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Using the techniques introduced by Honmura and Kaneyoshi, we show that two sets of
identities for the two-state Ising model with z nearest neighbors can be used as a basis for
various approximation schemes which can systematically include correlation effects. In
one dimension the results in zero field are exact for the magnetization, nearest-neighbor
correlation function, and critical temperature. By neglecting correlations of more than
three sites we introduce a simple approximation in two and three dimensions for the criti-
cal temperature. This simple approximation yields results which improve on those of the
Bethe approximation. We discuss how the approximation may be improved and extended

to other Ising problems.

I. INTRODUCTION

The two-state, or spin-% Ising model has been
one of the most investigated models of statistical
mechanics since its introduction in 1925.! This in-
terest is generated by the facts that (i) the model is
a simple one relative to other models of coopera-
tive phenomena, (ii) a phase transition is exhibited
by the model at finite temperature in two and three
dimensions, (iii) exact solutions exist in one? and
two dimensions,’ and (iv) the model has a wide
range of applicability to real physical systems.

The problem of finding a solution to the three-
dimensional Ising model has generated a number
of approximation schemes. Also, as new theoreti-
cal techniques have been introduced into statistical
mechanics, they have been applied to the Ising
model in its role as the prototypical statistical sys-
tem. The work of Domb and others on series ex-
pansion techniques* and the various cluster approx-
imations® typify the former. In the latter category
the recent development of the renormalization-
group methodology® is a prime example. A critical
test of any approximation to the three-dimensional
Ising model is to be able to reproduce the exact re-
sults in one and two dimensions, or to approach
these results to an arbitrary degree of accuracy. In
three dimensions, approximation schemes have the
renormalization-group results and the series expan-
sions as a guide.

The most sensitive test for any of these approxi-
mation techniques is the ability to predict the
correct transition temperature and critical ex-
ponents. Again, in one and two dimensions the ex-
act results are available. However, in three dimen-
sions the results from series expansions or
renormalization-group methods must be considered
to be the “exact” results. Away from the critical
region there is very little to distinguish one approx-
imation scheme from another. Consequently in the
present paper we shall be primarily concerned with
determining the critical temperature for the various
Ising lattices. We will comment only briefly about
critical exponents.

In particular, in the present paper we introduce
a new and, we believe, potentially very useful
scheme for obtaining approximate solutions to the
Ising model. The approximation is based on a pair
of exact formal identities for the two-state Ising
model, and then utilizes the exponential operator
technique introduced by Honmura and Kaneyoshi’
(HK). This procedure yields two sets of equations
which are formally the inverses of each other.
However, this symmetry is broken under most
plausible approximation assumptions. The net re-
sult is an approximation scheme which can expli-
citly and systematically include the effects of
correlations.

Since we are primarily interested in comparing
the procedure of the present paper with existing
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approximation schemes, we introduce a simple ap-
proximation to the set of equations and solve for
the critical temperature. The results of this ap-
proximation represent an improvement to the
Bethe approximation. In addition it appears that
the approximation of the present paper is but the
first of many.

In the following section we discuss the set of Is-
ing identities used by HK. In Sec. III we discuss
the exponential operator technique used by HK
and compare the HK mean-field approximation
(MFA) with other approximations. We introduce a
second set of Ising identities in Sec. IV and again
apply the technique of HK to this set. A simple
approximation is made on the two sets of equa-
tions in Sec. V and the results are presented for the
critical temperatures for various lattices. Finally,
in Sec. VI we discuss the limits and usefulness of
the procedure.

II. THE SET OF CORRELATION IDENTITIES

During the early 1960’s Doman, Tahir-Kheli,
and ter Haar® noted that the usual commutator
Green’s-function equations of motion could be for-
mally summed for Ising systems. This resulted in
a set of formal identities for the correlation func-
tions for the Ising model of arbitrary spin. Callen’
pointed out that if anticommutator Green’s func-
tions are used the resultant formal identity
achieves a much more useful and transparent form,
ie.,

(0g(g})=({g}tanhBE(g)) . (2.1)
Here the thermal averages are given as usual by
Tre —#%4
A)=—"7——, (2.2)
) Tre —#*

and the Hamiltonian is that of the two-state Ising
model,

H=—5 3 00,0, —h S0, . (2.3)
&p g

The inverse temperature is given by B=(kpT)!
and 4 is an effective field which we set equal to
zero. The Ising variables are gg=+land J, isa
translationally-invariant effective interaction be-
tween sites g and p which we restrict to the z
nearest neighbors. The operator {g} represents any
function of the Ising variables so long as it is not a
function of the site g and the energy operator E (g)
is given by
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E(@)=3Jp0,+h . (2.4)
P

Callen pointed out in his paper that if {g}=1
then the usual MFA, with zero external field, fol-
lows from (2.1); i.e.,

m= (0, )=(tanhBE(g))~tanhB(E(g)) ,
(2.5)
m =tanhmpBzJ .

At the same time, Callen also noted that the iden-
tity (2.1) could be generated by the method of res-
tricted trace, as had been earlier used by Fisher'”
and was later generalized by Suzuki.!'! The set of
identities so generated, i.e., (2.1), is what we call
the set of correlation identities (SCI).

The SCI has been used off and on since its intro-
duction as the basis for a number of approximation
schemes. One of the first of these was Tahir-
Kheli’s' use of the SCI as the basis for a high-
temperature series expansion in order to calculate
the correlation functions and the critical tempera-
ture for the two-level Ising model in an external
field. Later, Anderson'® generated exact differen-
tial difference equations for the correlation func-
tions based on Green’s-function techniques. The
correlation function identities of Doman, Tahir-
Kheli, and ter Haar can be obtained from these
equations as special cases, and he was also able to
show how the MFA and the Bethe-Peierls-Weiss
approximation could be obtained from his equa-
tions.

In recent years the SCI has appeared more fre-
quently in the literature in connection with im-
proved approximations to the Ising model and par-
ticularly with improved estimates of the critical
properties.'* Much of this interest has been
prompted by the work of Frank and Mitran'’ who
used an integral representation of the SCI to form
the basis for approximations to the critical proper-
ties of Ising models. Variations and criticisms of
their procedures have been discussed by a number
of authors.!®17

In addition to these approaches to approximate
solutions to the Ising problem, there is the recent
paper of Tanaka and UryG'® on the two-
dimensional Ising antiferromagnet. This is one of
the few papers in which the arbitrary operator in
(2.1), i.e., {g}, is replaced by a functional form of
the Ising variables so as to facilitate the process of
obtaining a solution. On a more formal basis, re-
cent work by McCoy, Perk, and Wu'!® on correla-
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tion function identities for the two-dimensional Is-
ing model has led to a set of quadratic difference
equations for the n-spin correlations.

The primary motivation for the present work is
the technique proposed by HK for use with the
SCI. This technique produces a form for the SCI
which, we believe, is particularly amenable to solu-
tion. In its simplest approximation it yields results
which are better than the MFA. The HK tech-
nique can also be related to the work of Frank and
Mitran, as well as be applied to a large range of Is-
ing systems.

III. THE HONMURA-KANEYOSHI TECHNIQUE

HK "% have introduced an exponential operator
technique directly on the SCI with {g}=1 and
h=0. This is much in the same spirit as the ear-
lier work of Anderson. The result is that (2.1) be-
comes

(og)= <tanhBEJgp0p> 3.1
)

or
(o) = <exp [BD?J@Q ]>tanhx [x=0>
(3.2)

where

_9
T ax

With the exponential operator we can write the
summation in (3.2) as a product,

(og)= <Hexp(BDJgpap )>tanhx lx—0, (3.4
JJ

(3.3)

and by using the van der Waerden identity for the
two-state Ising model finally write

(o) = <H(coshD[;’Jgp +0,8inhDBJg, >>
p
X tanhx | x o - (3.5

This expression is particularly amenable to sys-
tematic approximations. If we restrict ourselves to
the z nearest neighbors having an effective interac-
tion J we obtain (setting the central site g =0)

(0g) = < f[ (coshDBJ +o,sinhDBJ )>

p=1

X tanhx | x_o - (3.6)

This result is entirely equivalent to the SCI with
{g] set to unity and the restriction of nearest-
neighbor interactions only. Applying this result to
the linear chain (z=2) we get

m =2md,(1) . (3.7)

A,(n) is the coefficient of the n-point correlation
function having z nearest neighbors and in this
case is given by

A5(1)=7 tanh2BJ . (3.8)
Observation of (3.7) readily yields the solution
245(1)=tanh2B,J =1 (3.9)
or
kB Tc
2B8.0) 1= =0, 3.10
(2B.J) Y, (3.10)

i.e., the exact result for the one-dimensional Ising
model in zero field.

The above result is certainly encouraging and
differs appreciably from the usual MFA result of
kgT./J =z. However, in order to introduce the
HK-MFA we will also look at the honeycomb lat-
tice (z =3). In this case (3.6) becomes

(o9) = (o) +{02) +(03))
XA3(1)+(0'10'20'3>A3(3) . (311)

where the coefficients 4,(n) are given in Table L.
If we assume translational invariance and also sta-
tistical independence of sites we obtain the HK-
MFA to 3.11), i.e.,

m =3mA;(1)+m345(3) . (3.12)

This relation yields the magnetization curve for the
honeycomb lattice, and if we linearize it as m —0
we get the critical condition

345(1)=1 (3.13a)
or

< (tanh3B,J +tanhB.J)=1 . (3.13b)
Solution of (3.13) yields

kT
—”J—°=2. 1037, (3.14)

as compared to the MFA result of 3.0. We note
that (3.13) can be viewed as either a transcendental
equation in B.J or a polynomial in tanhf.J.

This result for the critical temperature is an im-
provement on the usual MFA. It is also the same
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TABLE 1. Coefficients 4,(n) of the n-site correlation functions in Eq. (3.6) for the zero-
field Ising model with z nearest neighbors using the HK technique.

A5(1)=2"(tanh2BJ)

A3(1)=2"%(tanh38J +tanhpBJ)

A3(3)=2"%tanh3BJ — 3tanhBJ)

A4(1)=2"%tanh4pJ + 2tanh2BJ)

A,4(3)=2"%tanh4BJ —2tanh2BJ)

Ag¢(1)=2"3(tanh6BJ +4tanh4BJ + Stanh2BJ)
Ag(3)=2"5(tanh6BJ — 3tanh2BJ)

Ag(5)=2"5(tanh6BJ —4tanh4BJ + Stanh28J)
Ag(1)=2""(tanh8BJ + 6tanh6BJ + 14tanh4BJ + 14tanh2pJ)
Ag(3)=2""(tanh8BJ + 2tanh6BJ — 2tanh4BJ — 6tanh2BJ)
Ag(5)=2""(tanh8BJ —2tanh6BJ —2tanh4BJ + 6tanh28J)
A3(7)=2""(tanh8BJ —6tanh6BJ + 14tanh4BJ — 14tanh2BJ)
A15(1)=2""(tanh128J + 10tanh10BJ +44tanh8BJ + 110tanh6BJ + 165tanh4pJ + 132tanh28J)

A12(3)=2""(tanh12BJ + 6tanh108J + 12tanh8BJ + 2tanh6BJ —27tanh4BJ — 36tanh2BJ)
A12(5)=2""(tanh12BJ + 2tanh10BJ —4tanh8BJ — 10tanh6BJ + Stanh4BJ +20tanh2BJ)
Ap(7)=2""(tanh128J —2tanh10BJ — 4tanh8BJ + 10tanh6BJ + Stanh4BJ —20tanh2BJ)
A15(9)=2""(tanh12BJ — 6tanh10BJ + 12tanh8BJ —2tanh6BJ —27tanh4BJ + 36tanh2BJ)
A(11)=2""(tanh12BJ — 10tanh108J +44tanh8BJ — 110tanh6BJ + 165tanh4BJ — 132tanh28J)

value obtained recently by Mattis,?! and previously
by Mamada and Takano,?* who introduce a more
sophisticated MFA by utilizing a distribution of
molecular fields at a given site. The connection
between Mattis’s work and that of HK and Frank
and Mitran has been discussed in the literature.?*
Interestingly this same result was obtained by Zer-
nike?* in 1940.

We have listed the values for the critical tem-
peratures obtained using the HK-MFA in Table II
for a number of lattices. By way of comparison
we have also listed the results of the Bethe approx-
imation, i.e.,

kBTc _ 2
J T In[z/(z-2)]"

(3.15)

and the exact or high-temperature-series results.
In all cases the HK-MFA is an improvement on
the usual MFA, but it does not improve on the
Bethe approximation.

In concluding this section on the HK technique
it should be pointed out that HK have only used
one of the SCI. For z nearest neighbors we have
the complete SCI:

({g}og) = <{g} H(coshDBJ+aosinhDBJ)>
p=1
Xtanhx |, g . (3.16)

If we let {g] be simply Ising variables (as opposed
to functions of these variables) we can generate a

TABLE II. Values of the critical temperature kzT,/J for the zero-field Ising model with
z nearest neighbors. The exact values are taken from Ref. 4.

z MFA HK-MFA Bethe . Here Exact
2 2.0 0.0 0.0 0.0 0.0
3 3.0 2.1037 1.8205 1.8725 1.5186
4 4.0 3.0898 2.8854 2.6797 2.2692
6 6.0 5.0733 4.9326 4.8896 4.5108
8 8.0 7.0606 6.9521 6.9143 6.3533
12 12.0 11.0445 10.9696 10.6509 9.7952
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closed set of correlation identities for clusters hav-
ing z nearest neighbors.

IV. THE INVERSE SET OF IDENTITIES

When we introduced the SCI in Sec. II we com-
mented that this particular form for the identities
was obtained by using anticommutator Green’s
functions in the equations of motion. The original
Ising identities of Doman, Tahir-Kheli, and ter
Haar were generated using commutator Green’s
functions, and the correlation identity correspond-
ing to the two-state Ising model using this ap-
proach is

({g})=(og{g}cothBE(g)) . 4.1)

As Callen has pointed out, this expression is the
formal inverse of (2.1). Substitution of one into
the other leads to a trivial identity. Consequently
we call the set of equations (4.1) the inverse set of
correlation identities (ISCI).

The question to be raised here is whether the
ISCI can be used as a basis for approximation us-
ing the HK technique. And if so, is the informa-
tion content the same as the SCI or different? As
would be expected if we treat the two sets exactly
we do indeed get trivial identities. However, as
soon as an approximation is made we break this
symmetry, and the two sets of equations can be
used to obtain solutions to the Ising model.

In particular if we follow the HK procedure we
get

({g})= <ag{g} [1(coshDBJ, + o,sinhDBJ,, )>
)

X cothx | 5 _o - 4.2)

From a mathematical point of view we must be
careful of the singularity in cothx (x —0). Howev-
er, this problem can be readily avoided. Thus, if
we restrict ourselves to the nearest-neighbor ap-
proximation and set {g}=1 we obtain

1= <ooﬁ(costJ +0,sinhDBJ )>
P

Xcothx | g - 4.3)

Applying this to the linear chain we get
1=(0yo1+00,)4,(1), 4.4)

where A4,(n) is the coefficient of the (n +1) point

correlation function for z nearest neighbors. This
function is obtained from A4,(n) by replacing tanhx
in Table I by cothx. We can immediately solve for
the correlation function p,

1=2pA,(1)=2{0q0, )A4,(1) (4.5a)
or

p=tanh2pJ , (4.5b)

which is the exact solution for the linear chain.
This result coupled with (3.9) then yields the solu-
tion to the one-dimensional Ising model. Thus, by
using the first of each of the SCI and the ISCI we
are able to obtain information about the system.

As with the SCI, the ISCI also gives a closed set
of correlation identities for clusters of z nearest
neighbors if {g} is replaced by Ising variables. For
the linear chain these two sets of identities yield
the following relationships:

(09)=(0¢0103) , (4.6)

(0001} =(0002) , 4.7

(01)=(03), (4.8)

(oy02)=1, 4.9)

(09)=(0)tanh2BJ , (4.10)
and

(0901 ) =tanh2BJ . (4.11)

Besides the correlation identities (4.6) —(4.9), there
are two exact equations of particular interest expli-
citly involving the temperature, i.e., (4.10) and
(4.11). One can then conclude that the ISCI can be
profitably used in conjunction with the SCI to ob-
tain approximate solutions for the two-state Ising
model with z >2. We consider such an approxi-
mation for the critical temperature in the next sec-
tion.

V. THE AVERAGE TRIPLET APPROXIMATION

The average triplet approximation (ATA) pro-
posed here is an indication of one procedure to
utilize both sets of correlation identities. We will
determine the critical temperature for the various
crystal lattices and not be concerned with the
correlation functions themselves at this point. Nor
will we attempt to determine relationships among
the correlation functions for the various lattices.
We will use the honeycomb lattice as an example.

In Sec. III we briefly discussed the honeycomb
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lattice utilizing the HK-MFA. Assuming again
translational invariance for the single-site averages
the first of the SCI becomes, i.e., (3.12),

m =3mA;(1)4+7A45(3) , (5.1
where we have retained the triplet correlation

1=(0,0,03) . (5.2)
In the HK-MFA, 7=m?, and when (5.1) is linear-
ized the critical condition (3.13) is obtained, i.e.,

345(1)=1. (5.3)

If we introduce the ISCI for the honeycomb lat-
tice we get

1=3(0401)A3(1) +{0010,03)A5(3) . (5.4)

The ATA is obtained by using the next iteration of
(5.4) to get a relationship between the single site
and triplet correlation functions, but only after we
have averaged over (5.4) such that all n site corre-
lations are equivalent. Thus (5.4) would be rewrit-
ten as,

1=3p4;(1)+q45(3), (5.5)

where p is the pair correlation function and g is
the four-site correlation function. In the next
iteration we set

m =3745(1)+wAd;(3) , (5.6)

where o is the five-site correlation.

At this point we neglect the five-site correlation
relative to the triplet correlation. This assumption
truncates our system of equations and (5.6) be-
comes

m =374;(1)
or
r=+[43(D] 'm . (5.7)

This approximation is also equivalent to assuming
that r7=mp in (5.1) and neglecting the second term
in (5.5). Substitution of (5.7) back into (5.1) yields

m{1—34;(1)— +[45(1)]~'45(3)} =0,

or the critical condition for m —0,

345+ = =

U3 43
This result should be compared to that of the
HK-MFA, (5.3). The solution of this transcenden-

(5.8

tral equation, or polynomial, yields

kBTc
—=1.8725,
J

as compared to values of 2.1037, 1.8205, and
1.5186 for the HK-MFA, Bethe approximation,
and exact result. :

We have followed this procedure for lattices
with four, six, eight, and twelve nearest neighbors
and the results are listed in Table II. For z >4 our
values of the critical temperature improve on those
of the Bethe approximation. This is in spite of the
fact that the ATA is a first-order approximation.
We will discuss the approximation in more detail
in the next section.

VI. DISCUSSION

From the exact results presented here for the
linear chain and from the approximate values ob-
tained for the critical temperature using the ATA,
it appears that the two sets of equations can be
used as a basis for obtaining approximate solutions
to Ising systems. The use of the ISCI at about the
same level of approximation as the HK-MFA has
led to a marked improvement over that approxima-
tion. In fact, Kaneyoshi et al.,”® have recently
shown that the first two identities of the SCIl in a
correlated-effective-field approximation reproduce
the Bethe approximation.

One direction to take in improving the approxi-
mation of this paper is to take into account the
distinct correlations of the same order, e.g., {oy0,)
and {o,0,). If this is done rigorously using the
SCI and the ISCI, one finds a closed set of equa-
tions which lead to trivial identities. Thus, the
problem comes down to finding the maximum ap-
proximation for the particular lattice under con-
sideration. The ATA, as with most effective-field
models, makes no distinction between the diamond
and simple quadratic lattices for instance, but this
difference should be able to be obtained from the
identities. Matsudaira!* used the SCI with {g}=1
to obtain estimates for k3T, /J for the plane trian-
gle and simple cubic lattices. From Table II one
can see that the critical temperature obtained for
z=4 using the ATA approaches the simple qua-
dratic lattice value of kgT,/J=2.2692 and not the
diamond lattice value of kpT,./J=2.7044. Tag-
gart®® has recently introduced an approximation to
the SCI and ISCI which explicitly considers the in-
fluence of the triplet correlations. Values of
kpT,/J obtained in this approximation are 2.5284
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and 2.9796 for the simple quadratic and diamond
lattices, respectively.

As we have mentioned, there has been much
work done by Frank and Mitran'> based on an in-
tegral representation of the SCI with {g}=1. This
work has led to various other approximations
which can be related back to the HK-MFA. Of
some interest is the work of Zhang!” who has ap-
plied various correlation decoupling schemes near
the critical temperature. One of these schemes
leads to the same values for the critical tempera-
ture as found by Tahir-Kheli*’ using a second-
order random-phase approximation to the Ising
model. Zhang’s approximations, however, predict
a value of zero for the transition temperature in
both one and two dimensions. In addition Frank®
has used the integral representation of the SCI to
determine critical exponents for the Ising model in
three dimensions.

The formalism of HK has been applied to spin
glasses,” dilute ferromagnets,'**° amorphous fer-

romagnets,’! and systems with competing interac-
tions.>> Consequently, the methods and equations
of this paper should be able to be applied to these
systems. Also the correlation identities are not res-
tricted to the spin-—;- Ising model. They can be
generalized to many spin interactions> and to
spins greater than one-half.** Thus, it should be
possible, for instance, to look at the Blume-Capel35
model (S =1) or Ising systems of triplet interac-
tions.
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