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The effects of an off-diagonal quadratic symmetry-breaking field, g, on a three-component

(n =3) cubic model with no accessible Axed points are studied. It is shown that this perturba-

tion induces a crossover from first-order to continuous transition. Depending upon the initial

values of the parameters characterizing the model, two types of (g, T) phase diagrams are possi-

ble, both of which are rather complex, exhibiting tricritical, critical, and critical end points. The

(g, T) phase diagrams are studied using large-g expansion, mean-field theory, and renormaliza-

tion-group analysis. A universal amplitude ratio associated with the critical end points is calcu-

lated to leading {zeroth) order in ~=4 —d. The phase diagrams are predicted to be realizable in

certain n =3 cubic crystals undergoing structural phase transitions, such as BaTi03, RbCaF3,
and KMnF3.

I. INTRODUCTION

Phase transitions which are continuous within
mean-field approximation, but which are driven first
order by critical fluctuations have been a subject of
considerable interest in recent years. ' " Within the
renormalization-group approach this may occur either
when the appropriate model does not possess a stable
fixed point' 7 or when the stable fixed point is not
physically accessible. ' In these cases the initial
Hamiltonian does not flow to a fixed-point Hamil-
tonian under the renormalization-group transforma-
tion, but rather to a region in its parameter space
where it becomes thermodynamically unstable (i.e.,
the fourth-order terms are no longer positive defin-
ite). A direct integration of the renormalization-

group recursion relations, to yield the free energy,
then shows that under such circumstances the transi-
tion becomes first order. s ' By applying a symmetry-
breaking field, g, a fixed point which is both stable
and accessible may emerge and the transition may be-
come second order. The crossover from first-order
to continuous transition induced by symmetry-
breaking fields has been studied quite extensively in
recent years. "' '~ '6 Domany, Mukamel, and Pish-
er" have applied large-g expansions, renormaliza-
tion-group techniques, and mean-field calculation to
study the (g, T) phase diagram of a relatively simple
n-component Landau-Ginzburg-Wilson (LGW) Ham-
iltonian with cubic anisotropy, for which the stable
fixed point is inaccessible. The symmetry-breaking
field, g, corresponds to uniaxial anisotropy along a
principal direction. This study has been extended
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For stability of the free energy we require

u & 0 and u +e & 0 (1.2)

The paft1tlon function ls g1ven by Z = tre~
Renormalization-group studies' ' indicate that in
d =3 dimensions the model possesses an isotropic

to consider the most general symmetry-breaking field
for the particular case in which the number of com-
ponents of the order parameter is n =2. Subsequent-
ly, ' the phase diagrams of more complicated models
which do not possess a stable fixed point have been
analyzed. It has been found that these phase dia-
grams are rather complex, exhibiting tricritical,
fourth-order critical and critical end points. Experi-
mentally, the crossover from first-order to continu-
ous transition has been observed in MnO (Refs.
17,18) under a [111]uniaxial stress, and more re-
cently in RbCaF3 [Refs. 19(a) and 19(b)] under a
[100] uniaxial stress.

In the present paper, we consider the n =3 com-
ponent cubic model and study its (g, T) phase dia-
gram, where g corresponds to a uniaxial stress along
a body diagonal. The LG%' model takes the form

a=„&d x, (i.ia)
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(u' =2u") stable fixed point. Within the e expansion
this model is found to have two regions in the (u, u)
plane (with u and v of order e) which lie outside the
domain of attraction of the stable fixed point"

w=u —3u+O(e ) &0 (1.3a)

and

v(0 (1.3b)

(see Fig. 1). If one starts with a Hamiltonian whose
parameters are in regions (a) or (b), one encounters
a "runaway" and the transition becomes first or-
der. ' This result is to be contrasted with the
mean-field prediction of a continuous phase transi-
tion for all values of (u, v) inside the stability wedge,
(1.2). We consider the (g, T) phase diagram associated
with the model (1.1) in region (1.3a) (w & 0), and in

region (1.3b) (u & 0), where g is a quadratic sym-

metry-breaking field which enters into the Hamiltoni-
an (l.lb) via the term

g (SIS2+S3S3+S3SI)

fixed point, have been studied extensively both
theoretically and experimentally in recent years. ' '
%'hen v —2u (0 and g =0 the model predicts a
second-order transition at T = 'rj3(g =0) in which the
system orders along one of the cube diagonals. " For
g & 0 there is no competition since both g and the
quartic term prefer the [111]direction, hence the
second-order phase transition is predicted to occur at
T, (g) (line u of Fig. 2a). A large and negative g
prefers ordering in the (111) plane. Therefore it is
obvious that as one lowers ~g~(g & 0) the order
parameter will rotate towards one of the directions
[111],[111],or [111]but not towards [111]. We
thus expect the line g =0, T & T~ to be a first-order
line above which ordering occurs in the [111]direc-
tion and belo~ which there is an intermediate phase
in which ordering occurs along [naP] [when g =0

Previous studies were restricted to symmetry-
breaking fields which enter into the Hamiltonian via
terms of the form'2 gI[(S32 +S22) —2S32] and
g2(SI' —S2 )." The easy axis associated with g & 0
lies along the [111]direction in the (SI,S2,S3) space,
while for g & 0 the easy axes lie in the (111) plane.
For u —2u & 0, the quartic terms favor the [100],
[010], and [001] axes, whereas when t —2u & 0 they
favor the [111],[111],[111],and [111]axes. The
(g, T) phase diagrams for both v —2u & 0 and
v —2u (0, associated with an accessible isotropic

(a)

[aa p]

PARA

w=o

UNSTABLE

LIMIT OF
QUARTIC

STABILITY

LE
ROPIC

D POINT

(b)
PARA

GAUSSIAN P
FIXED ~- UNSTABLE

OF .~ b BORDERLINE

QUAR IC
~ FIXED POINT

STABILITY

FIG. 1. Schematic renorrnalization-group flow diagram in

the (u, v) plane for the n =3 cubic model. The stable iso-
tropic (Heisenberg) fixed point is not accessible from the
two shaded regions (a) e & 0 and (b) v & 0. The stability
limits u=0, v &0 and u+v=0, u &0 are shown.

FIG. 2. (a) Schematic (g, T) phase diagram associated
with the n =3 cubic model with easy axes along the cube di-

agonals (v —2u & 0) when the stable isotropic fixed point is
accessible. Thin lines represent continuous transitions, thick
lines represent first-order transitions. The direction of the
order parameter S in the two ordered phases I and II is indi-

cated. The point T= Tz, g =0 is bicritical. (b) Same as

Fig. 2(a) but with easy axes along the cube edges
(v-2u &0),
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one has (n =1, l3= —1)]. The transition from the
disordered phase into the intermediate phase is also
second order [line P of Fig. 2(a)]. The point T = Ts,
g =0 is therefore bicritical 2 [see Fig. 2(a)]. When
v —2u & 0 and g =0 the model predicts a second-
order transition at T = Ta in which the system orders
along one of the cube axes. For g & 0 the quartic
and quadratic anisotropies compete. For large g, the
system exhibits a second-order transition associated
with [111]ordering. " As g is lowered, there is a
second phase transition, at which the components of
S in the (111)plane order as well. This is a q =3-
state Potts transition line" " [line yi of Fig. 2(b)].
Renormalization-group studies in d =4 —a dimen-
sions predicted that this transition should be first or-
der. For a negative g the transition from the disor-
dered phase into the intermediate phase is second or-
der and no additional transition occurs" [see Fig.
2(b)]. These predictions were first checked and con-
firmed in SrTi03 stressed along the [111]direction. "

In this paper we show that when the isotropic fixed
point is not accessible, namely either ~ )0 or v & 0,
the (g, T) phase diagrams of Figs. 2(a) and 2(b) change
dramatically. For the case v —2u (0, one obtains a
phase diagram displaying two critical lines, a line of
first-order transitions which terminates at a critical
point, a critical end point, and a tricritical point [see
Fig. 3(a)]. For the case v —2u & 0, the phase dia-

gram displays two critical lines, a line of first-order
transitions terminating at a critical point, and two
critical end points [see Fig. 3(b)]. The phase dia-

grams have been studied in the limit of large
symmetry-breaking field (g » 1) using perturbation
expansion in u and v. In order to substantiate these
results we have performed a mean-field analysis of
the problem. To describe a first-order transition
within the context of mean-field theory, it is neces-
sary to assume that the quartic terms are not positive
definite, which implies that one should add a sixth-
order term to the otherwise thermodynamically un-
stable Hamiltonian. The qualitative features of the
phase diagrams are found to be the same in both
methods. %e have then studied the limit of very
small symmetry-breaking field ~g~ && 1 using
renormalization-group methods in d =4 —e dimen-
sions. The existence of tricritical and critical- end
points was confirmed and a universal amplitude ratio
between the parameters characterizing the critical end
points was calculated to leading (zeroth) order in a.

In outline, the remainder of the paper is as follows'.
In Sec. II we analyze the phase diagram of the n =3
cubic model lying in region (1.3a), w & 0 in the limit
of large g. The mean-field approximation is con-
sidered in Sec. III. In Sec. IV we analyze the n =3
cubic model lying in region (1.3b), v & 0. The calcu-
lations are performed both in the large-g limit and
the mean-field approximation. Most of the calcula-
tions are similar to those in Secs. II and III and

(a)
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[aais]
G
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therefore we merely quote results. In Sec. V we dis-
cuss the limit ~ g ~

&& 1 using renormalization-group
techniques in d =4 —~ dimensions. Using scaling ar-
guments we obtain a definition of a universal ampli-
tude ratio associated with the critical end points and
we calculate this ratio to leading (zeroth) order in e.
Sec. VI contains our conclusions.

FIG. 3. (a) Schematic (g, T) phase diagram associated
with the n =3 cubic model with easy axes along the cube di-
agonals (v —2u & 0) when the stable isotropic fixed point is
not accessible (—u & v & 0) [region (b) of Fig. 1]. Thin
lines represent continuous transitions and thick lines
represent first-order transitions. The point TC is tricritical,
C is a critical point and CE a critical end point and TR is a
triple point. (b) Schematic (g, T) phase diagram associated
with the n =3 cubic model with easy axes along the cube
edges (v —2u & 0) when the stable isotropic fixed point is
not accessible (0 & u & v/3) [region (a) of Fig. 1]. The
points CE1 and CE2 are critical end points, C is a critical
point.
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II. CUBIC MODEL %ITH w & 0: LARGE-g LIMIT

g(SfS2+S2S3+S3Sf) (2.1)

into the Hamiltonian. It is convenient to rotate the
coordinates, so that one component is along [111]
and the other two are in the plane perpendicular to
[111],namely, the (ill) plane. This rotation en-
sures the diagonalization of the quadratic terms in
the Hamiltonian. To be specific, we choose"

Consider the n =3 cubic Hamiltonian (1.1). We
assume that the Hamiltonian lies in region (a) of Fig.
1, namely, it is outside the domain of attraction of
the isotropic fixed point, but within the stability
wedge, This Hamiltonian exhibits a first-order transi-
tion. ' Consider now an anisotropy field, g, which
introduces a coupling term

below the transition the component pf will also order
due to the couphng term Qt($) —3@3/2). In the
( 4I2 $3) subspace there are three preferred directions
dictated by the Potts-like term" (P3 —3&3/2).
These are ( {g3} A 0, (P2}=0, and {P3)/{P2}
= + J3/3). It wiII be shown later that the critical
lines a and Ig do not terminate in tricritical points,
but rather, in two critical end points CE1 and CE2.
A schematic phase diagram which exhibits these
features is given in Fig. 3(b). Here we find a first-
order transition hne inside the ordered phase for
g & O. This line terminates in a liquid-gas-like critical
point C.

In order to establish this picture, we first demon-
strate that the two critical lines n and P do not pos-
sess tricritical points at large g, In Sec. III we per-
form a mean-field calculation which shows that these
critical lines terminate in critical end points (see Refs.

(Sf +S2+S3)= 1

3
(2.2) 15 and 16). We then locate the liquid-gas-like critical

point C in the large-g limit. Consider the limit of

1

2

(S, +S,-2S,)1

6

(2.3)

(2.4)

The Hamiltonian now takes the form

~=--,'.,~l --,'., I ~,l'--,' [(~y,)'+(~y, )']

—
3 (u + If)pf —

4 (2u +1l) [ @g[ —2u@f~ @g~

large symmetry-breaking field ~g ~ &1, g & 0, and
u, v && 1. Furthermore, assume that the Hamiltoni-
an, although stable, is very close to the instability
limit, namely, 0 ( u &( O(u). Note that the nature
of the phase diagram to be obtained should apply
throughout the region (1.3a) since, as is clear from
Fig. 1, the renormalization-group flows in this region
drive u and v towards the instability limit u =0.
Near the critical line n, i.e., for rf = O(u, u), one
has r2= 0(1), and the components P2 and P3 may
be integrated out using perturbation expansion in
powers of u and v. One then obtains a reduced
Ising-like Hamiltonian

yg= y2+y3, u = '
, %2(u ——

——,

' u),
1 2 1

xeff 2 raff'4l 2 ( 741) ueff41 u64f (2.6)

2 1
r1 =r —

3 g, r2=r+
3 g

The gross features of the (r,g) phase diagram can be
found quite easily. At g =0 and low temperatures
the system orders along one of the cubic axes [in
terms of $; this means that {P;}WO, i =1,2, 3, see
Eqs. (2.2)—(2.4)]. The transition to this ordered
phase is first order. For large and positive g, the
components $2 and $3 are suppressed (rq )& r~) and
the system will order in a phase characterized by

{$~}&0, {$2}= {$3}=0, namely, the order param-
eter will point along [111].This phase transition
[line a of Fig. 3(b)] is expected to be second order
(Ising type with (u +v)/3 & 0). As one lowers

g(g & 0), competition between g and the quartic
terms increases, resulting in an additional phase tran-
sition in which P2 and Q3 order as well. From the ar-

guments presented in the Introduction we expect that
this transition is first order q =3-state Potts-like. For
large and negative g, $f is suppressed (rf » r2) and
the system will order via a second-order xy-like tran-
sition [line P of Fig. 3(b)]. Notice that immediately

wh. ere to lead1ng order 1Q u and U we find

r ff ff +8uAf(r2, d) +O(u', u')

u, ff
= —,

'
(u +t ) —8u'A2(r2, d) + O(u', u'),

(2.7)

(2.8)

while u6 is of order O(u3, u3), and remains positive
in the region of interest. The functions A„(x,d), are
given by

A„(x,d) =
J lq) «f (2~)» (x + fI2) ~

{2.9)

and d is the spatial dimensionality. Now, in three or
more dimensions, the reduced Hamiltonian (2.6) will

yield a continuous transition for rf ——O(u, u),
ugff & 0, a first-order transition for u, ff & 0(u6 )0),
and a tricritical point at r,fr= O{u6) =O(u, v ) and
u ff= O(u6) = O(u', u'). In this case however,
since for r2 P 0 (1) the integral A2(r2, d) satisfies

Aq{r2, d) & O(1) and 0 & u ( —,v, one finds u, ff & 0
for all positive values of g P I, and no tricritical
point is found on the critical line o, at large g. It is,
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where to leading order in u and v we find

r,g=r2+4uAi(ri, d) +O(u, v2) (2.11)

uett= 4 (2u+v) —4u2A2(ri, d) +O(u3, v3), (2.12)

in principle, possible that this critical line terminates
in a tricritical point located at small g. However,
mean-field analysis, which we present in Sec. III,
seems to indicate that the critical line n terminates in
a critical end point [point CE1 of Fig. 3(b)] rather
than a tricritical point. Similar arguments may be ap-
plied to the critical line P (g & 0). Near this line one
has r2=0(u, u) and ri=O(I), and the Pi com-
ponent of the order parameter may be integrated out.
One obtains a reduced xy-like Hamiltonian

X ff 2 reft l oil' —
—,
' (&4i)' —uettl @il'—u61@il' ~

(2.10)

where

Fi =ri+4(u+ii)Mi +4uM3 (2.17)

and

g =8uMiM3 —J2(2u —v)M$ (2.20)

The choice (2.14) and (2.15) for Mi and Mi ensures
that no linear term in q enters into the Hamiltonian
(2.16), and does not affect the calculations which fol-
low. The quadratic term of the Hamiltonian (2.16)
may be diagonalized by introducing new variables i]';,
i = 1,2, 3 defined by

r2 = r2+ (2u +w) M3 +4uMi' +2J2(2u —v) MiM3

(2.18)

Fi = r2+3(2u +v) Mq +4uMi -2J2(2u —v) MiM3

(2.19)

and u6 = O(ui, u3) is positive in the region of in-
terest. Again for 0 & u « O(w) one has u, ff )0,
and no tricritical point is found on the critical line p
[defined by r,tt =0 (u, u) ]. This critical line is ex-
pected to terminate in a critical end point [point CE2
of Fig. 3(b)]. The two ordered phases (I) (p, ) &0,
(4i) =0 and (II) (pi), (itii. ) W0 are separated by a
transition line yi [see Fig. 3(b)]. The order parame-
ter associated with this transition is $q, and the LGW
model has a q =3-state Potts-like symmetry (for de-
tails see Refs. 24 and 23). This transition is expected
to be first order in d =3 dimensions. To conclude
our analysis we locate the liquid-gas-like critical point
C, The calculation is rather tedious and we outline it
briefly. Consider the Hamiltonian (2.5) with r2 & ri
(i.e., g & 0). In the ordered phase II one has
(@i)=M] ($3) M3 and ($2) =0. We therefore
define a shift in the order parameter

$i ™i+q;,i =1,2, 3 (2.13)
where M2 =0 and M~ and M3 are determined by the
equations

r iMi + —,(u +w) Mi'

(rt3+ rt»
1

2

1

2

with

g, =g, +F3/r

The Hamiltonian (2.16) transforms into

1X=X (Mi, Mi) ——X R;Q,'
2 I-1

3
——X (V'y, )'+O(y )

2 i 1

where

Ri = ri -gQri/r,

R2= rq

R3=ri+gv ri/ri

(2.21)

(2.22)

(2.23)

(2.24)

(2.25}

(2.26)

+4uMiMJ — (2u —v) MJ =0, (2.14)
3

r2M3+(2u +ti)M$

+4uMi2M3 —J2(2u —v)MiM$ =0 . (2.15)

The additional phase transition [line y2 in Fig. 3(b)]
is associated with the component i[ii. One then ex-
pects that in the vicinity of the transition R 2,83))Ri, which enables us to integrate $i and Q3 out
of the problem using a perturbative expansion in
powers of u and v. One then obtains an Ising-like ef-
fective Hamiltonian for the component i]ii.

The Hamiltonian (2.5) now takes the form

3

X =X(Mi,M3) ——$ r g2 gqig3—
2 r-1

Xeff= 2refflflf 2 ( 7/i) —Wert''f

ueffiiil +0 ((pe) (2.27)

3

X (Vg,)'+ O(gi')
i 1

(2.16)
where

r.ff =R i +0(u) = r i ger i/r3+ 0 (u}, (2.28—)
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and w, ff and u, ff are complicated functions of r~, r2,
u, and v. Due to the presence of the cubic term in
the Hamiltonian (2.27), any transition associated with
it [i.e., line y2 in Fig. 3(b)] is expected to be first or-
der. It is possible, however, that this transition will

terminate at a liquid-gas-like critical point C, which is
located at r,ff w ff 0.

First we prove the existence of the critical point C,
to leading order, by showing that the requirement
/ ff w ff 0 is satisfied automatically at the instabili-

ty boundary u =0, for M~ and M3, which satisfy Eqs.
(2.14) and (2.15). We then proceed to study the vi-

cinity of the instability boundary u 0. Expanding
in powers of u we. find that to leading order

ff 0 + O(u)

w ff 54%2uMt + 0 (u2Mt)

ff
—9u +0 (u')

(2.29)

(2.30)

(2.31)

These equations have a solution at u = O(~'). We
have demonstrated the existence of the critical point
only in the region 0 & u (( v2. However, this result
should hold throughout region (a) of Fig. 1, because
the renormalization-group flows in this region drive u

and v towards the instability boundary u =0. This
ends the large-g limit calculations.

y2 terminates at a critical point C [see Fig. 3(b)]. As
usual in mean-field calculations one neglects fluctua-
tions and assumes a spatially homogeneous order
parameter P~, $2, Q3. As explained in Sec. II, it is
possible to assume that ordering in the (Q2, $3) sub-
space will involve only the component Q3 due to the
Potts symmetry of the term @)—3$3lj52. Thus,
without loss of generality, we consider the Hamiltoni-
an (2.5) with a sixth-order term but without the fluc-
tuation terms. Setting $2=0 yields a Landau Hamil-
tonian given by

XL, =
2 r~$f+ 2 r3$3+ 3 (u+u)$f1 2 1 2 l

+—(2u +u) &g+2u@2t@23

+ &4 id )+&6(4/+4))' ~ (3.1)

where

2 1r~=r —3g r3 r+ 3g

Q= — (u ——lJ), u6)02 1

3 2

Q DQL,

BQT 4t -43-0

The order parameter associated with the critical line of.

is $t. At the critical line one has

III. MEAN-FIELD ANALYSiS OF THE CUBIC MODEL
WITH w)0

which yields the equation

r)=0 (3.2)

Mean-field theory always predicts a continuous
phase transition for the Hamiltonian (1.1) if the
quartic terms are positively definite, namely, when
the Hamiltonian lies within the stability wedge.
Therefore, to describe a first-order transition in the
context of mean-field theory it is necessary to assume
that the Hamiltonian lies outside the stability wedge
and add a positive sixth-order term to stabilize the
free energy. Consider the flow diagram associated
with the n =3 cubic model (Fig. 1). If the initial

physical parameters u and v lie in one of regions
(1.3a) or (1.3b) [(a) and (b) in Fig. 1], the Hamil-

tonian flows, under renormalization-group transfor-
mations, to a region where it becomes thermodynam-
ically unstable (either u & 0, or u + u & 0). It is

therefore plausible that a mean-field analysis of the
Hamiltonian in the unstable regions adding a positive
sixth-order term will produce the same qualitative
features as those obtained by perturbation expansion
in regions (a) or (b) in Fig. 1 (see Refs. 15 and 16).
We find indeed that this is the case and the resulting
phase diagram is as predicted in Fig. 3(b). In particu-
lar no tricritical points are found on the critical lines
a and p. Both lines terminate in critical end points
(CE1 and CE2). We also find that the first-order line

for the critical line 0,. The order parameter associated
with the critical line p is Q3. Notice, however, that as
soon as $3 orders, it induces a secondary ordering of
P~ via the term up~$3 in (3.1). At the critical line
one has

(j xL =0
8/3 4 ) -43-0

which yields the equation

r2=0 (3.3)

for the critical line p. The choice $2 =0 ensures that

St ——S2 [see Eq. (2.3)]. When g =0 the system or-
ders along a cube axis (u —2u ) 0), therefore one
must have S~=S2=0 and S3A0. Inserting the last
results in Eqs. (2.2) and (2.4) one obtains that on the
line g =0

(3.4)

To locate the first-order transition occurring at g =0
and to calculate the discontinuity in the order param-
eter at the transition, we use the necessary conditions
for equilibrium given by B~Ll6$& =0, BXI/8@3=0,
and demand KL($~, $3) =0 at the transition. These
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tllrcc colldlt10118 togctllcl' wltll Eq. (3.4) ylcld

(3.6)

$2/$1 as independent variables. We therefore define

(Ml, M2),
6u6

[u[
r =, tt21 = with =—J2

2u6 6u6
(3.5) u(«, r2) (+1 +2)

2u6
(3.7)

for the first-order transition occurring at g =0. The
location of first-order lines, critical end points, and
the critical point appearing in Figs. 3(b) and 3(a) in-

volves a numerical analysis. %ith this in mind and
also for computational convenience it is useful to de-
fine dimensionless variables and also to use $1 and

Ml =x&2M1

c = (2u —lp)/v

Using these definitions we obtain

lu I'
I +L

12u6

{3.9)

(3.10)

4(1+c/2) x' —(Sc/3) x'+4(l +c)x'+ (1+c/3)
3(1 +c)

t

with 81=8 —2G/3 and R2 =R + G/3. Using the
necessary conditions for equilibrium given by
BXL/BM3 NCg/BM1 =0, together with the defini-
tions (3.6)—(3.9) one obtains Ml as function of x

9 (1 +c)G
4 c(2x' —3x' —3x+4) (3.12)

The region of interest in the (u, u) plane (u (0) is
such that 1+c (0. The ratio (1+c)/c is therefore
positive. In the limit when 6 ~0, the denominator
goes to zero as well, yielding a finite M~ which ac-
quires the value 1 [see Eq. (3.5) together with the
definition (3.6)]. The denominator has three real
roots x =—1, x =1/2, and x = 2. The value x =—1

corresponds to an ordering along a cube axis as given
by Eq. (3.5). The value x =2 corresponds to an or-
dering along the cube diagonal [111].This case will

be studied in the next section. For G & 0, wc see
that only those values of x for which thc denomina-
tor is negative will yield a real solution for M~. It is
easy to see that this implies x (—1 (for the case of
an easy axis along [001])or x & 2 (for the case of
an easy axis along [ill]). This observation simpli-
fies enormously thc numerical analysis and sets up an
upper bound for x (for an easy axis along [001]) and
a lower bound for x (for an easy axis along [111]);
We can in principle insert (3.12) into (3.11) and ob-

'

tain XL as function of x alone. To locate the critical
point wc demand

Q XL Q XL

8 8 2 8 3

which yields three equations for the three unknowns
x„R„and G,. Inserting Eq. (3.12) into any one of
the conditions for equilibrium it is possible to obtain
a sixth-order polynomial for the variable x. To locate

the first-order lines we proceed as follows. For a
given value of 6 and A we calculate numcricilly thc
real roots of the polynomial and find the value of x
for which Xl, is minimum. By scanning the (G,A)
plane it is possible to obtain thc first-order transition
lines given in Fig. 3(b). We calculated numerically
the discontinuity in thc order parameter at the transi-
tion and found that it indeed decreases along y2, and
finally vanishes at the critical point C. For
G ( G, ( G, (0), there is only one value of x which
minimizes the free energy. Consider now the critical
lines a and P. We will show that these lines ter-
minate in the critical end points CE1 and CE2,
respectively [see Fig. 3(b)l. The critical lines n and

p are stable as long as Xl, )0 for any Ml &0 and x.
At a critical end point Xr. satisfies Xr.(Ml, x) «0.
Howcvcr, there cxlsts a solutloll (Mp W 0 alld xg)
for which Xl, (M),xs) =0. This equation and the two
minima conditions 8Xr, /8M1 =0, BX1/8x =0, yield
three equations for the four unknowns M~~, xE, R~,
and G~. Thc fourth equation is simply obtained by
demanding that the critical end point is located on
the critical line. Therefore to locate CE1 we demand
R~ =0 and to locate CE2 we demand 82=0. Kith
the aid of these four conditions it is possible to ob-
tain a polynominal equation for xE which can be
solved numerically. For CE1 we obtain

16cxE' —6{2 + 5 c)xE4 —16exp

—4(3 —c)xE —(3+c)=0 . (3.13)

For CE2 wc obtain

4(1+c/2)xs4+4xE2 —4cxE+(1+3c)=0 . (3.14)

Inserting the values of x~~ on xE2 obtained from
(3.13) and (3.14) into (3.12) we obtain Mf' and
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M~ '. By using any one of the conditions for equili-
brium together with R ~

=0, one obtains REb GEb and
requiring R2 =0 one obtains RE2, GE2. This ends the
mean-field analysis. In this section we have demon-
strated that the phase diagram associated with the
Landau model (3.1) is indeed given by Fig. 3(b).

IV. CUBIC MODEL%ITH e &0

A. Large anisotropy field analysis

In this section we analyze the cubic Hamiltonian
(1.1) which lies in region (b) of Fig. I (v (0), name-

ly, it is outside the domain of attraction of the
isotropic fixed point, but within the stability wedge.
To be specific —u & v & 0 (see Fig. 1). From the ar-

guments presented in the Introduction this Hamil-

tonian exhibits a first-order transition. Introducing
the anisotropy field, g, given by (2.1) into the Hamil-

tonian and performing the coordinate transformation
(2.2) —(2.4) we end up with the Hamiltonian (2.5).
The gross features of the (r,g) phase diagram can be
found quite easily. At g =0 and low temperatures
the system orders along one of the cube diagonals
[111],[111],[111],[111](v—2u &0). The transi-

tion to this ordered phase is first order as explained
in the Introduction. For large and positive g the
components P2 and P3 are suppressed (r2 )) rt) and
the system will order in a phase characterized by

(Ijl] ) A 0 ($2) (f3) =0, namely, the order param-

eter will point along [111]. This phase transition is

expected to be second order (Ising type with

u + v )0) In thi.s case there is no competition

between the quadratic and quartic terms (both prefer
an ordering along [111]).We therefore expect no
additional transitions to occur in the ordered phase
for g & 0. Since for g =0 the transition from the
disordered phase (PARA) to the ordered phase I is

first order while for g & 1 it is second order, we ex-
pect a tricritical point (TC) to occur. For large and

negative g, $t is suppressed (r~ && r2) and the sys-

tem will order via a second-order xy-like transition
(line P in Fig. 3a). Notice that immediately below

the transition the component P~ will be induced via

the term ($3 —3@3/2)P~. The same arguments given

in Sec. II apply here. In fact the phase diagram for

g (0 is similar to the one studied in Secs. II and III
[notice the similarity between the lower parts of Figs.
3(a) and 3(b)]. This is due to the fact that symmetry

considerations are similar in both cases. By following

the same arguments of Sec. II we expect an addition-

al phase transition to occur inside phase II [line y2 of
Fig. 3(a)], which, due to symmetry considerations, is

expected to be first order and will terminate at a criti-

cal point C. A large negative g prefers an ordering in

the (111)plane. As one lowers g the order parame-

ter will leave the (111) plane and rotate towards the

directions preferred by the quartic terms. From ener-

gy considerations it is clear that at g =0 it will align
along one of the diagonals [111],[111],or [111],
but not along [111]. Therefore the line g =0 is ex-
pected to be a first-order line separating phase I (with
S II [111])from phase II which is an intermediate
phase. Consider now the limit of large symmetry-
breaking field ~g~ &I (g &0), and u, v &(1.
Furthermore, assume that the Hamiltonian, although
stable, is very close to the instability limit, namely,
0 & u + v « O(u, v). In this case r2 = O(1), and
the components @2 and $3 can be integrated out us-

ing a perturbation expansion in powers of u and v.
One then obtains the same reduced Hamiltonian
given in Eq. (2.6) with (2.7)—(2.9).

The main difference between the present analysis
and the one presented in Sec. II is that in this case
we shall be able to obtain a tricritical point. In three
or more dimensions the reduced Hamiltonian (2.6)
will yield a continuous transition for rt = O(u, v) and
u ff & 0, a first-order transition for u, ff & 0(u6 & 0),
and a tricritical point at r,ff r, = O(u6) = O(u, v ),
and u,rr=u, =O(u6) =O(u, v ). The tricritical

point can therefore be located to leading order in u

and e by solving the equations

r, (r,g, u, v) = u, (r,g, u, v) =0 (4.1)

Consider the integral A2(r2, d): this is a decreasing
function of r2 which approaches zero as r2 ~. Let
us fix u and v and vary r~. For large enough
r2=r +g/3, namely, for large enough g, one has

u ff (u +v)/3 & 0, and the Hamiltonian (2.6) exhi-

bits a continuous transition occurring at the line n
given by rt = O(u, v), [see Fig. 3(a)]. As r2 is de-

creased, however, the integral A2(r2, d) becomes
large and u, ff will change sign. For smaller r2 the
transition thus becomes first order. The system exhi-
bits a tricritical point at r2 = r2, given by

A2( 2,,d) = 1 0+'U (4.2)

Note that our approximation is valid only if r2, P I
[with A2(r2„d) ~ O(1) ], hence the existence of the

tricritical point has been demonstrated only in the re-

gion 0 ( u + v & u2. However, one should notice
that provided one starts out in region (b) of Fig. 1,
the Hamiltonian (2.6) will flow, under renormal-

ization-group transformation, towards the instability

limit u +v=0. We therefore expect our results to
hold in the entire region (b). The large anisotropy lim-

it analysis for the case ~g ~
) 1 and g & 0, follows ex-

actly as in Sec. II. One therefore expects a critical

line P given by r2= 0(u, v) separating the disordered

phase (PARA) from phase II. This critical line ter-

minates in a critical end point CE [see Fig. 3(a)].
The critical point C is located as in Sec. II. This ends

the large-g limit analysis.
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8. Mean-field analysis

g XL
2B$3 4) -43-O

which yields the equation

r2=0, (4.3)

for the critical line P. For a very large and negative g
the system orders in the (111) plane. As one lowers

g in the ordered phase the order parameter rotates
away from the (111) plane and from energy con-
siderations one can show that as g approaches zero
from below, the order parameter will align itself
along [111]or [ill] or [111]but not along [111].
Taking also into account that the components of S
satisfy S~ =82 [for our choice $2=0, see Eq. (2.3)],
one finds the following relation between $3 and @~ as

g approaches zero from below

@3= 242$) (4.4)

To locate the first-order transition occurring at g =0,

As explained in Sec. III in order to describe a
first-order transition in the context of mean-field
theory it is necessary to assume that the Hamiltonian
lies outside the stability wedge and add a positive
sixth-order term to stabilize the free energy. Follow-
ing the argument of Sec. III it is plausible to assume
that a mean-field analysis of the Hamiltonian (2.5)
in the unstable region u +v (0, adding a sixth-order
term, will produce the same qualitative features as
those obtained by perturbation expansion in region (b)
of Fig. 2 (—u & v & 0). We find that indeed this is
the case and the resulting phase diagram is as predict-
ed in Fig. 3(a). In particular no tricritical point is
found on the critical line P, which terminates in a
critical end point CE [see Fig. 3(a)]. We also find
that the first-order line y2 terminates at a critical
point C [see Fig. 3(a)]. We have stressed the fact
that within the stability region (b) in the (u, v) plane,
classical Landau (or mean-field) theory can give a
qualitatively misleading phase diagram insofar as no
tricritical points and associated first-order lines are
predicted. However, within a broader parameter
space in which a positive sixth-order term is included
in the Hamiltonian, the theory is less misleading.
Then the instability condition v ~0 needed for tricri-
ticality is replaced by the requirement u + v (0. The
sixth-order term ensures stability of the free energy,
and a line of tricritical points occurs when u + v =0
(where the quartic terms become unstable" ). By fol-
lowing the arguments of Sec. III we analyze the Ham-
iltonian (3.1) in the region v+u &0. The order
parameter associated with the critical line P is $3.
Notice that as soon as @3 orders it induces a secon-
dary ordering of @~ via the term u@~$) in (3.1). At
the critical line one has

and to calculate the discontinuity in the order param-
eter at the transition, we use the necessary conditions
for equilibrium given by BXL/Bp~ =0, BXL/B$3 =0,
and demand XL(Q~, $3) =0 at the transition [coex-
istence with the disordered phase @~ = $2 =0, for
which XL, (0) =0]. These three conditions together
with Eq. (4.4) yield

XL, =
2

r~Q~~+
3 (u +v)$f+u6@['+0(gf) (4.6)

with r~ = r —2g/3, u + u & 0, and u6 )0.
The Hamiltonian (4.6) yields a first-order transi-

tion as long as u+v(0, u6&0. Therefore, the tri-
critical point TC of Fig. 3(a) cannot be obtained
within mean-field theory in the (r,g) plane. Only in
the broader parameter space (r,g, u, u) can we obtain
a line of tricritical points at the plane u+v=0. To
locate the first-order transition line separating the
disordered phase (PARA) from phase I we demand
BXr/B@~ =0 and HL ($~) =0. This yields

(u+u)', lu+vlr&=, $f=, @3=0
18u6

'
6u6

(4.7)

at the first-order transition occurring for g &0. The
phase diagram for g (0 is calculated numerically fol-
lowing exactly the same steps outlined in Sec. III.
The same qualitative results are obtained. This is
due to the fact that for g (0 both problems have the
same symmetry. This ends the mean-field analysis.
In this section we have demonstrated that the phase
diagram associated with the Landau model (3.1) is in
qualitative agreement with that in Fig. 3(a).

V. RENORMALIZATION-GROUP ANALYSIS

A. Scaling arguments

In this section we study the occurrence of critical
end points at small anisotropy field ~g~ && 1, for
e & 0. Using scaling arguments" we define a
universal amplitude ratio associated with the two crit-
ical end points CE1 and CE2, induced by the
symmetry-breaking field [Fig. 3(b)]. This universal
amplitude ratio is then calculated to leading (zeroth)
order in e using renormalization-group integral

hods 16, 26, 27

Consider the flow diagram of Fig. 1. As explained

(4.5)

at the first-order transition occurring for g =0.
As explained above, for g )0 there is no competi-

tion between the quadratic and the quartic terms,
therefore the system will order along [111]. The or-
der parameter describing this phase transition is
therefore $~. Setting $3=0 in Eq. (3.1) one obtains
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above the line w = v —3u =0 is the borderline of tri-
criticality [Eq. (1.3a)]. For g =0 and w & 0, the iso-
tropic fixed point is both accessible and stable and
therefore the transition is continuous, while for g =0
and w & 0 the transition is first order. One can
therefore apply scaling arguments to discuss the
phase diagram in the vicinity of the g = w =0 (cubic)
fixed point which has the character of a multicritical
point. According to general scaling theory, "the
singular part of the free energy derived from the
Hamiltonian (2.5) should vary as

parameters u', v', r', g' are then related to the initial
parameters u, v, r,g by solving the recursion relations
of the renormalization-group transformation.

Consider the Hamiltonian (2.5). Under action of
the renormalization group it is transformed, but to
leading order a=4 —d, the renormalized Hamiltoni-
ans X (l) remain in the parameter space rt, r2, u, v.
To this order the differential recursion relations for
rt(l), r2(l), u(l) and v(l) are found to be

dr1

dl
=2rt +4K4(u +v) (1 —ri)+8K4u(1 —r2)

F(t,g, w) = t "F(g/t g, w/t ") (5.1) (5.4)

and

~cE1t for g & 0 (5.2)

g = —AcE2t for g (0 (5.3)

The ratio Aca2/Aca3 should be a universal quantity
independent of the irrelevant variables and equal to

xcst/xcE2. This ratio is calculated to leading (zeroth)
order in e =4 —d using techniques developed in

Refs. 12 and 16.

B. Recursion relations

As explained above, the integration over the com-
ponent pt is justified only when rt = O(1)(lgl & 1,
g & 0) and the integration over the components $2
and Q3 is justified only when r 02(1)(lgl 21,
g & 0). However, for small negative g in the critical

region r3=r —O(g) =0, we also have ri =r +0(g)
small; and for small positive g in the critical region
ri = r —O(g) =0 we also have r2 = r + O(g) small.
The way to treat this situation is to use the
renormalization-group trajectory integral method of
Rudnick and Nelson, 2 to relate the initial Hamiltoni-
an with small r and g to a renormalized Hamiltonian
in which rt = O(1) or r2= O(1). Only then is the Pi
component [for ri ——O(1) ] or the p3 and @3 com-
ponents [for r2=0(1)] integrated out, and the
analysis developed in Secs. II and IV can be applied.
The answers obtained in terms of the renormalized

in the limit t 0, g~0 and w 0. As usual
t =1 —T/T„where T, is the critical temperature for

g = w =0, n„ is the critical exponent for the specific
heat and Pg and Q are the appropriate crossover ex-
ponents with respect to the cubic fixed point. " The
existence of a multicritical point (M) is necessirily
associated with singular behavior of the scaling func-
tion F(xy) at some point (x3t,y3t).

This singularity will, in fact, describe a line of mul-

ticritical points in the (t,g, w) space. We expect two

lines of critical end points' . one for g & 0 and one for
g & 0. In the scaling limit (5.1) the projection of the
lines of critical end points on the (g, t) plane must
take the form [see Fig. 3(b)]

df2

dl
=2r2+4K4(2u +v) (1 —r3) +4K4u (I —rt)

(5.5)

du 2

dl
= au —36E4u —2E4v

dU 2

dl
= ev —10E4v —24E4u v

(5.6)

(5.7)

hu(i) = u(l) —u', hv(l) = v(l) —v' (5.8)

Using these definitions, the equations for g and r be-
come

—= A.2g —4E4hvgdg
dl

(5.9)

—= Xtr +4K4(3u" +v") +4K4(3/3u + b v) (1 —r)
dl

(5.10)

where E4=
8

m'. Our procedure will be as follows.

Equations (5.4)—(5.7) will be solved in an approxi-
mation valid for any I for which rt(l) & O(1) (if ini-

tially ri & r2) or for which r3(l) O(1) (if initially

r2 & rt). We will then select a value of l' by requir-

ing rt(l") =I +0(e) or r3(l') =I+0(e), respec-
tively. At this point the renormalized Hamiltonian
X(l') is noncritical with respect to fluctuations of
that order parameter component whose r value is un-

ity. Thus, the trace over the noncritical component
can be performed, keeping terms of appropriate or-
der. After this step one obtains a reduced Hamiltoni-
an (which depends only on the remaining variables)
whose critical behavior we analyze as in Secs. III and
IV. The coupled (u, v) differential Eqs. (5.6) and
(5.7) have been solved by Rudnick. For the present
analysis we will not need the explicit solutions, rather
we shall use the fact that u(l) and v(l) remain of or-
der u' and v', that is, of order e (u' and v' being
the fixed point values about which the analysis is per-
formed). In order to solve Eqs. (5.4) and (5.5) we

reintroduce the original variables g = r2 —r1 and
r = rt/3 +2r2/3 in terms of which the recursion rela-

tions decouple to O(e). It proves convenient to ex-
press these decoupled equations in terms of
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g(i) =e 'g(i), (5.12)

where the eigenvalues

X1=2—4K4(3u'+v"), X1 =2 —4K4u', (5.11)

correspond to the unstable, cubic fixed point. Given
u(l) and v(l) the solutions of (5.9) and (5.10) may
be written

duced) Hamiltonian. In case (b) the renormalized
Hamiltonian X(l1") contains an instability in the
(QQ Q3) subspace, and one has to modify the
renormalization-group transformation. ~ In case (c)
the instability in the (@1,p1) subspace is about to oc-
cur. Therefore the components Q1 and @1 can stiB be
integrated out to obtain the reduced Hamiltonian of
case (a). In this case, however,

g(l) = goexp — [4Kqb u(l') ]di' (5.13) 1 ff(l1)'= r1(l1 ) + O(e) =0

together with

(5.i8)

(5.19)

r(l) =e '1(l), (5.14)
v rag

r(l) = ro exp —„[12Kghu (l') +4K43 u(l') ]dl'

(5.15)

Having solved the recursion relations we turn now to
locate the critical end points and to determine the
universal amplitude ratio defined before.

C. Location of critical end points in the region ~ & 0

define a critical end point for g & 0.' The same ar-
gument applies when initially r1 & r1(g & 0). In this
case we iterate up to a value I2' for which

(5.20)

If u(l1" ) & 0 then we can integrate the variable Q1 to
obtain a reduced xy-like Hamiltonian given in (2.10)
where now r, rr and u, rr [see Eqs. (2.11) and (2.12)]
are functions of I2'. Identifying a temperaturelike
variable off(11 ) = r1(l1' ) +0 (s) and demanding

(5.21)

If initially ~ 0, then the system is in the close vi-
cinity. of the unstable cubic fixed point for which

together with

u(l1') =0, (5.22)

54E4
'

A)=2 —9e,
2

A.2 =2 ——e9 (5.16)

Under the renormalization-group transformation, u
and v will therefore flow away from the fixed point
towards the instability limit u =0. Recall that to
leading order this flow is not influenced by the qua-
dratic symmetry-breaking perturbation. Assume now
that initially r1 & r1 (g & 0). In this case we have
to iterate the recursion relations up to a value l~' for
which

(5.17)

Three possible eases may occur. (a) The flow in the
(u, e) plane does not reach the instability limit,
namely, u (l1" ) is still positive. (b) The flow in the
(u, w) plane crosses the instability limit, namely
u(l1') &0. (c) The flow in the (u, v) plane reaches
precisely to the instability limit, namely u(l1" ) =0.
In case (a) the renormalized Hamiltonian X(l1") is
stable and we can integrate out the noncritical vari-
ables $1 and Q1 to obtain a reduced Ising-like Hamil-
to111a11 glve11 ul (2.6), wllere liow rerr aIld uerr [see
Eqs. (2.7) and (2.8)] are functions of /1' In X,rr(lt').
we easily identify a temperaturelike variable r,rr(l1')
= r1(I1') + O(s). In this case u, rr(11" ) is always posi-
tive [see (2.8)], thus r,rr(I1" ) =0 defines a critical (re-

(5.23)

e ' = [r(l1') ] (5.24)

with g(l) and 1(l) given in Eqs. (5.13) and (5.15).
Substituting in (5.17) we obtain

Q '+ &zf =1 (5.25)

from which we see that f is a function of z alone.
The criticality condition (5.18) now becomes

—Tzf =0 (5.26)

defines a critical end point for g & 0. Equations
(5.19) and (5.22) indicate that we iterate up to a
value I = I. at which the instability line u =0 is
reached, therefore to leading order /~' = l2' = L. This
point, first noticed by Kerszberg and Mukamel, '

simplifies the forthcoming calculations. To locate the
critical end point (CEl) for g & 0 we have to solve
Eqs. (5.17), (5.18), and (5.19), which impose three
conditions on the five variables fo, go, uo, vo, and II'.
Thus, for fixed uo and vo we can, in principle, elim-
inate l1' and obtain (to,go)cs1. Following Ref. 12 we
define



DANIEL BLANKSCHTHN AND DAVID MUKAMEL

which on uslllg (5.25) and (5.16) for XI and )t2,

yields

=3
s (5.27)

lI' = l2' =J.and therefore the integrals in (5.31) and
(S.33) cancel. This will always be the case if one re-
quires the flow in the (u, v) plane must terminate
at a certain line.

(5.28)

with

go=gcE~, ~o=~cE~, (5.29)

~here gcE~ and tcEi denote the critical end point
values in the initial Hamiltonian. Using the defini-
tions (5.13) and (5.15) yields

4g
gcE& ~cEi ~cE&

tL
AcEI =

2 exp —Ji 12K4hu(J') dl'

(5.30)

For the case g (0, Eqs. (5.25) and (5.26) are inter-

changed (therefore z =3) [see Eqs. (5.20) and
(5.21)]. As explained before, the condition (5.22)
implies that I2' =J.. Carrying out the same analysis

as before one obtains

4g
gcE2 ~CE2~CE2 (S.32)

to leading order in ~.' '6 Finally we invoke the con-
dition (5.19) to obtain a critical end point. This
means that for a given uo and vo we must also have
Ii" =I.~here I is the value of I for which the flow in
the (u, v) plane (which, one recalls, is decoupled to
leading order) goes from up, vp to II(L), v(1) such
that the condition (5.19) is satisfied. Combining this
requirement with (5.27) and (5.23) yields

VI. CONCLUSIONS

In this paper we have studied the effects of an off-
diagonal quadratic perturbation, g, on a three-
component cubic model with no accessible fixed
point. %e have shown that this perturbation is capa-
ble of inducing a crossover from first order to con-
tinuous transition which results in comphcated (g, T)
phase diagrams [see Figs. 3(a) and 3(b)]. The (g, T)
phase diagrams exhibit critical, tricritical, and critical
end points. Our results are based on large-g expan-
sion, mean-field analysis and renormalization-group
techniques. %e suggest that the crossover found in
this work may be observed in certain n =3 cubic
crystals which undergo a structual phase transition.
The compounds RbCaF3, ' ', KMnF3, and HaT&03

(Ref. 29) are cubic crystals which undergo a first-
order cubic to tetragonal (v —2u )0) displacive

phase transition. %e suggest that the application of
a uniaxial stress along [111]may generate the phase
diagram given in Fig, 3(b). Note, however, that the
dispersion relation in RbCaF3 and KMnF3 is strongly
anisotropic, '9 suggesting that a crossover to Lifshitz

type behavior30 should occur in this systems. "
Again, this may complicate the phase diagrams. %e
hope to study this problem in a future work.

&cE2 =3 exp —J, 12K4b u(1') dl'

The amplitude ratio is given by

1
~CEI/~CE2

This result is subject to corrections of order ~.

The crucial point in this calculation is that

(5.33)

(5.34)
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