal normal
mode of the adlayer. The frequency range display-
ed in Fig. 1 presumably does not lie close to that
normal mode.

The most interesting feature of the results shown
in Figs. 1 and 2 is that they do not scale simply
with coverage. Rather we notice a characteristic
movement of the differential reflectance peaks as a
function of photon frequency as the coverage is
changed, and this movement is fairly insensitive to
the polarization of light. These features arise from
the fact that the adsorbed atoms, in our theory, are
not regarded simply as independent scatterers.
Their interaction —the so-called "local-field
effect"—is explicitly included in our calculation.

The change of peak location with coverage is an
important manifestation of the local-field effect,
and its presence is indeed confirmed by recent ex-
periments. ' ' The local-field effect is also the
reason why the magnitudes of differential reflec-
tance peaks are not simply proportional to the cov-
erage.

Recent experimental data of Cunningham,
Greenlaw, and Flynn on the system of argon-
covered aluminum unmistakably reveal the pres-
ence of adsorbate-adsorbate interaction in the dif-
ferential reflectance spectra. The main findings of
these authors may be summarized as follows. At
coverages above a monolayer, they find a peak at
around 11.7 eV, a weak peak or shoulder at around
13 eV, and a steadily rising shoulder culminating
in a peak in the (16—17)-eV range. The hjgh-
energy peak, occurring above the plasma energy, is
beyond the scope of the local theory discussed in
this section. The low-energy peak is atomiclike
and shows effects of spin-orbit splitting at cover-
ages in excess of two monolayers. As the conver-
age is decreased to 8=25%, the low-energy peak
remains fairly stationary but broadens somewhat
and weakens in strength. The shoulder or weak
peak at 13 eV, on the other hand, has an unmistak-
able shift to higher energies as the coverage of ar-
gon is reduced. These results, in broad terms, are
true for both polarizations although the structures
differ somewhat in detail.

The classical calculations reported here lead to a
qualitative understanding of these structures in the
differential reflectance data. A detailed compar-
ison of the theory with the experiment would, of
course, be premature. Nevertheless, we can identi-

fy the low-energy peak with the 3p~4s transition
and the second peak with the 3p~3d transition on
the adsorbed atom. awhile the 3p —+4s transition
energy on the adsorbate has roughly the atomic
value, the 3p —+3d transition energy is lower than
the atomic value by more than a volt at a mono-
layer coverage. Part of the shift, as shown in Fig.
1, may be explained by the local-field effect associ-
ated with a transition having a rather large oscilla-
tor strength. The rest must be attributed to chemi-
cal shift or adsorbate-substrate interaction. Simi-
larly, the relatively rapid movement of the higher-
energy peak as a function of the adsorbate cover-
age, as compared to the slower movement of the
lower-energy peak, can be understood in terms of
differences in oscillator strengths.

Comparison of the experimental data with the
calculations reported in Figs. 1 and 2, however, re-
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0.4—

0.5
CL

IX
0.2

CI

O. I

I

IO.O I I.O
I I I I

12.0 I5.0 I4.0 I 5.0
t~ (eV)

FIG. 3. Calculated differental reflectance per unit
coverage of p-polarized light from the system of argon-
covered aluminum at two coverages. Solid line refers to
a full monolayer and dashed line to a quarter mono-
layer. A local dielectric function has been used in these
calculations to describe the substrate response. Discrete
transitions on the adatom are presumed to have the
same energy width of 2.5 eV except for the lowest tran-
sition (3p ~4s) which has the energy width of 0.5 eV.

veals two glaring deficiencies. The major one con-
cerns the relative peak heights, where experimen-
tally the 3p~4s transition peak is stronger than
the 3p~3d transition peak, in contradistinction to
the result shown in Fig. 1. A second difficulty is
that the lower-energy peak in Fig. l shows a slight-

ly greater movement as a function of coverage than
is seen experimentally. Furthermore, the calculat-
ed differential reflectance is substantially larger in

magnitude than what is observed in experiments.
In the next section we shall discuss how nonlocal
corrections might modify our results. However,
we wish to note here one possible way of interpret-

ing the experimental observation within the present
context. In calculating a(ro) and hence Pro), we
assumed Ay, =0.5 eV for all v [cf. Eq. (2.2)]. This
implies that all atomic levels broaden approximat-
ley equally upon adsorption, an assumption that is
far too restrictive. Instead it makes sense to as-

sume that the higher-energy atomic levels have
more broadening when the atom comes close to the
metal surface. We have explored theoretically the
consequences of the choice A'y, =0.5 eV for the
3p~4s transition and a series of values of fiy„
(=1.0, 1.5, and 2.5 eV) for all the other transi-

tions. We find that the higher-energy peak in dif-
ferential reflectance broadens and decreases in
strength as a result of that assumption. The effect
can be seen quite clearly in Fig. 3 where we have
plotted the normalized differential reflectance for
p-polarized light under the assumption that
A'y„=2. 5 eV for all transitions with energies above
the including the 3p~3d transition. The lower-

energy peak is now seen to be the stronger one.

The higher-energy peak has broadened considerably
and moves much more slowly with coverage. This
behavior agrees qualitatively with the experimental
observation. The magnitude of differential re-
flectance in Fig. 3 is also closer to the experimental
data. It would certainly have been possible to ob-
tain closer agreement between the calculated and
experimental differential reflectance by treating A'y„

as adjustable parameters. Such an approach, how-

ever, is not very worthwhile, given the unsophisti-
cated nature of the theoretical calculation. In fact,
nonlocal calculations reported in the next section
do not include studies of the sensitivity of the re-
sults on varying fig„, although the effect is expect-
ed to be similar to that shown in Fig. 3.

IV. EFFECT OF NONLOCAL RESPONSE
OF THE SUBSTRATE

4'( q j,z; rj ) =2np, B(q& )e ' ' e (4.2)

In the preceding section the dielectric response
of the substrate was described by a local function.
In this section we wish to study the consequences
of including the nonlocality of the substrate
response function in our calculation. Specifically
we wish to calculate the image potential due to an
ordered monolayer of dipoles situated on top of a
nonlocal substrate. The response of the latter will
be described by the specular-scattering or semiclas-
sical infinite barrier (SCIB) model, which has been

discussed widely in the literature. ' Although
this model does not treat the diffuse nature of the
metal surface correctly, it includes the most impor-
tant effects of nonlocality. It can be solved easily
for arbitrary distance of the dipole from the sur-

face and for different metals, and the results are
expected to be valid when the dipole separation
from the surface, zo, is )2 A.

Let us consider first a single, oscillating point
dipole, p(t)= pe '"', located at rj =(pj, —zo) in

front of a metal surface, where the metal is imag-

ined to fill the half-space z & 0. The distance zQ

between the dipole and the metal surface is re-

stricted to be much smaller than the wavelength of
light, so retardation can be neglected. Then, as
shown by Fuchs and Barrera, the induced poten-
tial can be written as (suppressing the time-

dependent factor)

rp'(r;rj)= J 4'(q;, z;rj)e ', (4.1)
(2m. )

where
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when the dipole moment hes in the z direction.
Here the function 8(qi) is defined as

(4.3)

E,"(0,0—z )=— p, $ 8(G)Ge
Q» IGI

(4.9)

for a two-dimensional wave vector qi in the xy
plane, and

Xe e
g](S-S{)) —4'q ) p.

(4.5)

Next consider an ordered, square array of di-
poles situated on the plane z =—zo. I.et ai be the
lattice parameter. The induced potential at a given
point is now obtained simply by superposition.
Thus, for all dipoles pointing in the z direction, the
net induced potential has the Fourier transform

S(q;)=
~g E» q, QP

where ei( q, io) is the frequency- and wave-vector-
dependent bulk longitudinal dielectric constant of
the metal and q'=q i+q, . Similarly, for a dipole
lying in the x direction, the induced potential is
given by the same expression as Eq. (4.1), except
that the Fourier transform is now given by

e'(q„z, r, ) = —2ny„a{q, )
lV1

E'"'{00 —zo) =— p —g& «)Ge
Q» I 6 I

(4.10)

In deriving Eq. (4.10) we used the rotational sym-
metry property of the square lattice, so that the
lattice sum of G~/Gz ultimately contributes only a
factor of —,. Also in the sums over I 6 I, terms

involving an odd power of G„vanish owing to re-
fiection symmetry. Thus the net induced field in
the z direction depends only on the z component of
the dipole moment, and the same is true of the
field in the x direction. Equations {4.9) and (4.10)
are, therefore, valid for arbitrary orientation of the
dipole moment p.

It is useful to point out that the nonlocality of
the dielectric response of the metal substrate and
the associated spatial dispersion enter our problem
through the functions S(qi) and 8(qi). The spa-
tial dispersion has important physical effects in-

cluding the broadening of the surface-plasmon res-
onance. For a local substrate, ei {q,m)-+e(co), and
Eq. (4A) is readily iiitegi'ated to yield

(4.6)

S(qi ) ~ I/e(oi),
loca1 hmit

&(qi ) ~ —[e(oi)—I]/[e(oi)+1] .
local limit

(4.11)

(4.12)

Substitution in Eq. (4.1) leads to the net induced
potential in space,

2%Pg

Q»
I 6

(4.7)

where I 0 J denotes the set of two-dimensional
reciprocal-lattice vectors corresponding to the ad-
sorbate lattice. Similarly, for all dipoles pointing
in the x direction, the net induced potential in
space is

Q»
I 6 )

6

6= (ik+jg),
Q»

(4.13)

where i and j are integers which may be positive,
negative, or zero. We substitute this in Eqs. (4.9)
and (4.10) and use the notation of Sec. I. The net
dipolar field Ee;~ at the site of an adsorbed atom
now has components

It is now a relatively, straightforward matter to re-
cover the results of Sec. III from those of this sec-
tion.

We proceed with our present analysis by consid-
eri.ng the adsorbate array in detail. For a square
lattice the reciprocal-lattice vectors are given by

(4.8)

The induced electric field is readily calculated
from Eqs. (4.7) and (4.8). At a dipolar site speci-
fied by (0, 0, —zo) the induced field has com-
ponents

I'g
[Ed;i,l.= i (go+4»

Q»

1 Jx
[Ed~i] = i i{—4+4»

Q»

{4.15)
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where

and

go ———9.0336 (4.16a)

gl ———(2n) g B(ij)(i +j )'
~ e,

EpJ=—OO

Xexp[ —(4mzo/al)

X(l'+j')' ']

(4.16b)

Here B(ij)=B(G) with

G (2~/u )(12+J2)1/2

These formulas are structurally similar to those de-
rived in the preceding section for a local substrate.
In fact, the use of Eq. (4.12) along with a simple
rearrangement of terms allows us to identify Eq.
(4.16b) exactly with Eq. (3.6). The rest of the logic
of Sec. III now applies naturally to the analysis of
this section. From the self-consistency condition
of Eq. (1.2) for the induced dipole moment, and
the defining relations embodied in Eqs. (3.10) and
(3.11), we can define the "effective" bulk dielectric
response tensor of the adsorbate layer. Thus Eqs.
(3.14) and (3.15) are still valid for differential re-
flectance. The only effect of nonlocality is to
change the definition of gl, the response of the
metal to an ordered dipole layer. For a local sub-
strate B(ij ) is a constant, i.e., all reciprocal-lattice

vectors contribute equally to B(G). This is no
longer true when nonlocality of the substrate
response is taken into account.

To assess the importance of the nonlocal correc-
tion, we have calculated B(i,j) within the hydro-
dynamic m'odel for the bulk dielectric constant of
the metal. The metal is now described by the
response function

(4.17)

2

I(q1)=1+ I—Np g)

CO —N I
(4.18)

where
' 1/2

COp
—CO .

I (ql }= q1+ (4.19)

Note that I is complex and depends on both wave
vector and frequency. Substituting Eq. (4.18) into
Eqs. (4.3) and (4.16b} with q1 ——6, we obtain

2
co~

el(q, co) =I—
g 2 p2q2

where co =co(co+i /r), r being a phenomenological
relaxation time, co~ is the plasma frequency,
p =(—, )u~, and q2=q1+q, . Although this dielec-
tric constant becomes invalid at low frequencies
and does not contain electron —hole-pair excita-
tions, it gives a qualitatively correct description of
the bulk-plasmon and surface-plasmon dispersion.
With the use of this dielectric function, Eq. (4A)
may be evaluated analytically to yield [cf. Eqs. (47)
and (48) of Ref. 9]

[(12+12)1/2 I (l,j))(l2+j2)1/2
gl ———(2n )

2 .21/2 1~ I( ~
+1(1'+j) + ij

&ioc
—&

—44i 2+j 2~1/2zo/a~
e (4.20)

where

6'1~= 1 —co& /co

is the effective, local dielectric function, and

(4.21)

I (i j)=(al/2m)l'(G)

is the dimensionless form of I (q1) with

G (i2+j2)1/2
aI

(4.22)

The local limit is recovered on letting P~O; then
I (i,j)~ oo and Eq. (4.20) reduces to Eq. (3.6).

We have computed the differential reflectance of
Eq. (3.15) in this nonlocal case, when gl is given

by the expression (4.20). The results for Ar on Al

I

are shown in Fig. 4 for the normalized differential
reflectance of p-polarized light at two coverages,
viz. , B=—, and 1. The results for the nonlocal

case are shown by the solid lines, while the dashed
lines represent the corresponding local situation,
and are displayed for comparison purposes For.
the best hydrodynamic" dielectric constant of
aluminum, we chose (col r) '=0.0S32 since it gave
the best fit to the experimental data in the
(10—15)-eV range, ' and P was evaluated from the
known Fermi momentum of the metal. The corre-
sponding local situation is described by the Drude
formula on setting P=O. The polarizability of Ar
was calculated in the manner described in Sec. II
with A'y„=O. S eV for all discrete transitions.
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FIG. 4. Comparison of local (dashed lines) and nonlocal or SCIB (solid lines) models for the substrate response func-
tion with regard to their effect on the normalized differential reflectance of p-polarized light from the system of argon-
covered aluminum. Calculated results are presented for two values of the coverage e. All discrete transitions on the
adatom are presumed to have the same energy width of 0.5 eV.

One thing is quite clear from the curves of Fig.
4. The local-field effect, as exemplified by the
movement of differential reflectance peaks upon
changing the adsorbate coverage, certainly is
present even after including the nonlocality of the
substrate dielectric response. We conclude that the
local-field effect seen in differential reflectance is
physically fundamental in origin, and it is unaf-
fected by the detailed nature of the substrate
response function. There are, however, certain
characteristic differences between the local and un-

local cases as revealed by the curves of Fig. 4. For
example, the effect of nonlocality appears to be
more important at lower coverages than at higher
coverages. Also nonlocality apparently enhances
the magnitude of differential reflectance. These
features perhaps can be correlated with the fact
that a large number of terms contributes to the
sum in Eqs. (4.16b) or (4.20) at lower coverages
when aI is relatively large, but we have not ex-
plored this point in any depth. A second interest-

ing difference between the local and nonlocal situa-
tions is evident in the (10—12)-eV energy region.
There, the local case shows two peaks that arise
from an interaction between the 3p ~4s atomic
transition and the surface-plasinon resonance (re-
lated to the presence of the quantity [e(co)+I] in
the denominator of Eq. (3.6)). In the nonlocal
theory, however, the surface-plasmon resonance is

broadened and there is no splitting of the atomic
transition. Finally we note that the movement or
shift of peaks as a function of coverage is some-

what reduced in the nonlocal case. None of these

features, though, detract from the fact that the
local-field effect is important in differential reflec-
tance from adsorbed overlayers, and it must be in-

cluded in a serious calculation.

V. CONCLUSIONS

In this paper we have amplified on the work of
Ref. 1 and studied the role of the local-field effect
in differential reflectance from an adsorbed over-

layer on a metal surface. We describe the dynami-
cal screening of the adsorbate dipoles (induced by
the. electromagnetic field) by the metal substrate
two different models of its dielectric response, viz. ,
a local diele:tric function, and a nonlocal response
based on the SCIB model. In both cases, we find
the local-field effect to be quite important, and it
is essential for interpretating the coverage depen-
dence of differential reflectance. Model theoretical
calculations have been done for the system of ar-
gon adsorbed on aluminum, and experimental data
on the same system are in broad agreement with
the results of the calculations. Admittedly the



theoretical calculations are bastxl on a number of
simplifying assumptions that make them only
qualitatively valid. For example, the polarizability
of an adsorbed argon atom is assumed to be given

by the atomic polarizability in free space. Also the
adsorbate geometry is assumed to be a square, al-
though no structural information is available about
the actual experimental system. Neither assump-
tion has a critical infiuence on the physics of the
problem. They affect only the details of the nu-

merical results, e.g., the actual position of optical-
absorption peaks and the magnitude of their move-
ment as a function of adsorbate coverage. The ex-

periments that we study here mere cried out at
low enough temperatures that the adsorbed atoms
would be immobile on the surface. Their actual
geometrical configuration (e.g., trianIlular instead
of square) will undoubteldy affect E d~o), the dipolar
field at an adatom due to all other atoms in the
adsorbate plane, by changing the numerical value
of go of Eq. (1.5). But that will not alter the basic
conclusions reached in this paper about the impor-
tance of the local-field effect in differential reflec-
tance spectroscopy.

The fact that we have demonstrated in this pa-

per the importance of the local-field effect within
two quite different models of the substrate re-
sponse function means that the effect is fundamen-
tal. It is present even when other forms7 are used
for the nonlocal dielectric constant of the substrate.
%e believe that the most important contribution to
the dipolar field at an adsorbed atom comes from
the neighboring atoms in the adsorbed layer, at
least in the frequency range explored in our work.
Experimental data on other adsorbate-substrate
combinations with better characterized surface
structure and adsorbate geometry mould be essen-
tial for verifying beyond any doubt the conclusions
derived in this paper.
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