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Starting from a consideration of how the phonon frequency mould change with the spin

splitting of the conduction-electron energy bands in an itinerant-electron ferromagnet, ee
find that in the paramagnetic region the effect of the electron-phonon interaction makes
the temperature dependence of the spin susceptibility Curie-gneiss-type, w'th the Curie

temperature Tc much lower than in the Stoner theory. Further, for T ~ Tc we find that
the phonon effect on magnetization can be large enough to account for the anomalous

temperature dependence of spontaneous magnetization often observed in itinerant-electron

ferromagnets, especially in Invar alloys. To confirm such a conclusion, with the same
model and approximation we discuss also the very closely related problem of the magnetic
field effect on the sound velocity in an itinerant-electron ferromagnet, and our theory is
found to explain satisfactorily the varied observed results for both T & Tc and T ~ Tc.

I. INTRODUCTION

One of the fundamental problems concerning
itinerant-electron ferromagnetism is to explain the
Cur1c-Wclss-type behav1or of thc paramagnetic
spin susceptibility widely observed in itinerant-
electron ferromagnets. Even within the Stoner
theory we can derive a Curie-%eiss-type spin sus-
ceptibility but the Curie-%ciss-type behavior thus
obtained is restricted to the vicinity of the Curie
temperature Tc, quite contrary to actual observa-
tions, and furthermore, the Curie temperature the
Stoner theory gives is generally too high by more
than an order of magnitude. Another fundamental
problem which confronts the Stoner theory is con-
cerned with the temperature dependence of the
spontaneous magnetization below Tc,' in itinerant
electron ferromagnets the observed characteristic
temperature dependence of magnetization is dif-
ferent for different materials; for example, as we
increase temperature toward Tc the magnetization
decreases much faster in Fe-Ni Invar alloys than
in pure Ni. Such difficulty in understanding tem-
perature dependence of magnetization has been re-
cently emphasized.

As for the first problem of explaining the ob-
served Curie-gneiss-type spin susceptibility, very in-
tensive progress is being made in various direc-
tions. 7 As for the second problem of under-
standing the variety in the temperature dependence
of spontaneous magnetization, however, there
seems to be much less effort.

The purpose of the present paper is to present an

entirely new approach and results on both of the
above two fundamental problems in itinerant-
electron ferromagneti'sm; we demonstrate that the
effect of the electron-phonon interaction can be re-
sponsible both for the Curie-%eisa-type paramag-
netic spin susceptibility, with Tc much lower than
in the Stoner theory, and the anomalous tempera-
ture dependence of the magnetization.

As for the possible effect of the electron-phonon
interaction on the magnetic properties of a metal,
however, it is widely believed that it does not play
any significant role. Such general belief seems to
have been derived from some earlier trials' to
show that the spin susceptibility of a metal is not
affected by the electron-phonon interaction. Those
earlier discussions are by no means complete nor
comprehensive enough, however. Thus, even after
the very influential critical review by Herring there
have been continuing efforts to reexamine the pos-
sible effect of the electron-phonon interaction on
the spin susceptibility. ' The origin of such
drastic difference between those earlier results and
ours ls that we lncludc the effects of the exchange
interaction between electrons fully self-consistently
in dealing with the electron-phonon interaction;
based on the jellium model with some extension,
we treat electrons and ions on the same footing in
handling the dynamics of the coupled system of
electrons and ions.

Let us briefly summarize what we will show in
the present paper. Firstly, as for the spin suscepti-
bility, the following mean-field approximation re-
sult is familiar:
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2p, sN(0)
1 —VN(0)

where N(0) is the electronic density of states per
spin at the Fermi surface and Vis the effective-
exchange interaction. As discussed by Hopfield'
and Enz and Matthias, ' the effect of the electron-
phonon interaction may be considered to modify
the exchange interaction from Vto V+J~h in Eq.
(1.1). According to the prevailing view, however,
the size of such a phonon effect is estimated as

0(
I Jph IN(0))=kcoD/e~-10 (1.2)

Jph(T)N(0) ~kg T/eF . (1.4)

The relation holds from high temperatures to quite
low temperatures of -0.28, where 8 is the Debye
temperature. As can be easily envisaged, the tem-
perature dependence of Eq. (1.4) leads to the
Curie-Weiss-law spin susceptibility.

Secondly, let us summarize our result on the
phonon effect on the magnetization behavior for
T& Tc. Naively, corresponding to Eq. (1.2), the
possible effect of the electron-phonon interaction
on magnetization M~h per atom is expected to be

where e~ and coD are, respectively, the Fermi ener-

gy and the Debye frequency. Thus, the phonon ef-
fect can be important only in the very special situ-
ations where either the magnitude of VN(0) is only

slightly smaller than unity, for example, by -0.01,
or ficoD/ez happens to be as large as -0.1, as con-
jectured for ZrZni. ' '

Recently, however, we
showed that the size of the phonon effect on the
spin susceptibility is enhanced from the magnitude
of Eq. (1.2) by the Stoner exchange-enhancement
factor,

O(
I Jph IN(0))=1/[1 —VN(0)](ficoD/ep) .

(1.3)
Furthermore in our theory, the magnitude and sign
of Jzh are related to the electronic density of states
near the Fermi surface of a metal in a very simple
way; J„hcan be either positive or negative.

What we will show still further in this paper is
that J~h becomes proportional to T,

between electrons by a factor as large as —10 to
make IM~h I/Nps —1. ' Furthermore, in our
model numerical calculation, the sign of the pho-
non effect turns out to be negative; the magnetiza-
tion is reduced by the effect of the electron-phonon
interaction as is required to explain the observa-
tioris such as mentioned above on Fe-Ni alloys.

As summarized in the above, our conclusion in
this paper is that the effect of the electron-phonon
interaction on the magnetic properties of a metal is
far more important than generally thought. How
could such a conclusion of ours be confirmed ex-
perimentallyT In the course of our discussion we
find that the present problem of how the magnetic
properties of a ferromagnetic metal is influenced

by the effmt of the electron-phonon interaction is
very closely related to the problem of how the
sound velocity or the phonon frequency of the fer-
roinagnetic metal is influenced by an external mag-
netic field, both above and below Tc,' we can treat
both problems quite in parallel, exactly with the
same model and approximations. Success in the
latter problem with our approach would be a
strong support to our conclusion on the former
problem; our theory offers a first quantitative ex-
planation on the observed magnetic-field effect on
sound velocity both for T& Tc (Ref. 26) and
T&TC (Ref. 27). Thus, in order to make our new
conclusion on the former problem persuasive, and
simultaneously show the importance of studying
magnetic field dependence of sound velocity, we
discuss both problems together in this paper.

In Sec. II we show generally how the phonon
contribution to the free energy becomes magnetiza-
tion dependent and how the spin susceptibility for
Ty Tc and the magnetization for T& Tc are relat-
ed to the external field or the magnetization depen-
dence of the sound velocity in each temperature re-
gion. After such general preparation, detailed dis-
cussions for the temperature regions T & T~ and
T & Tc are given, respectively, in Secs. III and IV.
Concluding remarks are given in Sec. V. In the
Appendix we briefly derive the basic starting point
of our whole discussion, how the phonon frequency
changes with the spin splitting of the conduction-
electron bands.

0( IM~h I
/Nps)=ficoD/ez-10 (1.5)

N being the total number of atoms in the system.
Since generally the magnetization per atom is
-les, the phonon effect as estimated in Eq. (1.S)
cannot be important. Here again, however, we find
that the phonon effect on magnetization is en-
hanced by the effect of the exchange interaction

II. PHONONS AND PHONON FREE ENERGY
IN FERROMAGNETIC METALS

Our discussion in this paper proceeds as follows:
The free energy of a metal can be divided into the
electron part I', and the phonon part F„h,
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p —p ++~ (2.1)

aF, (M) aF„k(M)
+ =0. (2.3)

Correspondingly, the spin susceptibility X for
T & T~ is obtained as

a F,(M) a Fpk(M)
+aM' I=. aM'

(2.4)

What, then is the physical origin of the magneti-
zation dependence of phonon free energy F~k(M)7
As can be seen from Eq. (2.2), it is through the
magnetization dependence of the phonon frequency

The phonon frequency depends on the mag-
netization and/or magnetic field as follows: The
ion-ion interaction in a metal is screened by the
conduction electrons, and the screening behavior of
the electrons is modified by the magnetization of
the screening electrons. Thus our whole discussion
starts from studying how the ion-ion interaction is
screened and how the screening behavior is affect-
ed by the spin splitting of the energy bands of the
conduction electrons.

From the nature of our discussion, it is essential
to treat the electrons and phonons on the same
footing. Under such a requirement, at present it
may be the only possible choice to use the jellium
model, with some extension, and the mean-field ap-
proximation. With such a model and approxima-
tion, as discussed in detail elsewhere, we have
only the longitudinal-acoustic phonons, and the
phonon frequency coq is obtained in the form (see
Appendix)

piq ——Qq —
~
g(q)

~

F+(q)+F (q)

1+V(q)[F+(q)+F (q)]
(2.5)

The phonon part is given in terms of the phonon
frequency coq as

1

Fp&= z X~q
q

+kiiT gin[1 —exp( Wq—/k~T)],
q

(2.2)

where the polarization of phonons is understood to
be included in q. The magnetization M below Tz
of the metal is determined by the following minim-
ization condition:

where Qq is the bare-phonon frequency, g (q) is
the electron-phonon interaction constant, V(q)
=4ne./q is the long-range Coulomb repulsion,
and F+ (q) are the exchange-enhanced static Lind-
hard functions of + spin electrons,

F+(q)
F+(q)=

1—V(q)F+ (q)
(2.6)

F+(q) being given as

f«k, +) f«k—+q, +

k ~k+q+ qk+
(2.7)

where ek + is the one-particle energy of an electron
with wave number k and + spin [see Eq. (3.1)],
and f(e) is the Fermi distribution function. Final-
ly, V(q) is the effective-exchange interaction (see
the Appendix).

The expression for the phonon frequency of Eq.
(2.5}can be used for the ferromagnetic state of a
metal where F+(q)QF (q), as well as for the
paramagnetic state. In the paramagnetic state
where

F+(q)=F (q)=F(q),

Eq. (2.5) is simplified to

Xp(q)

1+V(q)Xp(q)
(2.8)

=II'-~ ()~'
1+[2V(q}—V(q)]F(q)

(2.8')

X.(q)=
1 —V(q)F(q)

(2 9)

With V(0)= V and F(0)—=N(0), Eq. (2.9) reduces
to Eq. (1.1).

If we neglect the exchange effect by setting
V(q) =0 in Eq. (2.8'), it reduces to the familiar re-
sult. Even the expression of the form of Eq.
(2.8') has long been known. Note, however, that it
is not a trivial exercise to write the phonon fre-
quency in the form of Eq. (2.8) in terms of Xp(q)
rather than in the form of Eq. (2.8'). In the
paramagnetic state the entire magnetic properties
of a metal are embodied in the spin susceptibility
Xp(q), and the phonon frequency is determined by
this Xp(q). We can immediately see that the larger
the spin susceptibility is, the softer the phonon be-

where Xp(q) is the familiar wave-number-dependent
exchange-enhanced spin susceptibility (with pii ——1),

f
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co& ——[Q& —Ig(q) I
/v(q))

I g (q)
I
'/V(q)

1+V(q)[F+(q)+F (q)]
(2.5')

Remember that in the genuine jellium model the
bare-phonon frequency Q~ coincides with the
ionic-plasma frequency Q&~ and that

Q~~ ——Ig(q) I
/V(q) .

%e have

Q', —Ig(q) I'/v(q)=o

for the jellium model. Thus the first term on the
right-hand side of Eq. (2.5') is understood to
represent the non-point-charge part of the ion-ion
interaction. Correspondingly, the second term
shows how the point-charge part of the ion-ion in-

teraction is screened by the conduction electrons.
In the actual calculation, given below, of the

phonon frequency to be inserted in Eq. (2.2), we
use the Debye approximation

COq =Sf, (2.10)

where s is the velocity of sound to be obtained
from the q~0 limit of Eq. (2.5). In handling Eq.
(2.5) with such a limit let us put deviations from

comes. Actually such observations have long been
made but not adequately understood by including
the exchange-interaction effect as in Eq. (2.8).

As for the phonon frequency in the ferromagnet-
ic state of a metal, Eq. (2.5) shows how it depends
on the magnetization; as the spin splitting of the
bands changes with magnetization, F+ (q) and, ac-
cordingly, F+(q) change in Eq. (2.5). Recently, 3'

starting from Eq. (2.5) we studied numerically how
sensitively the characteristic magnetization depen-
dence of the sound velocity is related to the loca-
tion of the Fermi energy in the electronic density
of states; depending upon the location of the Fermi
energy in a given density of states, the magnetiza-
tion dependence of sound velocity can be either
large or small. Our numerical result is included in
Fig. 6. Actually, in some ferromagnetic alloys,
such as the Fe-Ni and Fe-Pt alloys, the elastic
constant as measured through sound velocity is ob-
served to change with magnetization quite drasti-

cally, as much as by an order of magnitude. On
the other hand, in pure Ni, for instance, the elastic
properties are much less related to the magnetiza-
tion.

It is instructive and convenient to rewrite Eq.
(2.5) in the following form:

the jellium model in terms of a parameter g as

(2.11)

where so ——Q~~/[See N(0)]' is the Bohm-Staver
sound velocity. g can be either positive or negative
and for the jellium model (=0. Then the sound
velocity is obtained as

s 2N(0)
so F+(0)+F (0)

(2.12)

For low temperatures, such as

(ksT/e~) &&1,

af(e„,)
F+(0)= lim F+(q) = —g

q —+0 ~&k, +

—= N+ (0), (2.13)

where N+(0) is the density of states of + spin
electrons at the Fermi surface.

Note that for T & T~ the sound velocity becomes
related to the uniform spin susceptibility of Eqs.
(1.1) or (2.9) in a very direct way,

s 2N(0)
so Xo(0)

(2.14)

According to Eq. (2.14), as the temperature ap-
proaches T~ from above, the sound velocity de-
creases. The relative size of such temperature
dependence, however, depends on the magnitude of
g quite sensitively. Since 2N(0)/Xo(0) varies only
between unity and zero, if g »1 the expected rela-
tive change of the sound velocity is small. Experi-
mentally, as the temperature approaches T~ from
above, a large decrease of sound velocity was ob-
served in Fe-Ni and Fe-Pt Invar alloys, while such
a tendency was not observed in pure Ni. Such a
difference in the temperature dependence may be
attributed to the difference in the magnitude of g;
g & 1 for Fe-Ni and Fe-Pt alloys, but g seems to be
sufficiently larger than unity in Ni.

Another important fact to be considered con-
cerning the characteristic difference between the
behaviors of Ni and Fe-Ni Invar alloys is the effect
of thermal expansion on g. Since g represents the
non-point-charge part of the ion-ion interaction
which is generally short-ranged, such as the core-
core interaction, the value of g' is expected to be
very sensitive to a volume change; if g is to
represent the effect of the core-core repulsive in-
teraction, the value of g would increase very rapid-

ly with decreasing ion-ion distance. Therefore, al-
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Fph(rl ) =Fph(0)+ hFph(rl ) . (2.15)

In the thermal equilibrium, half the spin splitting
of the band rl is related to the magnetization M as

g =p~H+ —,VM, (2.16)

M=n+ —n (2.17)

though from the second term 2N(0)IXO alone of
Eq. (2.14) the sound velocity in a ferromagnet is
expected to decrease as the temperature is lowered
toward Tc, such a tendency is countered by an in-
crease in the magnitude of g(T) caused by thermal
contraction.

In this respect, note that the ferromagnetic Invar
alloys, by definition, thermal expansion is much
smaller than in non-Invar ferromagnets; owing to
small or even negative thermal expansion coeffi-
cients in Invar alloys, the elastic softening caused
by the temperature dependence in 2N(0)/Xs(T) is
not overridden by the temperature dependence in

g(T} In co. ntrast, with Ni, apart from the fact
that f is larger than unity, the increase in g(T) ow-

ing to thermal contraction is faster than the de-
crease in 2N(0)/Xo(T). We think this is the
reason why the elastic softening is distinctly ob-
served in the Invar alloys but not in non-Invar fer-
romagnets like Ni as we lower the temperature to-

ard Tc.
Here let us note that our later discussions on the

effect of the electron-phonon interaction on the
magnetic properties of a metal are based on Eqs.
(2.12) and (2.14), but it does not matter essentially
whether elastic softening is observed or not. As
will be shown, what matters is the magnetic field
or magnetization dependence of phonon frequency.
In the discussion of the phonon mechanism of the
Curie-Weiss-law spin susceptibility, for instance,
whether phonons soften or not is of importance
only through the factor [so/s (0)] in Eq. (3.20)
and clearly our result is not governed by this factor
in any essential way.

As described at the beginning of this section
what we need to know in our discussion is how the
phonon frequency of the sound velocity depends on
the magnetization or the external magnetic field.
Our simple equation (2.12}gives a basis for such
study, as will be shown in Secs. III and IV, respec-
tively, for T&Tc and T(Tc

Once we know the magnetization and/or the
external magnetic field dependence of sound veloci-

ty, the phonon part of the free energy Eq. (2.2) can
be written as

N (0 N (C)

FIG. 1. Density of states of electrons with + spins,
split by either spontaneous magnetization and/or an
external magnetic field. The occupied states are shaded,
and throughout this paper we assume the majority elec-
trons are with + spin.

where n+ is the total number of electrons with +
spins, and throughout this paper we assume the
majority spin electrons are with + spins as shown
in Fig. 1. Note that the g to be used in the varia-
tional calculation with Eq. (2.15) is different from
Eq. (2.16); the i) to be used in Eq. (2.15) is related
to M only through the electron-number conserva-
tion and in the paramagnetic state it is given as

q=M/[2F(0)]=M/[2N(0)] . (2.16')

In the Debye approximation the q-dependent part
of the phonon free energy is expressed as

~zh(g) = Nks8P(T/8)&(g)/s(0), (2.18)

where we set

s (rl) =s (0)+M (rl), (2.19)

3 1P(x) = +xD—
8 x

(2.20)

D(y) being the Debye function

3 ~ z'
D(y)= 3 I dz

y o e'—1

Note that the function P(T/8) does not depend
on rl; the rl dependence comes only through that of
the sound velocity M(rl). We discuss the tempera-
ture dependence of the function P(T/8) in detail
in the next section. bs (i)} is studied in Secs. III
and IV, respectively, for T)Tc and T(Tc.
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III. PHONON EFFECT ON SPIN
SUSCEPTIBILITY ABOVE Tg,

PHONON MECHANISM OF CURIE-WEISS LAW

=&k+'9 ~ (3.1)

where rl is half the spin splitting of the bands as
already defined in Eq. (2.16). In the last equation
we neglected the constant quantity

——, V(n++n ) .

A. Magnetic field dependence of sound velocity
foi' T)Tc

According to the prescription given in Sec. II, in
order to calculate the size of the phonon effect on
the paramagnetic spin susceptibility of a metal, we
must know how the sound velocity would change
with magnetization M and/or external magnetic
field H. For that purpose, the only thing that we
must do is study how the zero wave-number limit
of the Lindhard function F+(0) would change with
the spin splitting of the energy bands of the metal
in Eq. (2.12).

Under magnetization and an external magnetic
field H in the direction of the negative z axis (see
Fig. 1), the one-particle energy of an electron as
appears in Eqs. (2.7) and (2.13) is given as (see the
Appendix)

ek ——ek —Vn++P gH

= ok+ , V(n+ n—)+—@AH

, V(n+—+n )

lim F+(q;rl) =F+(0;r))
q —+0

= F+(0)+F~(0)(+r) bp)—

+ —,F+ (0)(+i)—&p)'+

where we set F+(0;0)=F+(0) and

(3.3)

g ( n + 1 )f( &

F',"'(0)= — fd~k, N(~k, )
BEk

.q=0

(3.4)

In the present situation of the paramagnetic state
we can ignore the subscripts + in the right-hand
sides of Eqs. (3.3) and (3.4), but we retain them to
use these equations also for the ferromagnetic state
to be discussed in the next section.

The shift hp in the chemical potential due to
the spin splitting of the bands is obtained from the
requirement of the electron-number conservation:

The Fermi distribution function is affected by the
spin splitting in the following fashion:

f«k, ) = I I+expf&«k p+rl ~V)l l

(3.2)
where hp is the change in the chemical potential
due to the spin splitting. Then from Eq. (2.13) it
is straightforward to obtain the q~0 limit of the
static Lindhard function F(0;rl) under the spin
splitting 2g as

gf «k )= g (f«k)+f'«k)( ~n ~I )+ ,f"«k)( ~n —~l)'+ ]=2+f(ek), (3.5)

—,gf"«k)
k 2~I (3 6)

where 0 =+ or —.Retaining up to the second or-
der in g, we obtain

(ksTiep) « 1,
F'(0) =fN (e)f'(e)de = —N'(0),

F"(0)= —fN" ( e)f'(e)d e —= N"(0),

(3.8)

By putting Eq. (3.6) into Eq. (3.3) and retaining
terms up to 0 (rl ) we obtain finally

F+(0;rl)= F(0)+F'(0)i)

F"(0)— rl . (3.7)
2 F(0)

(3.9)

where N'(0) is the derivative of the density of
states with respect to the energy at e=p.

The sound velocity under the spin splitting of 2g
is obtained by putting Eq. (3.7) into Eq. (2.12),

s(rl)
&0

Note that at low temperatures such as
4(i) ) =Do 1+DOK

N(0) IV
(3.10)



EI ECTRON-PHONON INTERACTION AND ITINERANT-. . . 6925

where Do =1/[1—VF(0)] is the Stoner exchange-
enhancement factor, W is the width of the elec-
tron-energy band, and we set

1.0—

I i I I
(

I I l I

1 N"(0)
2 N(0)

VD
N'(0)
N(0)

N'{0)
N(0)

(3.11)

0 0.5 l.p
E
Vl

FIG. 2. Electronic density of states defined by Eq.
(3.16).

V—= VN(0) . (3.12) rI=psH(1+ —,VXp}

In Eq. (3.11), except in Do, F'"'{0)are approxi-
mated by Eq. (3.8) and we used the relation
1+VE(0)Do ——Do. Finally, noting

~
&(rI)/s(0)

~
&&1,

the relative change in the sound velocity as re-
quired in Eq. (2.18) is obtained as

(3.14}

in Eq. (3.13), wllere we assllnled Eq. (2.9) fol' tile

paramagnetic spin susceptibility, as

100

M(r)) 1

s(0) 2

'2
s(il )

Sp

'2
s(0)

Sp

s (0)
Sp

O~ V=0.5
O~ 0.7
03 0.9
O~ 0.95

= ——,[so/s (0)]~X(rj/W)', (3.13)

where [s (0)/so] =(s/so) is given by Eq. (2.14).
The observed magnetic field dependence of

sound velocity in some itinerant-electron ferromag-
nets is quite large. In Fe-Ni and Fe-Pt alloys, for
instance, a magnetic field of less than 10 kG was
found to change the sound velocity as much as
—1%, both above and below Tc. Since the size of
the relative change in the sound velocity due to a
magnetic field H is expected to be 0 (psH/W)
for T & Tc and 0(p+H/W) for T & Tc, such an
observation is beyond our simple intuition; with
H =10 kG, W= 1 eV, and accordingly psH/W
=10,we need very large enhancement factors of
—10 for T&Tc and —10 for T&Tc. Further-
more, we are required to explain the fact that the
observed change in the sound velocity of those sys-
tems is positive for T & Tc and negative for
T & Tc The magnetic . field effect on sound veloci-
ty is not always large, however; in pure Ni the
magnetic field effect appears much less than in
Fe-Ni and Fe-Pt alloys both for T & Tc and
T & Tc. In the following let us show how such a
variety of observations for T & Tc can be under-
stood from Eq. (3.13}. As for the problem for
T g Tc, we will discuss it in Sec. IV.

The external magnetic field dependence of sound
velocity is obtained by setting

-100
0

I

0.5 1.D

10

Q] V =0.5
Q2 0.7

0.9

I

KF

FIG. 3. Magnetic field dependence of sound velocity
in the paramagnetic state of metals as defined in Eq.
(3.15), for different locations of the Fermi energy in the
density of states of Fig. 2. for different values of V, and
with g= l.
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2 ' '2
M(H) 1 so 2 PaH
s(0) 2 s(0) W

r

pgH
(3.15)

Note that the exchange-enhancement factor Do ap-
pears within E; thus M (H)ls(0) ~ Do

In order to see how the magnetic field depen-
dence of the sound velocity in a metal is related to
the electronic structure and the exchange-
enhancement factor of the metal, we carry out a
numerical calculation of the quantity K by assurn-

ing the following form of parabolic density of
states:

N (e)= (N/6W )e( W —e), (3.16)

which is shown in Fig. 2.
The result of Fig. 3 shows that the size of the

magnetic field dependence of sound velocity is
quite sensitive to the values of V and ez/8', ez be-

ing the Fermi energy measured from the bottom of
the band in the state without spin splitting. If the
exchange interaction is weak, ~ is small; in the case
of V=0.5, where Do 4,

~

a
~

& 10 ex——cept at the
ends of the band. The magnitude of a is drastical-
ly enhanced by the exchange-interaction effect; in
the case of V=0.95, where D p ——400, g = —10 for
e~/W =0.2 or 0.8. In order to account for the ex-
perimental observation on Fe-Ni and Fe-Pt alloys
~ is required to be negative and as large as -10 .
Such a situation is quite conceivable from our re-
sults.

Even if V is close to unity, the magnitude of ~
becomes small if e~ is located near the peak of the
density of states; in the case of V=0.95, the mag-
nitude of a for eF/W=0. 5 is smaller than that for
eF/W =0.2 or 0.8 by more than 2 orders of mag-
nitude. The absence of appreciable magnetic field
effects on the sound velocity in Ni, in contrast to
the case of Fe-Ni and Fe-Pt alloys, strongly sug-
gests that in Ni e~ is located near the peak of the
density of states.

The effect of magnetic field on the sound veloci-

ty in a paramagnetic metal was earlier discussed by
Dieterich and Fulde without including the effect
of the exchange interaction between electrons; their
result is reproduced by setting V=O in our results
of Eqs. (3.15) and (3.11). The first difference be-
tween the results of Dieterich-Fulde and ours is the
factor Do in Eq. (3.15); this factor represents the
fact that the external magnetic field an electron
"feels" is exchange enhanced from H to DpH. The

B. Effective exchange interaction due to phonons

Putting Eq. (3.13) into Eq. (2.18), we obtain the
i)-dependent part of the phonon free energy
Fzh(rl). Then from the prescription of Eq. (2.4),
the phonon contribution to the spin susceptibility
is immediately obtained. Note that here we have
to use Eq. (2.16' ) for i).

For electrons, the following mean-field approxi-
mation result is familiar:

gM' ' =o 2F(0) 2

As for phonons, let us define

(3.17)

Jph ———2 Fph(M)
BM

(3.18)

which can be understood as the effective exchange
interaction due to phonons. Thus, for the total
spin susceptibility we obtain

2F(0)
1 —( V+Jph)F(0)

(3.19)

The effective exchange interaction due to phonons
is obtained from Eqs. (2 16'), (2.18), (3.13), and
(3.18) as

Jph
———,(N/W)[1/F(0)] [so/s (0)]

XZI'(T/e)(e, /W) . (3.20)

It would be more convenient to rewrite Eq. (3.20)
in the following form,

JphN(0) = [N(0)/F(0)] L( V,ep/W)[so/s (0)]

XP (

Tie�)(~ri/W),

where we set

(3.21)

L ( V,e / W) = , [N/N (0)W]E . —(3.22)

Before entering a detailed study of J~h in Secs.

second and the more important difference is the
second term on the right-hand side of Eq. (3.11);
this term totally disappears for V=O. Without
this term, the magnitude of sc/Dp would have been
-1, as suggested by the case of V=0.5 in Fig. 3.
Without our new term the difference between the
behaviors of pure Ni and Fe-Ni alloys, for in-
stance, cannot be understood. More importantly, it
is this new term that makes the phonon contribu-
tion to the paramagnetic spin susceptibility in-
teresting, as will be shown in Sec. III B.
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III C and III D, let us first briefly estimate the pos-
sible size of J&hN(0). Earlier discussions, which
did not properly include the effect of the exchange
interaction between electrons on the screening of
the electron-phonon interaction, were unanimous in
concluding that

10

0

JphN(0) L(%con/W) .

As for L, as can be seen from Eqs. (3.22) and
(3.11), it can be estimated as

~
L

~
=Do[N'(0)/N(0)] W =Do .

Thus we obtain

0(
i J~h i

N(0)) =Do(flu~/W) .

(3.23)

(3.24)

If Do-10, then 0(
~
J~h ~

N(0))=0. 1; if the phonon
effect on the spin susceptibility is of this size it
cannot be neglected.

C. Sign and size of the effective exchange
interaction due to phonons

There fnay be situations where the phonon
softening (or, hardening) factor [so/s(0)] plays a
very important role in Eq. (3.21), but for simplici-
ty, for the present let us set

[so/s{0)] =1 . (3.25)

Similarly, the temperature dependence in F(0) can
be important when the band is narrow and the
temperature is high, but in Eq. (3.19) let us set [see
Eq. (2.13)]

F(0} N(0) . (3.26}

Shortly, in Sec. III0, we wiB see that the tempera-
ture dependence in P{T/8) is much more sensitive
than that of [so/s (0)] and F(0). Under these two
approximations, Eqs. (3.19) and (3.21) are simpli-
fied to

2N(0)
(1—V) —JphN (0)

(3.19')

0(
f Jph /

N(0)}=Sieur)/W=10

~ Jph ~
Ã(0) can be much larger than 10 i, how

ever.
In the present approximation of Eq. (3.g), the

quantity I. is independent of temperature. The two
following factors, [so/s(0)] and P(T/8) in Eq.
(3.21},are temperature dependent but always posi-
tive and of the order of -1. Thus we can set

-lO I I

0.5 e,/w

FIG. 4. Calculation of I.( V, e~/fV) defined by Eq.
(3.22) for different values of e~/8' in the electronic den-
sity of states of Fig. 2 and for different values of V.

JphN(0) =L ( V,cp/W)P(T/8)Aevi)/W .

(3.21')

Thus, in order to fully study the electron-phonon
interaction effect on the paramagnetic spin suscep-
tibility we must discuss the quantities I. and
P(T/8}; L determines the size and sign of the ef-
fective exchange interaction, whereas P(T/8)
gives the temperature dependence.

First, let us carry out a numerical calculation of
I. by assuming the parabolic electronic density of
states of Eq. (3.16) which is shown in Fig. 2 for
different values of V and e~lW. The result is
given in Fig. 4. Depending upon the values of V,
and ez/W, L can be either positive or negative and
its magnitude can easily be larger than -10. Note
that in order to make

~
L

~

—10, V is required to
be close to unity. Also note that for V~ 1, L be-
comes always negative: The electron-phonon in-
teraction effect on the spin susceptibility is de-
structive (J~h &0) if the exchange interaction be-
tween electrons is strong enough to satisfy the
Stoner condition for ferromagnetism (V~ 1).

We calculated L also for a Gaussian form of
electronic density of states. The result is essential-
ly similar to that of Fig. 4.

D. Temperature dependence of the phonon
contribution to spin susceptibility:

A new mechanism of Curie-%'eiss law

In Eqs. (3.19') and (3.21'), the temperature
dependence of the spin susceptibility is determined
by that of the function P{T/8) introduced in Eq.
(2.20). The following limiting behavior can be
easily checked:
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4.0

(b) V(1:
C

T+ To
(3.32)

3.0

P(—)

2.0

1.0

I I I

1.0 2.0 3.0 4.0 5.0

FIG. 5. Tempersture dependence in P(T/8) defined

by Eq. (2.20).

foi T(&O"
p T

Ovt T
8 for T»O~ .

With the simplification of Eq. (3.27), Eq. (3.19') is
rewritten as

as%�(0)
(1—V) —L (ka T/8')

(3.28)

where we restored ps. I.et us discuss the cases of
I.&0 and I.& 0 separately.

L, &0: Destructive phonon effect

Thc Hlost 1ntcIcst1ng po1nt was to scc at about
what temperature the high-temperature behavior of
P(T/8) would start. The result of our numerical
calculation on P(T/8) is given in Fig. 5.

Quite surprisingly, the linear T dependence al-

ready begins near T/8=0. 2. Thus, for T/O&0. 2
we may set

I' T T {3.27)
(~) 8

To ——(1—V)RVks il.
i

. (3.33)

2. L &0: Constmctivephonon effect

According to the results of Fig. 4, in order to
have a positive L, we require (i) V(1 and {ii) that
the Fermi surface should not be at or very near the
peak of the density of states; we do not need to
consider the situation of V& 1 in the case of l. & 0.
Thus we obtain the susceptibility in the foHowing
form:

In Eq. (3.32), C is the same as in Eq. (3.31).
Case (a) gives the Cutm-Weiss-law susceptibihty.

Our new Curie-Weiss susceptibility has the follow-
ing convenient features:

(i) As can be seen from the result of Fig. 5 the
Curie-%eiss-type temperature dependence is better
realized for higher temperatures and valid up to
quite low temperatures of T/8=0. 2.

(ii) The Curie temperature can be much lower
than that which is given by the Stoner theory:
Suppose V=1.05, 8'=3 CV, and I.= —5. Then
Eq. (3.30) gives T,=3X10 K. The corresponding
value in the Stoner theory is T, (Stoner)
=( V—1)'~'W/k =7&& 10' K.

As for case (b), where the exchange interaction V
is not strong enough to produce ferromagnetism,
note that actually we quite often observe spin sus-

ceptibility of the form of Eq. (3.32). An exam-

ple, for instance, might be Pd for T p 100 K.
Observation of the paramagnetic spin suscepti-

bility of the form of Eq. (3.32) is usually associated
with an antiferromagnetic tendency. According to
our phonon mechanism, however, such temperature
dependence of spin susceptibility can be produced
if (i) V (1 and (ii) ez is located at or near the peak
of the electronic density of states to make L &0
(see Fig. 4), quite independently of anitferromagne-
tism.

Depending on whether V is larger or smaller
than unity the susceptibility behaves differently.
(a) V&1:

(3.29)
T, =(1—V)

8

(3.34}

(3.35)

T, = ( V—1)W/ks
i
I. i,

C=2pttN{D)W/kit iL [ .

(3.30)

(3.31)

C, =as%(0}
kgI.

(3.36)

Note that observation of an increasing spin sus-
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ceptibility with increasing temperature is rather
common among transition metals: Typical exam-
ples are Ti (T & 1200 K), Hf, Zr (T & 1000 K), Rh,
and so on. Although such observations have been
attributed entirely to the effects of the electronic
structure, our result seems to offer an alternative
way of understanding them.

What would happen if T approaches T, '? It is a
question to be further pursued. If T is as high as
ep/ks or T„Eq.(3.34) should be drastically modi-
1ed.

IV. PHONON EFFECT ON MAGNETIZATION
BELOW Tc

According to Eq. (2.3), in order to estimate the
size of the possible electron-phonon interaction ef-
fect on magnetization we must know how the pho-
non frequency or the sound velocity would change
under magnetization or external magnetic field in
the temperature region T & T~. %e pursue this
problem in Sec. IV A. Then with the result of Sec.
IV A we treat the problem of the phonon effect on
magnetization perturbationally in Sec. IV B. The
result of such a perturbational estimation of pho-
non effect turns out to be quite large and diverges
in some cases. Thus in Sec. IV C we reexamine the
problem now nonperturbationally.

A. Magnetization and/or magnetic field dependence
of the sound velocity for T & Tc

The same equation (2.12) as we used in Sec.
III A is the basis of our discussion. The difference

E+(0)—F (0)

F,(0)+E (0)
(4 1)

Correspondingly, in place of Eq. (3.7), we obtain

2E- (0)
F+ (0;r?)=F+(0)+F+ (0)

E+ 0+F 0
(4.2)

Note that 2g represents an additional spin splitting
of the bands over the spontaneous Stoner magneti-
zation.

Since we know that in the ferromagnetic state,
unlike in the paramagnetic state, the q dependence
in the sound velocity starts from the linear term,
we retain only terms up to first order in r?. Put-
ting Eq. (4.2) into Eq. (2.12), with the approxima-
tion of Eq. (3.8), we obtain the following result:

? (n) A( CM)P
H

s(0) '
W

where

(4 3)

here is that now the system is in the ferromagnetic
state; the system has spontaneous magnetization
without the external magnetic field. What we are
going to study is how the sound velocity would
change if we further magnetize the system by an
external magnetic field.

Exactly as in Sec. IIIA we are required to know
how the q~0 limit of the Lindhard function
would change with the additional spin splitting in
the ferroinagnetic state; we can use the same equa-
tion (3.3). The difference, however, is the r? depen-
dence of the shift in the chemical potential; in the
ferromagnetic state, in place of Eq. (3.6), we obtain

A(ep, g,M)=[so/s(0)] Y(ep, M)XHp(M),

N'~ (0)/N~ (0) N' (0)/N (0)
Y(eF,M) =——,N(0) W

[1—VN+ (0)] [1—VN (0)]

N+(0) N (0)

1 —VN+ (0) 1 —VN (0)

—2

(4 4)

(4.S)

and XHp(M) is the so-called high-field susceptibili-
ty (with ps ——1),

4N+ (0)N (0)
&HF(M)=

N+ (0)+N (0)—2 VN+ (0)N (0)

(4 6)

The magnetic field dependence of the sound
velocity has been measured in a number of fer-
romagnetic metals below Tc, and the result is quite
varied. In the case of pure Ni, the size of the
field dependence is very small, implying 0(

~
A

~
)

I

=1 in Eq. (4.3). On the other hand, in the Fe-Ni
alloys that show the Invar properties, a magnetic
field of less than 10 kG produced a relative in-
crease of —l%%uo in the sound velocity; with W=l
eV and p~H=10 eV this implies A =10 . To
see whether such results can be explained by our
result of this section, we carried out a numerical
calculation of A for the parabohc density of states
of Eq. (3.16). The result is given in Fig. 6.

In Fig. 6, the real lines show the result of our
numerical calculation on A (ep, g,M} for different
occupations ep/W of the band as the function of
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FIG. 6. Magnetization {M) dependence of A defined by Eq. {4.4) for different occupations e~/W of the band shown

in Fig. 2 and for different values of g is shown by the real lines. Note that in {d) a different scale shown with
parentheses is used for the ordinate for the case of f=1. The broken lines are for the magnetization dependence of the
sound velocity without the external magnetic field.

the parameter g and the magnetization M, normal-
ized by the inaximum possible magnetization Mc;
note that eF is the Fermi energy measured from
the bottom of the band in the paramagnetic state
without spin splitting and that Mc are different for
different es /W. With a given e» in the density of
states, values of different magnetization M are
realized by changing the values of V. For refer-
ence, the sound velocity s (0)/sc without the exter-
nal magnetic field is also given by broken lines; to
emphasize that s (0) is the sound velocity under the
"spontaneous" magnetization M we have s (M}/sc
in place of s(0)/sp in Fig. 6. Note that with the

density of states of Eq. (3.16}both A (eF,g,M) and
s(M)/sc ——s(0)/sp are the same for es/W=x and
1 —x.

The result of Fig. 6 shows that the magnitude of
can be indeed as large as 10 —10, with positive

sign, just as it was required to account for the ex-
perimental observations on Fe-Ni and Fe-Pt alloys.
Depending upon the values of es/W and g, howev-

er, the detailed behavior of A can be quite dif-
ferent; if the Fermi energy in the paramagnetic
state is at or near the inaximum of the density of
states (es /W=0. 5) the magnitude of A is small;
for the same value of eF/W, A becomes smaller for
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a larger value of g. Remember that in pure Ni the
observed magnetic field effect on the sound veloci-

ty is negligibly small compared with that of Fe-Ni
and Fe-Pt alloys. Within our present model calcu-
lation, such a behavior of Ni may be associated
with case (a) with )=2 or larger in Fig. 6. In this
respect, it is interesting to note that in Ni the
sound velocity s(M) [=s(0)] was observed to in-
crease with increasing magnetization in accor-
dance with such behavior of s (M) in Fig. 6; in
Fe-Ni and Fe-Pt s (M} decreases with increasing
magnetization.

How the sound velocity is affected by the exter-
nal magnetic field below Tc of of an itinerant-
electron ferromagnet is closely related to how the
magnetization of the ferromagnet can be affected
by the electron-phonon interaction, as we will see
in Sec. IV B. Note that our success here in ac-
counting for the observed magnetic field depen-
dence of sound velocity implies the validity of our
discussion on the effect of the electron-phonon in-
teraction on magnetization to be given in Secs.
IVB and IVC.

B. Phonon effect on magnetization:
Perturbational approach

Let us first assume that the phonon effect on
magnetization is small and take a perturbational
approach. The major part of the magnetization
M, is obtained from the condition

c)F,(M) =0.
BM

(4.7)

c)2F,(M)
(M —M, ) + . (4.8)

c)M'

We retain only the first two terms in the expan-
sion. Then putting Eq. (4.8) into Eq. (2.3) we ob-
tain the phonon contribution to magnetization as

The effect of the electron-phonon interaction is ex-
pected slightly to shift the position of the free-
energy minimum from M, to M =M, +Mph.
Under the assumption of

~
M~h

~
&&M„the elec-

tron part of the free energy may be expanded as

F,(M) = F,(M, )

Note that the denominator of the right-hand side
of Eq. (4.9) gives the inverse of the high-field sus-

ceptibility given by Eq. (4.6):

8 F,(M)

c)M'
= I/XHp(M, ) .

[See Eq. (2.4).] Then Eq. (4.9) can be rewritten in
the following form:

Mph:XHp(M )Hph (4.9')

where the effective magnetic field due to the
electron-phonon interaction H~h is defined quite
naturally as

c)Fph(M)
Hph(M, )=—

M=Me

(4.10)

While in the calculation of the magnetic field
dependence of sound velocity in Sec. IVA i) was
related to the change hi@ in magnetization as

g=0+ —,VbM

N+(0)+N (0)

4N+ (0)N (0)
(4.11)

in the present calculation of Eq. (4.10), as is seen
from Eq. (4.2), we should use the following rela-
tion:

N+(0)+N (0)

4N+ (0)N (0)
(4.11')

M (i)) A bM
s (0) XHp W

(4.12}

where A is given in Eqs. (4.3)—(4.5). From Eqs.
(2.18) and (4.12) it is straightforward to obtain

(4.10')

The difference between Eqs. (4.11) and (4.11') ex-
actly corresponds to that between Eqs. (2.16) and
(2.16') of the paramagnetic state; the former
change in magnetization is in the thermal equilibri-
um, but the latter change in magnetization is a
variational one.

If we note the relation between Eqs. (4.11) and
(4.11') the calculation of Eq. (4.10) can be related
to that of Sec. IV A. Corresponding to Eq. (4.3)
we obtain

c)Fph(M)

BM
F,(M)

c)M M=Me

(4 9}

where coD(M, )=s(M, )q, q~ being the Debye cut-
off wave number. Putting Eq. (4.10') into Eq.
(4.9') we arrive at the final result: If we define a
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quantity B as

Mps /Nps B——(Picots /W),

corresponding to A of Eq. (4.3), it is given as

TB=—P —A,8

(4.13)

(4.14)

P(T/B) being discussed in detail in Sec. III.
The result of Eq. (4.14) shows that the sign of B

is opposite to that of A and that the magnitude of
B is of the same order as that of A and increases
proportionally to the temperature. The fact that A

can be easily -10 with positive sign implies,
therefore, that B can be as large as 10' with nega-
tive sign. If we note that %con/W=10 in Eq.
(4.13), B=—10 implies that the effect of the
electron-phonon interaction is to destroy the mag-
netization by as much as 1@~ per atom. Such
large effect of the electron-phonon interaction on
magnetization was never before anticipated.

As we discussed in the preceding subsection, ex-
perimentally, A is found to be positive and as large
as -10 in some Fe-Ni and Fe-Pt alloys. Such ex-
perimental observations on A strongly suggest that
in those alloys B would be negative and as large as
-10 .

Clearly the result of Fig. 6, indicates that the ef-
fect of the electron-phonon interaction is much too
large to justify our present perturbational treat-
ment. %e carry out a nonperturbational treatment
in Sec. IVC.

C. Phonon effect on magnetization:
Nonperturbational approach

(4.15)

where ez (M) is the Fermi energy of the + spin

electrons measured from the bottom of each band.
Correspondingly, the energy of phonons is given
from Eq. (2.18) as

In this section we calculate numerically how

E,(M) and E~„(M)change with M; the equilibrium
magnetization is determined from the minimum of
the total free energy. In order to make the discus-
sion simple let us consider the situation of the zero
temperature. Then the electron part of the energy
in the mean-field approximation E,(M} is given as

E~i, (M) = —,Nirisoq~ [s (M}/so]

=a (NW)s (M)/so, (4.16)

where we note P(T/8) =3/8 for T =0,
N=q /3', and a ficon/W=10

Suppose the minimum of E,(M) alone is located
at M =M, . The problem is how far the location
of the energy minimum would shift from M, if we
take Ezs(M) into consideration. At first glance,
since

Eps(M)/NW=O(10 ),
whereas

E,(M)/NW=O(1),

the electron-phonon interaction effect may appear
negligible within an error of -1%. Such simple
reasoning is not warranted, as our numerical result
in Sec. IV 8 shows. Here note that generally the
variation of E,(M} becomes small in the neighbor-
hood of the stationary point of M =M, ; near M,
the size of variation in E,(M) may not necessarily
be much larger than that of E~b(M).

In carrying out a numerical calculation of E,(M)
and E~s(M) we use the parabolic electronic density
of states of Eq. (3.16}. As for a in Eq. (4.16), we
assume a=10 . The result of our numerical cal-
culation is given in Figs. 7—9. In Fig. 7 we show
how E,(M), E~b(M) change with M/Mo for the
case of e~/W=0. 5. All three energies E„E„i,
and E, +E~q are plotted with the same energy
scale in the unit of NW, although from different
origins. As anticipated, near the stationary point
of E,(M) the size of the M dependence of Ezb(M)
can be as large as that of E,(M); the location of
the minimum of E,(M)+ E~b(M) shifts appreci-
ably from that of E,(M) alone. A typical situation
is shown in the case (i) of Fig. 7; by the phonon ef-
fect the magnetization is reduced as much as by
-30%%uo, from M/MD=0. 35 to -0.25. In case (ii)
of the smaller exchange interaction V= VN(0)
=1.006, the Stoner magnetization of M/Mo-0. 2
is totally destroyed.

The case of ez/W=0. 3 shown in Fig. 8 is quali-
tatively different from the above two situations of
Fig. 7; in Fig. 8 the magnetization dependence of
sound velocity or E~s(M) becomes singular at a
certain value of M and there the total energy of the
system becomes minimum. Such singular behavior
is due to the fact that at zero temperature the fol-
lowing situation can be produced in Eq. (2.12),
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FIG. 7. Magnetization dependence of Ee(~)s Eph(M)~ and Ee(~)+Eph(~) for the case of 6'p/8 =0.5 1n the elec-
tronic density of states of Fig. 2. All the energies are measured in the same unit of NS', although from different ori-
gins.

N+(0) N (0)
+ =-0,

1 —VN+ (0) 1 —VN (0)
(4.17)

of E~h(M) would be rounded off; we should not
take too literally the detailed behavior of E„h(M)
in Fig. 8.

In Fig. 9 we show how differently the magneti-
zation would be modified for two different occupa-

for a certain value of M. If the situation of Eq.
(4.17) holds, however, we are not justified to use

Eq. (2.12); we must treat the problem more dynam-
ically, abandoning the adiabatic approximation for
the electron response (see the Appendix). With
such an improved treatment the singular behavior
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tions of the electron band. Note that with the den-

sity of states of Eq. (3.16) the cases of eF/W=x
and 1 —x are equivalent.

We carried out similar calculations for more dif-
ferent values of eI /8" 0.1(0.9), 0.2(0.g), and
0.4(0.6) with the same density of states, and the re-
sult is found to be qualitatively similar to that of
Figs. 8 aild 9 (ii).

A point to note in our result of Fig. 9 is that the
manner in which M~h changes with V is quite dif-
ferent for different locations of ez in the density of
states; while in Fig. 9 (ii) the phonon effect is gen-
erally large and increases with increasing V, in Fig.
9 (i) the phonon effect is generally small and de-
creases with increasing V. With this result let us
see how we can understand the drastic difference
between the magnetization behaviors of Fe-Ni al-
loys and Ni (or Fe). In a very approximate view,
these two systems have nearly the same form of
the density of states but different locations of ez.

It is well known that in Fe-Ni alloys the tem-
perature dependence of magnetization is anomal-

ous; with increasing temperature the magnetization
decreases much faster than, say, in pure Ni. Since
in these alloys V is considered rather large, such
magnetization behavior implies that these systems
belong to the case of Fig. 9 (ii); e~ is not located
at or very near the maximum of N(e).

In Ni the phonon effect on magnetization ap-
pears much smaller. Since V is not considered to
be small in Ni, it should belong to the case of Fig.
9 (i); e~ is at or very near the maximum of the
density of states.

Remember that earlier we reached exactly the
same conclusion on the difference in the electronic
structures of Fe-Ni and pure Ni from the magneti-
zation dependence of sound velocity and from the
external magnetic field dependence of sound veloci-

ty both above and below Tc.
Finally let us note that we set P(T/8) = —, by

assuming T=0 in this section. In our numerical
calculation the variation of magnetization is real-
ized by changing the value of the effective ex-

change interaction V alone. In reality, the varia-
tion of magnetization is driven by temperature;
smaller M/Mo implies higher temperatures. As
shown in Fig. 5, P(T/0) increases nearly linear
with temperatures. Thus the actual phonon effect
on magnetization should be enhanced by the
temperature-dependent factor P ( T/8 )/ , from the-
result of Fig. 9; the thermal enhancement is larger

. for smaller M/Mo, or, as the texnperature ap-
proaches Tc, from below.

V. CONCLUINNG REMARKS

In this paper we pointed out the fundamental
importance of considering the role of the electron-
phonon interaction in understanding itinerant-
electron ferromagnetism. The Curie-Weiss
behavior of spin susceptibility for T & Tc and the
anomalous temperature dependence of magnetiza-
tion for T & Tc, widely observed in itinerant elec-
tron ferromagnets, are shown to be understood
from the effect of the eltx:tron-phonon interaction.
To test such drastic conclusions concerning the
phonon effect on magnetism, with the same model
and approach we discussed the effect of the mag-
netic field on sound velocity, which is very closely
related to the former effect; unlike the former ef-
fect, the latter effect can be measured directly.
Our theory was shown to be able to account for
the varied observations concerning the latter effect.

Prior to the present work we extensively studied
the opposite problem of how the magnetic proper-
ties of a metal, either ferromagnetic or not, would
affect the phonon properties of the metal. There,
too, our model and approach were proved to be
quite useful. In addition to what we already men-
tioned in this paper, we could give an explanation
why in Ni the peak in the ultrasonic attenuation is
observed not at Tc but at shghtly below Tc, for
instance. Vhth the present work, we now have a
base to discuss comprehensively how the magnetic
properties and the phonon properties are related to
each other in a metal.

An interesting and challenging problem for our
theory is the so-called Invar problem. Some
itinerant-electron ferromagnets called Invars, such
as Fe-Ni alloys and Fe-Pt alloys, for instance, are
quite different from Ni both in magnetic and elas-
tic properties. In this paper we showed how the
various aspects of such differences between Fe-Ni
alloys and Ni can be systematically understood
simply by assuming differences in the locations of
the Fermi energy in the electronic density of states,
together with the difference in the value of the
parameter g. According to our analysis, in Ni the
Fermi energy in the paramagnetic state is located
at or very near the peak in the density of states
and the value of g is signficantly larger than unity.
Correspondingly, in Fe-Ni Invar alloys, the Fermi
energy in the pararn. agnetic state is not expected to
be located near the peak in the density of states
and the value of g is not expected to be larger than
unity.

Our discussion throughout this paper is based on
a simplest possible model; as for the electron-
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phonon interaction, we used essentially the jellium
model extended with the introduction of the
parameter g; as for the electronic density of states,
we used the simple form of Eq. (3.16). Owing to
the simplicity of our model, we were not required
to introduce parameters of nontransparent nature.

We do not claim that we have considered all of
the important aspects of the electron-phonon in-

teraction effect in this paper. An important effect
of the electron-phonon interaction in a metal is to
modify the electronic density of states near the
Fermi surface of the metal. What would such an
effect be in a itinerant-electron ferromagnet? We
discussed this problem both for T & Tc (Ref. 37)
and T( Tc (Ref. 38) elsewhere. There are many
other aspects to be discussed further.

In going beyond the Stoner theory there are
many other mechanisms to be considered besides
the electron-phonon interaction. As mentioned al-

ready, recently various mechanisms ' have been

proposed to understand the Curie-Weiss-law
behavior of spin susceptibility together with its low
Curie temperature. Since all of those other
mechanisms, such as spin-fluctuation effect, con-
sist in going beyond the approximation of Eq.
(3.17) in treating the electronic part of the free en-

ergy, they are compatible with our phonon
mechanism. Which mechanism is more important
than others would depend upon materials and may
be determined by asking which one would give a
lower Tz. In this respect it is important to note
that in our phonon mechanism, for given values of
V and W (or eF}, Tc ~ 1/

~

L ~, and according to
the result of Fig. 4,

~

L
~

can readily be larger
than 10 if eF is not located too close to the peak of
the electronic density of states. If

~

L
~

& 10 it is
quite likely that the dominant mechanism to make
the spin susceptibility of an itinerant-electron fer-
romagnet Curie-Weiss-type is the effect of the
electron-phonon interaction.

In concluding, let us note that our discussion in
this paper is a perturbational one. For 2 & Tc, for
instance, we started from the finding that the pho-
non frequency of a metal is closely related to the
spin susceptibility Xo(q) of the metal, coq

——coq(XO}.
Then we proceeded to find that the spin suscepti-
bility of the metal is modified by the effect of pho-
nons; the spin susceptibility X including the effect
of the electron-phonon interaction is drastically
different from Xo used in calculating phonon fre-
quency. Our theory at the present stage is not
fully self-consistent; there remain many things to
be done.
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APPENDIX: PHONON FREQUENCY IN
A FERROMAGNETIC METAL:

DERIVATION OF EQ. (2.5):

Since the entire discussion of the present paper
is based on Eq. (2.5) let us briefly describe how it
is obtained. With the familiar forms of Hamiltoni-
ans for phonons and electron-phonon interaction

Hph i g (PqPq +Qq Qq Qq
)' (Al)

II - h yg(q)Qqn( (A2)

Qq+ QqQq —g ( q)n (q——} .— (A3}

If we use a linear-response approximation on n (q)
by replacing it by its thermal average (n(q)), viz. ,

n (q) = (n (q) ) = g(q) Qq X(q, coq—)

noting that Qq cr exp( itoqt), we ob—tain the equa-
tion to determine the modified phonon frequency
6)q,

coq ——Qq —(g(q)
~

X,(q,coq),

where g(q)g( —q)= ~g(q)
~

. The electron-density
susceptibility X,(q, co) is defined with respect to the
external-charge potential

(A4)

U (q }exp(iqr i cot ), —

which gives rise to the following form of perturb-
ing Hamiltonian:

4,' = —eU(q)e '"'n( —q), (A5)

where Qq and Pq are, respectively, the normal
coordinate and corresponding momentum of a pho-
non with the bare frequency Qq and

n (q) = g ak ~k+q n+ (q)+——n (q)
k, o

is the Fourier component of electron-density opera-
tor, ak ~ being the creation operator of an electron
at the state with momentum irtk and spin 0, we ob-
tain
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(n+(q, co) )+ (n (q, co) )
X,(q, co)=

eU q
(A6)

(n+(q)) =(n+(q, co))exp( i—col) .

We use the following Hamiltonian for the elec-
trons

~o+~~ = ekuk&k~+ 1 g V(lc)uk&k nk —,~ A+,
k,e k, k', K

where V(s') =4lre /a is the Coulomb repulsion and the prime on the summation indicates the exclusion of
a.=O from the sum. Then with the mean-field approximation on the Coulomb interaction between electrons
A

„

the electron-density response is obtained from the following self-consistent equation:

(n+(q, co)) =F+(q,co)eU(q) F+(q,—co)V(q)[(n+(q, co) &+ (n (q, co))]+F+(q,co)V(q)(n+(q, co)), (AS)

where

&k,~ — &k+q, oE (q,co)=
ek+q, n ek, e+ tlco

is the dynamical I.indhard response function. The effective exchange interaction V(q) is introduced by the

appl oxlmatlon

k, k', K,0,0' k, k', K, o,o'

=- V( —q)(& (q)&+&n (q)&)y krak, ,
—y V( )& k ., uk+. , & krak

t

—g V« —k+q)&clkak+e &ekak e-t

k', k, o

—= V( —q)((n (q))+(n (q)))gak~k —+[V(0)n ]ak~k

—y ( V(q)& (q)&)

by noting that under the external field with wave
vector q the only nonvanishing thermal averages
concerning electron density are (n (q) ) and

(n (0) ) =n~ The sec.ond term on the right-hand
side of the last equation represents the exchange
self-energy and it can be incorporated into the
one-particle energy of an electron as

(Al 1)

where we set V(0) = V; the one-particle energy ap-
pearing in Eq. (A9), for instance, is of this sense.

If we notice that F+(q,co) is the response func-
tion of noninteracting electrons, the meaning of
Eq. (AS) becomes clear. On the right-hand side of
Eq. (AS) the first term represents the noninteract-

ing electron response to the external potential

U(q); lf thcl'c werc Ilo llltcl'actloll between clcc-
trons [V(q) = V(q) =0] we would have only this
term. The second and third terms represent,
respectively, the effects of the Coulomb repulsion

I

and exchange interaction between electrons; the
second term is of the form of a noninteracting
electron response to the Coulomb potential due to
the induced electron-density polarization, and simi-

larly, the third term is of the form of a nonin-

teracting electron response to the exchange poten-
tial. Note that in Eq. (AS) the exchange term
tends to enhance the electron-density polarization
whereas the Coulomb term tends to suppress the
polarization. Solving Eq. (AS) for (n~(q, co)) and

putting them into Eq. (A6) we obtain the electron-

density susceptibility,

F+ (q, co) +E (q, co)
X,(q, co) =

1+V(q)[F+(q, co)+F (q, co)]

(A12)

E+ (q, co)=F+ (q, co) /[1 —V(q)E+ (q, co)] .

(A13)
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The final equation to determine the modified
phonon frequency cd is obtained by putting Eq.
(A12) into Eq. (A4). In Eq. (2.5), noting that
Acoq ((FF me approximated the dynamical
electron-density susceptibility X,(q, co&) by a static
one P, (q,0).

Note that the electron spin susceptibility of an
interacting electron gas can be treated exactly on
the same footing as above. The self-consistent
equation for the electron-density response to a
magnetic field

H (q)exp(iqr i cot)—

+F+(q,co)@AH (q) .

Then the spin susceptibility defined by

( n+ (q, co) ) —(n (q, co) )
X (qco)=

lssH q
(A14)

is obtained as

in the direction of negative z axis (note that we as-
sumed n+ & n ) is obtained simply by replacing
the first term on the right-hand side of Eq. (A8) by

F+(q,co)+F (q, co)+4V(q)F+(q, co)F (q, co)
X (qco)=

1+V(q)[F+(q,co)+F (q, co)]
(A15)

The static paramagnetic spin susceptibility [Eq. (2.9)] and the high-field spin susceptibility below Tc [Eq.
(4.6)] are obtained from Eq. (A15).
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