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The two-dimensional classical XY model in a random p-fold symmetry-breaking field is

studied using the replica method. For p &2v 2 an XY-like phase exists at intermediate

values of temperature and weak field. For p (4 we are able to describe the transition

into the low-temperature glassy continuation of the paramagnetic phase, while for p & 4
the results suggest the transition may be first order, driven by the unbinding of vortices.

Several new fixed points and lines are found in the replicated Kosterlitz-Thouless-type re-

cursion relations corresponding to these various transitions. The method we use considers

n coupled XY models from which we construct a Coulomb gas with n (n —1)/2 types of
(n —1)-dimensional vector charges.

I. INTRODUCTION

H= g KI 1 —cos[8(R)—8(R')] ]
(i(, it &

+ g h~cos[p8(R)+P(R)],
R

where R and R' define nearest-neighbor pairs on a
square lattice of lattice constant unity, and $(R) is
a random field which is uncorrelated between sites:

((expI i[/(R) —P(R')] I)) =5a a . . (1.2)

The double angle brackets indicate an average over

The present research investigates the XFmodel

coupled to a random p-fold symmetry-breaking
field, a problem closely related to the effect of sub-

strate randomness on layers of adsorbed atoms.
The replica method and renormalization-group
methods are used in the analysis. This problem
has previously been considered by Houghton et al. '

Here we extend their analysis to derive a full set of
renormalization-group equations for the theory,
permitting an investigation of the nature of the
phase transition to the low-temperature disordered
phase. According to our analysis, the pure Gauss-
ian model with this type of disorder may have a
low-temperature "glass" phase.

The model we study is determined by the tem-
perature-reduced Hamiltonian

the random variables. We take P(R) to have a uni-
form distribution, but our results are true for any
distribution for which ((e'~)) =0.

We would like to analyze the free energy F,
where

(1.3)

to describe the effect of quenched impurities. By
exploiting the relation

ln(Z) = lim (Z"—I)/n,
n~0

(1.4)

n replicas of the partition function Z are construct-
ed, an average over the quenched variables P(R) is
performed, and the trace over the thermodynamic
variables is taken to find Z". Finally, n is set
equal to 0, an appropriate prescription if I' is an
analytic function of n. In this context, the replica
method is a bookkeeping device to organize the
perturbation expansion, which can also be obtained
with more difficulty, without using replicas.

The analysis suggests that in the presence of vor-
tices the phase diagram may be like that shown in
Fig. 1 for p &2@2, where regions labeled paramag-
netic and glass are not strictly separate phases
since one path can connect the two phases without
encountering a transition. We are able to analyze
the transition into the glassy continuation of the
paramagnetic phase in the case p &4 and believe
we understand the entire phase diagram for the XY'
model in a threefold symmetry-breaking field.
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GL

Z"= g g exp —g [H~+ V~ [P(R)j]
I8 ( R )I IP( R )I a

(2.1)

A

4'/(p K)

B

7r/(2K) T

FIG. 1. Phase diagram of the two-dimensional (2D)
XY model in a random p-fold symmetry-breaking field

of strength h~ is shown as a function of temperature T
and h~. For p & 2V 2, there is a region with ordinary

XY behavior labeled XY.

II. EQUIVALENCE TO A VECTOR
COULOMB GAS

To proceed, we define the replicated variables

8 (R) and the partition function Z" by

When p exceeds 4 the recursion relations do not
seem to provide a description of the phase transi-
tion, although we believe the phase diagram
remains qualitatively as in Fig. 1. There is some
indication from the renormalization-group equa-
tions that the transition for p & 4 into the glassy
phase may be first order.

An important feature of this research is that it
sheds light on the effect of disorder on a model
which we believe is understood completely in the
absence of disorder. Within the replica formu-
lation we are therefore able to make exact predic-
tions which can be checked numerically and
perhaps experimentally.

Houghton et al. ' studied the case when the mag-
nitude of h& as well as the phase was random. By
contrast, in this research hz is fixed while the
phase P(R) is uniformly distributed in the interval
0&/ &2tr. The difference with the model of Ref.
1 is expected to be unimportant, but our results
significantly extend that analysis.

Jose has studied the planar model with bond dis-
order where a fraction xf of antiferromagnetic
bonds were introduced, and xf was taken to be

1

near 0 or —,. For xf close to zero, the randomness
was found to be unimportant, while for xf near —,,
the randomness seemed to destroy the XY phase.
Weak-bond disorder was also considered by Solla
and Riedel.

where a is a replica index between 1 and n. The
quantities H~ and V~ are simply given by the first
and second terms of Eq. (1.1) with a subscript a on
8(R). Since V~ is assumed to be small, we can ex-

pand e as

e ' '= 1 —$ V+ —, $ V~Vp-
—g V

a aP

(2.2)

The random variable can now be averaged over.
Upon re-exponentiating, one finds an effective in-
teraction

g V(R)=-, I,'g g cosIp[8.(&) —8~(R)]] .
R R aAP

(2 3)

An overall constant in-replica term and higher cu-
mulants have been ignored. The higher cumulants
have an eigenvalue (2—p /irE) [in contrast to h p,
see Eq. (3.7)], and are therefore irrelevant. Note
that the model has become equivalent to n XY
models whose relative phases are coupled together.
By writing Eq. (2.3) as a product cos(p8 )cos(p8e)
minus the corresponding sine term, it is easy to see

that the renormalization-group eigenvalue Az for
h z is given by 2—g, since each cosine provides a
power —ii/2 of 8 in the correlation function

( V(R)V(0) ).' According to well-known results
from the theory of the XY model in the Gaussian
limit, g is given by

il ~p /(2irlt. ') . (2.4)

The condition that an XY-like phase with algebraic
decay of correlations can exist when there are vor-
tices present is then given by the condition

2/ir&E&p /4rr . (2.5)

For E & 2/m, vortices destroy the algebraic order,
and for E &p /4rr the random field induces corre-
lations which do not decay at large length scales.
This implies that for p & 2V 2 there is a portion of
the Gaussian line which is stable against both ran-
domness and vortices in the renormalization group.
For weak randomness, an intermediate XY-like
phase where the randomness is irrelevant may ex-
ist, in addition to a high-temperature paramagnetic
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phase and there may be some sort of paramagnetic
or "glass" phase at low temperature. In fact, we
mill see that the glass phase might not exist as a
separate phase from the paramagnetic phase in the
presence of vortices.

To proceed further, the full set of renormaliza-

tion-group equations, including temperature and
replica-coupling renormalization by both random-
ness and vortices, must be considered. Using
standard methods to convert the symmetry-

breaking field present in Eq. (2.3) to a coupled

Coulomb gas, one finds quite easily that

g Jd8(R} e
y, R

We see that, since g pn~p=0, the second term of
(2.9) does not contribute to (2.8), which simplifies
to

Hc ——g g n~p(R)nrp(R')G(R —R') .
2~+ apy R+R'

(2.10)

Exploiting the antisymmetry of the n p, this can
be written in the more symmetrical form

Hc= — g g g nap(R}
45K R+R &a(p y~$

X(5,r+5ps 5s—5pr)—

H=-,' QQK.pf8.(R) V8yR)
R aP

+i@g g I n~p(R)[8N{R) —8p(R)]
R «P

+in(yz)n p(R) I,

(2.6a)

(2.6b)

Xnrs(R')G(R —R') .

(2.11)

The charges of this Coulomb gas define a lattice
generated by the elementary lattice vectors e p
(a &P). These vectors are not independent, how-
ever. Since

K p K5 p+(K———K)(1—5,p) .

Initially K =K {the replicas are not coupled), but
an off-diagonal coupling will be generated by the
renormalization. Integrating over the fields 8 (R)
we obtain the Coulomb gas Hamiltonian whose in-

teracting part is

(2.7)

Hc gg g——n p(R)(K ')ps
RQR 'aP g

Xn„s(R')G (R—R'),

where yz
——exp( ——,Ii &). Thus there are n(n —1)/2

charges n p which take on integer values
—Oo g n p g 00. In this expression, vortices are ig-
nored; to lowest order in y~ and the vortex fugaci-

ty, it is appropriate to consider vortices and
charges separately.

The matrix Lap is defined by two constants, K
and K, through

ear (a~y)
eap+epy= —e „(a&y) (2.12)

the vectors e p define an (n —1)-dimensional lat-
tice. A general charge can be thought of as a lat-
tice vector,

Il= g n~p8~p ~

a(p
(2.13)

'" p'"~=-. (5 r+5ps —5 s—5pr) (2.14)

Note that this is consistent vrith the addition rule
(2.12). The Coulomb gas Hamiltonian becomes

2

Hc gn(R) n(R——')G (R—R ')
2~& R~R '

The form of (2.11) suggests that we define an inner
product

+lny~ $ n(R) n(R) . (2.15)

5ps
(K ')ps

EC

E—E
[nK —(n —1)K]K

(2.9)

where n p —— np, for a—&P and G(R—R')
=ln{

~
R—R

~

/a). The matrix K ' is explicitly
The last term is correct if we restrict ourselves to
values of n 2=0 or 1. Higher values are irrelevant.

The advantage of this formulation is that (2.15)
is analogous to the vector Coulomb gas which ap-
pears in the theory of two-dimensional melting. '
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In fact, for n =3 the vectors e i2, e23 e3i are
equivalent to the elementary Burgers vectors for a
triangular lattice.

III. SCALING EQUATIONS

(3.1)

dE
dl

= y — y (32)

dy p 2(n —2)
« ' 2E'+ p~y'
dy

dl
=(2—n.K)y .

(3.3)

(3.4)

A factor of 4n has been absorbed into y .
For n & 2 no new physics emerges. There is a

high-temperature paramagnetic phase, and a low-

temperature phase where the replicas are locked to-
gether. For p & 2~2, an intermediate XF-like
phase can exist.

When n =0, the recursion relations reduce to

dl y K(2K K—)y ~, — — (3.5)

These observations enable us to work out the
renormalization-group recursion relations (see Ap-
pendixes A and B) in a manner similar to that used

by Young for the melting of a triangular solid.
For n=2, the results should agree with those for
two coupled planar models, considered by Halperin
and Nelson in connection with two-dimensional
(2D) liquid-crystal phases. ' These special cases
provide a convenient check on our formulas.

When vortices are included, the recursion rela-
tions to lowest order in the vortex fugacity y and
the periodic charge fugacity y=pV my& are

dl
=(n —1)y ~ [K +—(n —1)(K—K) ]y

«al. in Ref. 1. In that work, a double expansion
in y and K was made about y=O, 2mÃ=4. Within
the framework of that expansion, it was shown
that an infinitesimal hz does not introduce addi-
tional divergences at the point y=O, 2=@K. Our
equations are consistent with those of Ref. 1 close
to this point. However, the effect of a finite im-

purity concentration on the renormalization-group
equations was never considered in that paper. In
fact, the existence of the entire plane of fixed
points introduced by K@K was overlooked. This
is crucial in the analysis if finite impurity concen-
tration is to be considered.

We conclude that the analysis of the transition
by Houghton et al. is only applicable at the point
8 in Fig. 1, since for finite hz, K becomes different
from K before y and y renormalize to zero. In-
deed, near the temperature corresponding to
2mK= —,p, K renormalizes very differently from K
since here y is irrelevant, whereas y is marginal.
The analysis of Houghton et til. can therefore not
conclude any properties of this transition (along
the line AM in Fig. 1) nor can the multicritical
point M be analyzed without considering K+K.

There are several physical consequences of the
fact that K+K. The first is the nonuniversal
value of the exponent q which determines the
power-law decay of spin-spin correlations at the
transition. Further, it can be shown that the four-
point correlation function C4(Ri,R2,R3,R4) given

C4(Ri, R2, R/, R4) = (y(Ri)y*(R2)1(|(Rs)1/J~(R4) ),
where

does not factorize into a product of two-point
correlations as it would in the XF phase of a sys-

tem without impurities.

E
dl

=—E y (3.6)

2
P' — 4

2rrK Pv ~y — y

dy

dl
=(2 mK)y . —

(3.7)

(3.8)

Note that dE/dl is independent of y. We argue in

Appendix A that this is true to all orders in y.
It is perhaps worthwhile to discuss the relation

of these equations to those derived by Houghton

IV. RANDOMNESS IN THE GAUSSIAN MODEL

If we set y=O to exclude vortices, the resultant
model is exactly a Gaussian model with a random
field. Note that K is unrenormalized, a result
which we argue in Appendix A is true to all or-
ders, and K=K initially. If K &p /4ir, y is driven
to zero as the length scale is increased. This
phase, therefore, has power-law decay of spin-spin
correlations at large distances, given by
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i8 ( R ) —i8 ( 0 ), , isa( R ) —(88( 0 i) (4.1)
V. RANDOMNESS

IN THE PRESENCE OF VORTICES

when u@P. The second term vanishes in the
Gaussian model, and the first term behaves asymp-
totically as

~

R
~

"where, from (2.9),

(4.2)

where K„ is the renormalized value of K at infin-

ite length scales. Since dK/dl gO, E„&K so that

g is not universal at the transition.
One can also study correlations of the Edwards-

Anderson order parameter

(4.3)

(4.4)

where g = 1/nK is universal (equal to 4/p ) at the
transition. For K &p /4n, the renormalization

group flows to the stable fixed point

y =y*=(pv n/4)(2 p. /2nK—),
(4.5)

Equations (3.5)—(3.8) are of course valid only to
lowest order in y, and we can, therefore, only use
(4.5) when K p /4n is small—. However, this does
indicate the existence of a line of fixed points
emanating from the Gaussian line, similar to the
line of fixed points found when a fourfold nonran-
dom field is present, ' except that the line is now

a line of stable fixed points. The fact that K is
negative does not signify an instability in the
IIlodcl without vortices siilcc thc cigcilvalucs of tlic
matrIx E~p remaIn posit1ve.

For (K p /4n) sm—all, the magnetic eigenvalue
at this fixed point should be approximately the
same as its value on the Gaussian surface y=0.
Thus (4.2) should apply; with, however,

K„~—00. This means that g —++ 00, and there
are only short-range correlations in the spins. The
random field has destroyed the quasi-long-range
order present at higher temperatures. However,
K„does not enter into the correlations of q~ii(R),
and we find a finite il as defined by (4.5).

This situation is quite different from that which
occurs for n & 2, when y becomes large when
K &p /4n. In that case, one can argue that q 8
orders; that is, the replicas are locked together.

A. General results

K(l) =K0—(y~) I (5 1)

(2—eE0)l+(1/2)(y ) l
y ~ =y08 (5.2)

where Kn is the value of K(l) when y initially be-
comes small compared to y. The condItion
K(P)=0 implies 1*=K8/(y~) . We therefore find
that at this length scale

y (l~) =exp[KC(2 —nKC/2)/(y~)I] . (5.3)

At the transition into the glass phase where Kc is
arbitrarily close to p /4n. , for p &4, y(l~) becomes
large before an instability at K=O develops, while
if p & 4, K(l) is eventually driven to negative
values. Therefore, @=4represents a special value
for p above which the low-temperature transition
out of the intermediate phase at weak coupling is
expected to be first order. The three cases p=3,
@=4,and. p & 5 need to be analyzed separately.

We now consider the effect of vortices. Assume

p & 2v 2, that y andy are small, and that the initial
values of K and K obey 2/n &K=K &p /4n. . If y
is not too large, y flows to zero compared to y
after a few length rescalings. Further rescaling
iterates y to zero. If K &p /(4n), however, the re-
cursion relations take us towards the glass fixed
point y=—y~, y=O. The coupling E then iterates
toward zero, Eventually thc vortices will become
relevant when K(l) &2/n. Thus, one naively ex-

pects that the low-temperature phase will be
characterized by a gradual unbinding of vortices as
the length scale is increased further, and the transi-
tion into this phase wi11 be continuous. This is not
necessarily so, however, because although it is true
that y(l) increases when K has dropped below 2/n, .
the fugacity y has become exponentially small dur-

ing the preceding iterations, and it does not neces-
sarily become large again before y causes K to
iterate to zero. When K falls below zero, the in-

teraction between vortices becomes repulsive, sig-
naling an instability at large length scales. We in-
terpret this as a possible signal of a first-order
transition.

To find out if y remains small when K attains
zero, assume y reIQains sIQall relative to y . Then
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B. The case p &4

When p=3, the fixed point governing the transi-
tion into the glass phase at weak coupling is given

by

pE)—,E=, y =0, y=0.

Therefore, when approaching the glass-transition
line AM in Fig. 1 at weak coupling from inside the
intermediate phase, the critical behavior is like that
for the Gaussian model without vortices since y re-

normalizes to zero. When approaching the same
transition from the low-temperature side from the
glass phase, there is a crossover length scale gG de-

fined by

(5.4)

const/~ 2
G= 68 (5.5)

E=—,E(, y=O, y=O,2 — p
4a ' (5.6)

since here y is irrelevant.
Although E=E initially at small length scales,

this equality is no longer valid after renormaliza-
tion. The intermediate XY phase, as in the (h&, T )

phase diagram of Fig. 1, flows under renormaliza-
tion to the Gaussian region y=O, y =0, and
E &p /4, E & 2/n. , so that to understand critical
behavior for stronger random coupling it is neces-
sary to investigate the phase diagram at infini-
tesimal y and y, but arbitrary E and E.

By examining Eqs. (3.5)—(3.8) one sees that the
renormalization-group flows must cross E=E to
flow into the region E&E. Since initial conditions
correspond to E=E, the region of the phase dia-
gram as a function of h~ and T which terminates
on the fixed surface CMA in Fig. 2 will be finite
and topologically equivalent to this triangle. The

where r=
~
T, —T

~
/T, measures the (temperature)

deviation from the transition. This result is ob-

tained directly from Eq. (5.3) by demanding that
y(1~) be of order unity and noting that y* is linear
in the deviation of the initial parameters from the
values they must have to flow to y*=O.

For length scales I.« gG, the system looks as if
it is at the glass fixed point y=—y~,y=O while for
I.» gG, vortices are unbound and the system is

paramagnetic.
The transition at weak randomness to the

paramagnetic phase, along BM in Fig. 1, is an or-
dinary XY transition governed by the fixed point

PA

2/vr K

FIG. 2. Infinitesimal fugacity phase diagram as a
function of E and E, the coupling between vortex and
periodic charges is shown for p &4. This phase diagram

may be topologically equivalent to the h~, T phase dia-

gram, since the region which is stable against the
periodic charges and vortices is the image of the XF
phase in the h~, T phase diagram under renormalization.

boundary of the region AMB in Fig. 1 will flow

under renormalization to the boundary of the re-

gion AMC in the Gaussian plane in Fig. 2. These
conclusions could be modified by higher-order
terms in the renormalization-group equations.

Since the quantity (2K—E) remains positive

along the line CM in Fig. 2, the high-temperature
transition line BM in Fig. 1 (which is the renorm-

alization-group pre-image of this line) corresponds
to an ordinary XY transition, and likewise the line
AM in Fig. 1 which is the pre-image of AM in Fig.
2 has behavior identical to the glass transition
described in this section for small h&. The point
M in Fig. 1, therefore, maps into the multicritical

point

2 9
y =0, y=O, E=—,E=

m
'

(4m)
(5.7)

Although it is possible to analyze the multicriti-
cal point M in detail, we have not done so. It suf-

fices to note that the direction of renormalization-

group flows projected onto the E+ plane for small

y and y are as shown by the arrows in Fig. 2.
There is no line of phase transitions emanating
from the multicritical point M which would

separate what has been labeled the glass and

paramagnetic phase in Fig. 1.
When @=4, the preceding discussion applies

qualitatively. The character of the multicritical

point M is changed, however, since the coefficient
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(b)

2/vr

FIG. 3. When p &4, the nature of the behavior along
the line of xy transition at X=2/m changes at point P in
the infinitesimal fugacity phase diagram. The separatrix
is of imaginary slope from P to M, resulting in a region
PDM which Aows around PM and maps into the interi-

or of PMB.

2E —K vanishes at this point, but the phase dia-

gram in Figs. 1 and 2 remains applicable.

K= 2/vr

FIG. 4. (a) Flow structure of the ordinary Kosterlitz-
Thouless renormalization-group equations is shown as a
function 'of vortex fugacity y and T. Below the separa-
trix DE the flows eventually terminate on the Gaussian
line. (b) When the coefficient of the coupling constant
"temperature" renormalization changes sign, the separa-
trix has imaginary slope and the flows circle the ter-
minus of the vortex-stable region of the Gaussian axis.

C. The case p &4

When p & 4, new behavior occurs in the small

fugacity phase diagram. As discussed in Sec. V A,
the line BM in Fig. 3 to which the parameters flow
for a transition out of the glassy phase may be first
order. The line AP corresponds to an ordinary XY
transition. At the multicritical point P, however,

the renormalized coefficient (2E—E) vanishes in

Eq. (3.5), terminating the line of XI' transitions.
The line segment PM actually does not correspond
to phase transitions. The reason requires some ex-
planation.

Along this line, the recursion relations have the
orm

X=2/n. as shown in Fig. 4(b). There is therefore a
region PDM in Fig. 3 which flows around the line
PM and maps into the triangle PBM. The line
PDM maps into the transitions along MB. These
considerations lead to a phase diagram as a func-
tion of hz and T as shown in Fig. 5, where the
point P in Fig. 3 is the image under renormaliza-

tion of the point P in Fig. 5.

dI= 3'

3'

dl
=(2—m.K)y,

(5.&)

(5 9)
C

T = 47'./(P'K)

A

T —7r/(2K) T

where a &0. For an ordinary XY transition, a is
negative. In that case, as shown in Fig. 4(a), there
is an incident separatrix corresponding to the tra-
jectory which flows to the fixed point X=2/n, .
y=0. Below the separatrix the trajectory flows
onto the Gaussian line, while everywhere else the
trajectory is expected to flow to large coupling.

When a is positive, the separatrix is of ima-
ginary slope, and the flows circle the point y=0,

FIG. 5. Behavior summarized in Figs. 2—4 and dis-

cussed in more detail in the text results in a phase dia-

gram of the type shown above for p &4. The line of
phase transitions CP is believed to be first order, while

AP is ordinary XY-like. Although the topology of the
phase diagram is similar to that shown for p &4, the
character of the point P is different from that of the
point M in Fig. 1.
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VI. RELATION TO OTHER THEORETICAL
PROBLEMS

This section attempts to put the present research
into context with other problems in random sys-
tems. Of particular interest is the behavior of q-

state models in random fields. These models may
be obtained by adding uniform fields of the form

h~ g cos[qe(R)] (6.1)

to the Hamiltonian, and allowing h&
—+ ao. Our

analysis is performed in the vicinity of the Gauss-
ian model, onto which the q-state model renormal-
izes only if q & 5. Thus we expect, for sufficiently
large q, this model in p-fold random fields to have
a phase diagram of the type shown in Fig. 1 for

p & 3. However, our analysis does not allow us to
make any statement about the physically more in-

teresting cases of q =2 (Ising model) or q =3
(three-state Potts model), and p= 1 (random field)"
or p=2 (random anisotropy). '

. From a practical point of view, the XY model is
most directly related to superfluid layers, where the
angular variable corresponds to the local phase of
the condensate wave function. However, in this
case, the fields coupling to this phase can have no
physical interpretation.

Adsorption experiments provide a more suitable
system to which the present model applies. As dis-

cussed in Refs. 6 and 13, the XF model in a p-fold
symmetry field corresponds to an adsorbed over-

layer forming a 1)&p unit cell relative to the sub-

strate which is "accidentally commensurate" even
with frix:-boundary conditions. More generally, a
two-component generalization of the XFmodel is
needed, but many questions of principle can still
be discussed within the present model.

A problem in surface-adsorption experiments is
to understand the effect of steps in the surface. If
the typical step is high compared to the charac-
teristic length of the adsorbate interactions, the
problem requires a finite-size analysis and the
present research is not directly relevant. If, how-

ever, the height is small compared to the charac-
teristic length, the adsorbed overlayer can be
thought of as being stretched out over a bumpy
surface without the breaking at the step edges.
The net effect of the edge can be modeled by add-

ing a random displacement field corresponding to
the necessary displacement vector involved in the
stretch across the edge. Of course, this is
described by a random variable which is highly

corre]ated out to some characteristic length gg cor-
responding to the distance across the perfect sec-

tions of surface. We may qualitatively understand

the effect of extended correlations in the
symmetry-breaking field by using the recursion re-

lations for a p-fold nonrandom field up to the
length scale g~, thereafter using those for the ran-

dom field.
At the length scale gz, the renormalized field is

(p g.(2—p /41K) (6.2)
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where we have assumed that vortices can be neg-
lected, i.e., E & 2/n. . If@=3 the exponent will be
positive, and if gx is large enough, h&(gg) will be
outside the XY phase of Fig. 1. Thus, a large
correlation length of the random field will destroy
the "floating solid" phase for p=3. If p & 4, the
effect is reversed for E gp /8m. , and a large gz
will act to extend the floating solid phase boundary
to larger values of hz in the (T,hz) phase diagram.
For J &p2/8n. , the floating phase will shrink.
Also, the smallness of h~(gii) at the transition will

weaken the first-order transition. For large enough

g~, the phase diagram will be indistinguishable
from that for a nonrandom field.

After this work was completed, papers by Ken-

way,
' and Dotsenko and Feigelman' have ap-

peared. Neither of these include the off-diagonal

coupling or the effect of the vortices at low tem-

peratures, which we have shown to be important.
There is also a difference between our renormali-
zation-group equations (with E=E,y=p) and

those of Ref. 15. Aharony' has considered the ef-

fect of p-fold anisotropies for dimensionless d p 2,
to conclude that there is a low-temperature phase
with algebraically decaying correlations, as for the
case p=2. '
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APPENDIX A

In this appendix the derivation of the renormali-
zation-group equations for the Hamiltonian in Eq.
(2.10) is sketched in the absence of vortices. The
exposition assumes that the reader is familiar with
the derivation of the scaling equations for the XF
model as derived originally by Kosterlitz. Addi-

tional details can be obtained from Refs. 4, 7, or
10. The generalization of the scaling equations of
the vector Coulomb gas as derived by Young for
the melting of a triangular lattice is easily extended

to the present case, and we follow his derivation

most closely.
We investigate the partition function

R p
——R —Rp. (A3)

Define the shell to be integrated over in the renor-
malization by

Qp (p' (Qpe 5 (A4)

Isolating the part H ~ in H involving this pair of
charges we find

and where Hc is given by Eq. (2.10), and Greek in-
dices label types of vector charges. The configura-
tional sum places unit charges ep at the sites r p .np'

Consider a pair of oppositely charged unit charges
n~ and npa located at R~ and Rp, and let R~p be
defined by

N

z 3'p

(N) a Nt

n(n —1) Np

g f d'rg~ e
p=1 np

——1

(Al)

2

H p g——(n„n )
2+K

x[G(Rr )—G(Rri')], (A5)

The denotes that the sum is only over those

configurations which obey charge neutrality

Q n(R)=0 (A2)

where R~=Rr —R, etc. Next consider R far
from R and Rii compared to ao so that it is per-
missible to expand the argument in the exponential
in gradients,

(A6)

where a =R~&. (A summation over repeated indices is implied. )

Upon expanding the exponential to second order in a, one finds that the only nonzero te~ is

s=1+ ~ g [a.VG(R&~)][a.VG(R,~)](nr n~)(n, .n~) .
8m E (A7)

In order to sum over a, we note that

g(n, .n. )(n,.n ~)= —,
' g (5~„+5~—5~, —5„,)(5~, +5„g—5 „—5„,)

m, n

=n(n r n, ),

(A8a)

(A8b)

where nr ——e~, n, =e,„,and n~=e~„. The summation is over the indices 1 & m, n &n(n —1). We now in-
tegrate in the shell and sum over the vectors a to find

4

g f e s=2n5nao 1+ g VG(R~r) VG(R~, )(nr n, )
8m E

(A9)

Using V G =2@5(r) we find, after integrating over R~,

yzg f d R~p f d R~e ~=2n5yrnao 0—
4

g(nr n, )G(R&, )
4@K

(A10)

where 0 is the system area. The last term is pre-
cisely of the form to renormalize the coupling con-
stant E, so that after some rearrangement,

(Al 1)5(E)=ny~p m5ao,

where 5(E) denotes the change in the effective
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dK (n 1) dK—
dl n dl

(A12)

Therefore, if dK/dl did not vanish at n=0, we

would have an infinite renormalization of K which
does not make sense. Our hypothesis that
dK/dl & 0(n) has been checked to the next higher
order in y. Evaluation of the coupling constant re-

normalization to higher than cubic order is rather
complicated and we have not checked the result to
quartic order. The calculation to cubic order will

not be explained in detail here since the results will

not be needed in the exposition. It is straightfor-
ward to derive the renormalization of the periodic
charge fugacity y~. Upon rescaling the length it is

easy to see that to leading order

yp p
2

yp (A13)

while observing that there are (n —2}ways of
forming a given vector charge by summing two

others, Eq. (33) results after y~ is replaced by the
variable y.

APPENDIX 8

This appendix discusses the derivation of the
renormslizstion-group equations in the replica rep-
resentation with vortices present. By considering
vortices separately from the random potential it is
possible to derive the lowest-order recursion rela-

value of E. At this point it is worth noting that
the renormalization of K vanishes when n =0.
A priori, it is therefore necessary to calculate the
renormalization of K to higher order in y~. But
we shall argue that the renormalization of K must
vamsh at n =0 to all orders.

The matrix K p in Eqs. (2.6) and (2.7}has a
singly degenerate eigenvalue A, i nK—— (n —1—)K
corresponding to the eigenvector 8+ defined by

8; =8J for all i and j, 1 &i, j& n The. eigenvalue

K is (n —1)-fold degenerate corresponding to the

space of linear combinations of 8; whose coeffi-
cients sum to zero. The cigenvector 8 does not
couple to V, hence A, i must remain unrenormalized
since this angle field can, in principle, be integrated
out of the problem exactly. Doing this integration
explicitly complicates the algebra so we have not
proceeded by this route. The consequence of this
decoupling is that only the renormalization of K
appears explicitly in the equations.

The fact that A, , is unrenormalized implies that

tions as an expansion in the fugacities y and y.
A direct generalization of the method in Ref. 10

yields a Coulomb gas Hc by considering vortices
in the presence of the first term in Eq. (2.6). This
Coulomb gas takes the form

n

g K pm (R)mp(R')G(R —R'),
aP= 1 RQA'

(B1)

where K~p is given by Eq. (2.7), and the m are in-

teger vortex charges.
Instead of repeating the formal derivation in Ap-

pendix A and Ref. 10 to obtain recursion relations,
it is convenient and illustrative to sketch the deri-

vation in a less rigorous fashion.
The renormalization -of the matrix E~p occurs

duc to thc scrccning of distant vortex pairs by
tightly bound oppositely charged pairs. Consider a
pair of vortices +a a large distance apart. This
pair is screened by tightly bound a pairs and

(n —1) types of different tightly bound y pairs
where y~. The interaction a-a is of strength
K 1n(R/a), where R is the distance between one of
the charges in the tightly bound pair and one of
the distant charges. The interaction a-y is of
strength (K —K)ln(Il/a); with these considerations
it is easily checked that the renormalization of the
diagonal element in K p takes the form

l
[K +—(n —1)(K—K) Pz .

The renormaligation of the interaction between a
distant a-p pair comes from the screening by tight-

ly bound a pairs and P pairs and from y pairs
where any and pQy. The tightly bound a and p
pairs together give a factor of 2K(K K) in the re-—
normalization of K K, while a-y a—nd p-y interac-
tions give a factor of (K K) for each y,—resulting

in a factor (n —2)(K —K) renormalizing (K—K).
Therefore,

dl
= —[2K(K K)+(n —2)—(K —K) ]y

(B3)

and Eq. (33) follows.

The derivation of the vortex fugacity renormali-

zation is straightforward since the interactions be-

tween o. pairs separated by a distance 8 is equal to
K ln(R/a) so that the Eq. (3.2) follows when y=0.

VAen both vortices and periodic charges are in-
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eluded, one notes each of these charges must be in-

tegrated out in pairs to preserve overall charge
neutrality in both vortex and vector charges.
Therefore, no terms of the type yy can occur in the

renormalizatlon groQp and, to lowest order, Eqs.
(3.1)—(3.4) are the only possibilities for equations
which reduce correctly in tke limit where either y
or g 1s zelo.
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