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Exchange interactions induced by hybridization of flevels to conduction-electron states in
some Ce compounds. are considered in detail. The usual treatment in which these interactions
are derived through a second-order canonical transformation does not include all contributions.
Using a free-electron conduction band, closed expressions are obtained for the range function,
which approaches the Ruderman-Kittel-Kasuya-Yosida (RKKY) function asymptotically. For
nearest and next-nearest neighbors the interactions are dominated by a new range function

which differs from the RKKY function.

The magnetic interactions among Ce ions have
been considered in a number of recent papers.!™
The effective exchange coupling which is thought to
explain®’ the complex magnetic orderings of several
Ce compounds, such as CeSb and CeBi, arises from
the hybridization between localized and conduction-
electron states. These interactions which are fourth
order in the hybridization matrix element V can give
rise to anisotropic alignments.!»2 They were first con-
sidered by Cogblin and Schrieffer,® who derived them
from an Anderson model Hamiltonian by means of a
canonical transformation.” This procedure gives a
range function of the Ruderman-Kittel-Kasuya-
Yosida (RKKY) type.

In this paper we show that this approach does not
include all fourth-order contributions to the exchange
energy and that the correct expression, which re-
quires a fourth-order canonical transformation, !°
takes into account both conduction-electron spin po-
larization effects and charge fluctuation contributions.
The latter, which are clearly depicted in the perturba-
tion diagrams drawn in Ref. 11, become increasingly
important as the localized level approaches the Fermi
energy.

As it turns out, the full expression for the range
function can be explicitly evaluated using a free-
electron-like conduction band. Our results show that
the range function approaches the RKKY function
asymptotically but that the two functions get out of
phase at small distances. This means that any fit to
experimental data should take this refined range
function into account,’ especially for nearest neigh-
bors.

The model Hamiltonian we have in mind is a
many-site Anderson model and has been used to deal
with intermediate-valence systems in Refs. 4 and 5.
The situation of the Ce** ions we are interested in is
not fully a mixed-valent situation so that perturbation
theory should be applicable. Our explicit expression
being strictly fourth order, can be used to check the
results of more sophisticated approaches. In fact we
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can say that the results of Ref. 4 agree qualitatively
with ours, whereas the spin susceptibility obtained in
Ref. 5, when considered to order V4, gives a rather
different looking Fourier transform.

The equivalence between the single-site Anderson
model and the Kondo Hamiltonian, shown by
Schrieffer and Wolff (SW) to order V2, has led many
authors to think that the effective intersite interaction
in a many-site model (order V'*) follows from
second-order perturbation theory applied to the effec-
tive Hamiltonian which is obtained after the canoni-
cal transformation. The correct result for the
fourth-order intersite exchange as calculated using
perturbation theory in Ref. 11 can be obtained within
the canonical transformation scheme only after one
has performed a fourth-order SW transformation.
This procedure!® leads to a fourth-order effective
Hamiltonian containing only even terms in V, of the
form Hyy=H® +H® + H® + . . . | where the ma-
trix elements of H® and H'® between eigenstates of
HO are

(a |H(2)|b> =—; ZVachb(Dac—ch) ,
c

<a IH(4)Ib> =% EVachdVde Veb

cde

X ( DachdDde - DcdDdeDeb (l )

+ 3DacheDeb - 3DnchdDeb) ’

where Dy=(E;—E;)™ and V= (a|V|b).

The correct procedure to obtain the intersite ex-
change interactions consists of calculating all fourth-
order contributions from H.g, that is

E® =3 HiHif Da+Hy" ®
d

where |i) and | f) are two degenerate ground states
of H® differing in the z projection of the angular
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momenta of two sites. Inserting (1) into (2) one ob-
tains the conventional fourth-order perturbation
theory result,
EW= 2 VieVeaVie VefDicDId‘Dle .

cde
When applied to the Ce hybridization Hamiltonian of
Ref. 8 this procedure gives a coupling constant
between magnetic ions of the form? EMM (R)
=J(R)G(M,M') where the only nonvanishing G’s

are M, M'=+ % The range function is given by
JR) =L 36T Ry (g)
N q
v a-rx
N z 2 (E_e_.)Z
4T 1-fieg ,
€T+ €T €T+g— E
3

where f¢ is the zero-temperature Fermi function.
The first term in the large parentheses contains con-
tributions from H® and from H® which involve
spin-flip scattering of a conduction electron at some
intermediate step and therefore give rise to an ex-
change interaction between localized ions mediated
by the conduction-electron spin polarizability. The
approximation of taking the factor (E — €)% out of
the summation makes this term look identical with
the result of considering only the first term in (2) in
which a similar approximation is applied. The second
term in the large parentheses contains contributions
that come only from H® which, at some intermedi-
ate step, have simultaneous promotion of two local-
ized electrons to the conduction band.
If we assume a free-electron-like €, J(g) in (3)

can be evaluated analytically without any approxima-

tion giving

I? 1
J(g) = ———
(a) dmleppy q*—4ké
1|k,7+k0 P—dke | |g+2k
Mhkr—ko | q(kG —KP) |a—2kr |

(€Y

where py is the density of states at the Fermi energy
€r= kp/2m' the resonant level width T'=mp, V2 and
E =k¢/2m. The function J(gq) is shown in Fig. 1 of
Ref. (10) where it is seen that it differs markedly
from the Lindhard function. The expression of J(gq)
for E below the bottom of the conduction band can
be readily obtained from (4) replacing ko by iko. The
range function can be obtained in both cases. For

E >0 (above the bottom of the conduction band) it

reads
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FIG. 1. Range function J(R) and comparison with
RKKY function for (a) E/er=0.1, (b) E/er=0.5, and (c)
E/er=0.8. Notice the change in scale for each figure. It is
seen that the difference between the improved range func-
tion and the RKKY behavior increases as E approaches the
Fermi energy. The constant 4 =T?/pge.
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_ —12| sin(2kzR) | cos(2keR) .. _ -
J(R)_poe} R —kD T kR (Cil2(kr — ko) R1 = Cil2(kr + ko) R}
— SR it (ks ~ ko) RI +si[2(kF+ko)R]}] , )
0

where si(x) and Ci(x) are the integral sine and
cosine functions. The asymptotic behavior of the
function in the large parentheses is as

1 cos’kpR _ E +3er sin(2kpR)
(E —EF)2 (2kFR)3 E —€F (2kpR)4

which shows that the closer the localized level lies to
the Fermi energy the further out one has to go in or-
der to recover the RKKY behavior. For small R the
dominant term is the first one in the large
parentheses in (5),

1 sin(2krR)
(E '_'EF)Z (2kpR)2

’

which becomes more important as E approaches the
Fermi energy. This behavior is similar to that ob-
tained in Ref. 4.

Figure 1 gives J(R) for (a) E/er=0.1, (b)
E/er=0.5,and (c) E/er=0.8. It is seen that in case
(a) there is no appreciable difference between the
full-range function and the RKKY approximation.
Cases (b) and (c) show how the differences become
more marked as E approaches the Fermi energy.

With I'=200 K and €7 =10* K, we see that case (c),
which might be the situation for some Ce com-
pounds, lies well within the range of validity of per-
turbation theory. It is seen that for distances where
one expects the nearest magnetic neighbors to sit,
2krR =10, the refined range function cannot be ap-
proximated by the RKKY function.

Application to specific examples is beyond the
scope of this paper but we hope that thermodynamic
models for the transitions in Ce compounds!~ will
benefit from refined calculations based on these
results. In particular we want to point out that the
phase boundaries determined in Ref. 3, as mentioned
by the authors, could not be fitted using an RKKY
range function for the nearest neighbors.
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