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Solvent effects on polymer gels: A statistical-mechanical model

A. Coniglio, ~ H. E. Stanley, and %. Klein
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

(Received 1 February 1982)

A statistical-mechanical model for reversible gelation is developed. This model takes
into account solvent effects, which usually are neglected in the classical theory of gela-
tion. The exact solution of this model is given for the limiting case in which "loops" or
intermolecular interactions may be neglected (Cayley tree). The general phase diagram is
obtained and it is shown that, with a particular choice of a solvent, one can realize the in-

teresting situation in which gelation point and consolute point coincide. This point has
peculiar properties associated with the simultaneous divergence of "connectivity" and
thermal fluctuations. The recent experimental data of Tanaka and collaborators are in
good qualitative agreement with the predictions of the model.

I. INTRODUCTION

Much of the progress of the last decade in sta-
tistical mechanics stems from the fact that rela-

tively simple and therefore tractable models have
proved sufficient to describe extremely subtle
cooperative phenomena. Three examples are
shown schematically in Fig. 1:

(i) 3 fluid near its critical point. The I»ng «
lattice-gas model' has proved remarkably success-
ful in interpreting a wide range of data near the
critical points of fluids. This stems from the fact
that the "essential physics" of the problem is an
interpariicle interaction potential characterized by
a hard-core repulsion and a short-range attraction.

(ii) Dilute and semidilute polymer solutions The.
n =0 limit of the n-vector model has proved capa-
ble of describing polymer solutions in the dilute
and semidilute regimes, where the magnetic field
plays the role of concentration.

(iii) Polymer gelation The essen. tial physical
feature of a gel is connectivity, and hence one ex-

pects percolation phenomena to be relevant. As
we shall see, temperature-dependent effects such as
those due to the presence of solvent are excluded
from simple "pure percolation. " It is the purpose
of this paper to suitably generalize pure percolation
in order to incorporate such effects.

In Sec. II we shall describe our approach using
polyfunctional condensation, the simplest example
that illustrates the basic phenomenon of gelation.
In Sec. III we derive the equation of state, awhile in
Sec. IV me describe the connectivity properties.
Then in Sec. V we describe the more general gela-
tion of "vulcanization" phenomena in which poly-

mers made up of M monomers are permitted to
crosslink. The detailed derivation of the appropri-
ate formula are given in Appendixes A and B.

II. THE MODEL (M =1)

We shall first describe our model for the sim-
plest case of gelation, the polyfunctional condensa-

tion of f-functional monomers. Suppose all the
monomers are identical, and that each has f
functional groups that can react with one of the f
groups of another monomer. The simplest case,
f=0, produces no reactions at all. The next sim-
plest case, f= I, results in dimers only. Iff=2,
me can have unbranched linear polymers. For
f p 3, we form branched polymers, as illustrated in
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FIG. 1. Schematic illustration of the application of
specific model Hamiltonians to capture the essential
physics embodied by various physical systems near their
respective critical points. The symbol n refers to the
number of components of the order parameter in an n-
vector model (isotropically interacting n-dimensional
classical spins), while the symbol s refers to the number
of discrete states in a s-state Potts model. The "critical
point" of a dilute polymer solution corresponds to the
limit N ~ oo, where N is the polymerization index.
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FIG. 2. Illustration of the simplest gelation phenomenon, polyfunctional condensation of f-functional monomers.
fhe f-functiona] monomer shown in {a) is trimethoyl benzene; it has three "functional" groups which can react to form
ether hnkages. Iff were 2, then the most complex structures possible would be chains and rings. However, since f & 2

here, there exists the possibility of forming branched networks. In {b) and (c) are shown beakers at successive stages of
reaction. This figure is from Gordon and Ross-Murphy (Ref. 9).

Fig. 2 for a particular example with f=3,
trimethoyl benzene. Each benzene ring has three
groups that can react to form an ester linkage.
This process is characterized by a single parameter
a, termed the conversion, which is the fraction of
reacted groups. Clearly if a =0, only monomers
are present. If 0&a & 1, there exists a distribution
of finite polymers of all possible sizes. However,
the probability of an infinite polymer or "gel" is
zero for all values of less than a critical value n, .
For a &a„ there is a nonzero probability for the
occurrence of a single branched polymer that is in-
finite in spatial extent. Thus the probability of the
gel molecule to occur jumps discontinuously from
zero for a & a, to unity for a & a„and hence the
connectivity of the system changes drastically at
cz=u, . This "phase transition" is termed the gela-
tion threshold.

The first successful model to capture the essen-
tial physics of the gelation threshold was proposed
40 years ago by Flory and developed in a series of
classic papers by both Flory' and Stockmayer. "
(Also see the classic book by Flory. '

) This
"Flory-Stockmayer" (FS) model not only predicts
the occurrence of a gelation threshold a=a„but
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FIG. 3. Phenomenon of bond percolation: a finite
section (16&(16)of an infinite "fence," in which a frac-
tion p~ of the links are conducting while the remaining
fraction q~

——1 —p~ are insulating. Four choices of the
parameter p~ are shown: (a) p~ ——0.2, (b) p~ ——0.4, (c)
p~ ——0.6, and (d) p~ ——0.8.



SOLVENT EFPECTS ON POLYMER GELS: A STATISTICAL-. . .

Finite clusters =
Infinite cluster

plus
Finite clusters

=p

Sol phase
(finite rrelecules)

Gel phase( infinite molecule)
plus

Sol phase

FIG. 4. Analogy between the phase diagrams of
pure bond percolation and polyfunctional condensation
(gelation of f-functional monomers). The role of p in
gelation is played by a, vrhich is termed the "conver-
sion" or "extent of reaction"; it may be thought of as
the fraction of intact bonds.

also provides precise predictions for the family of
critical-point exponents characterizing the behavior
of various quantitites in the immediate vicinity of
@e.

For the purposes of this paper it is most ap-
propriate to explain the FS model in the context, of
random-bond percolation, which in turn is illus-
trated in Fig. 3. Suppose we have an infinitely
high and infinitely long wire fence. Imagine also
that a randomly chosen fraction p~ of the links of
this fence are conducting while the remaining frac-
t1011 ( 1—pg ) are 111sulaflng. Coiilpllte1 81111lllatlolls

of a 6nite (16X 16) section of this fence are shown
in Fig. 3 for pii

——0.2, 0.4, 0.6, and 0.8.
Clearly, for pii sinall, as in Fig. 3(a), the system

consists of small clusters of conducting bonds. In
3(b) the conducting fraction p& has doubled, yet the
system still consists of only finite clusters —the
"scale" has increased, but not the essential macro-
scopic conductivity. In 3(c),pii =0.6, and the sys-

tem is macroscopically different: In addition to
the finite clusters, there is a single cluster that is
infinite in spatial extent (of course, the fence must
be infinite if the cluster is to be infinite). For
so111e value of Pa ln lÃtween Figs. 3(b) ai1d 3(c),
there is a threshold pi'1, below pi'i the fence cannot
conduct, while above p~ it can. Thus its macro-
scop1c propert1es change suddenly as a m1croscop1c
parameter pii increases infinitesimally from pi'i —5
to @~+5 [Fig. 4(a)].

Similarly, below the gelation threshold a„ the
system of Fig. 2 consists of only fimte-size poly-
mers; it cannot, e.g., sustain a shear stress. Above
the threshold it can. Thus the macroscopic prop-
erties cl1aQge suddenly as a microscopic parameter
a, the extent of reaction {or equivalently, the frac-
tion of formed crosslinks), increases infinitesimally
from a, —5 to a, +5 [Fig. 4(b)].

The FS model was formulated in a fashion that
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FIG. 5. Illustration of the analogies between (a) an
ordinary thermal phase transition (e.g., an Ising or
lattice-gas model), (b) bond percolation, and (c) poly-
functional condensatlon.

at first sight seems to be lattice independent: One
only requires that a given polymer be forbidden to
loop back upon 1tself. In short, intramolecular
interactions" are excluded. This assumption is ful-
ly equivalent (as far as critical behavior is con-
cerned) to the statement that the polyfunctional
monomers be required to occupy the sites of a
Cayley-tree pseudolattice: To each configuration
of the f-functional monomers there is a one-to-one
correspondence with a configuration of bonds on
the Cayley tree with coordination number z =f.

The effect of allowing for loops is clear, at least
on a qualitative level. Clearly the threshold is ex-
pected to increase, since extra bonds will be formed
that will merely create a loop rather than contri-
buting to the formation of an infimte branched
network. Moreover, we expect that the behavior of
the system in the immediate vicinity of the gei
point to be characterized by different critical ex-
ponents. In fact, if we are to believe the utility of
lattice models, then it turns out that exponents are
shifted from their Cayley-tree values quite consid-
erably (Fig. 5). Of course, one could well question
the appropriateness of a lattice model to represent
a continuum system. ' ' Hence much needed are
calculations for "continuum percolation" that are
sufficiently accurate to make meaningful predic-
tions concerning critical-point exponents.

Experimental evidence for departures for "classi-
cal critical-point exponents 18 somewhat 1ncon-
clusive at the present time. A literature search
focused on this question was recently camed out
by Brauner, ' who conduded that no clear-cut
answer emerges despite rather extensive analysis of
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FIG. 6. Schematic phase diagram of random-site,
random-bond percolation, where p, is the site occupation
probability and pz is the probability that a randomly
chosen bond is found to be intact.

existing data. A recent set of experiments by
Schmidt and Burchard suggests that the Cayley-
tree predictions may be quite adequate. ' Howev-

er, problems arise due to the paucity of data ex-

tremely close to the gel point —since only there are
exponents expected to depart from their classical
values. "

In the FS model solvent effects are not included.
Nor are temperature effects included in any statist-
ical mechanical fashion: All states of a system
consisting of b occupied bonds are equally prob-
able. This simplifying feature has great merit in
that the FS model is extremely tractable.

In FS theory all sites are occupied by monomers.
However, we know that solvent effects are impor-
tant in gelating systems. Two simplifying assump-
tions of the FS theory are the following:

We shall assume that the monomers and solvent
molecules are not randomly distributed among the
sites. Rather, we shall assume a correlation of the
standard lattice-gas model sort (Fig. 7). In specify-
ing the interactions, we must consider that the
monomers can interact with each other in two
ways. One is the usual van der Waals interaction,
and the other is a directional interaction that leads
to chemical bonds.

The particle-particle interaction of this system is
reasonably approximated by the following nearest-
neighbor interactions: —8'zz, the solvent-solvent

interaction energy, —8'zz ihe monomer-solvent
interaction energy, and

—8'gg—&as= .

where —W~s is the van der Waals energy (weight

p„) and E is the bo—nding energy (weight 1 —p„).
The interaction —ass needs some further justifi-

cation. Two monomers can interact in two dif-
ferent ways. The first is the usual van der Waals

type of attraction, which we have approximated
with a nearest-neighbor attraction —8'zz. The

(i) the absence of solvent molecules, and
(ii) the absence of correlations between the mole-

cules.

Both solvent effects and correlations are taken into
account in this paper.

A. Solvent effects
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Suppose we allow the sites to be of two sorts, A
and B. A sites are occupied by monomers and 8
sites by solvent. The original "random-bond" per-
colation problem is now a "random-site-bond"
problem'; the FS critical point in the simple phase
diagram of Fig. 4(b) is now an entire "line" of crit-
ical points (Fig. 6). If p, is the density of A sites,
then FS theory corresponds to the special case
p, =1 (heavy solid line). A typical experiment cor-

FIG. 7. (a) and (b) All sites are occupied by mono-
mers (open circle), as in the Flory-Stockmayer model of
gelation. The wavy lines correspond to chemical bonds

between two monomers, while p& is the probability of
such a bond being present. (c) The model of gelation
proposed here. Each site can be occupied by either a
monomer (circle) or a solvent molecule (dot). The wavy
line corresponds to a reversible bond. We find pg, given
by Eq. (12), is a function of the temperature. The
monomers are correlated.
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second is the interaction which leads to bonds (e.g.,
llydrogcii bonds), wliicli wc liavc Rpproxliiiatcd
with another nearest-neighbor interaction —E
&~ —8'~~. Of course this second interaction oc-
curs only when the monomers are in a particular
configuration. For a given pair of nearest-neighbor
monomers, the ratio between the number of config-
urations Xz which lead to hydrogen bonding (ener-

gy E)—and the number of configurations Nzjt
which do not; N@/N~jt ——(1—p„)/p„should there-
fore be much less than unity. Note that the entro-

py difference between the unbound state (with en-

ergy —IV&z) and unbound state (with energy E)—
is given by

8 =kjilnpg/(1 —p„) .

The Hamiltonian for a system of N„mol ecul es
of solvent and Njt monomers can be written as

4(jiig, E—g ) =g [8'~II";IIj +ettti IIt~ll j
&ij&

+ W»(II";II +II( II")] .

Zx =tv«aji) . (5)

The partition function (5) can also be regarded as

an annealed random-bond ferromagnetic problem.

Using the identities

and Eq. (3), we can write Eq. (4) in the form

ZNlesji]=Zs g cxp P jjett+IIj
j

+ a(fiji) +II; Iij~
|l&j&

where P= 1 /kjt T, while p,„and jtz are the chemi-
cal potentials of species A and 8. The first sum is
over all the monomer-solvent configurations with
jiiz and jilt fixed. The second sum is over all
values of Xg =X—Xg. By avcraglng over aH

possible energies of interaction ettjt one obtains the
partition function Z~ for this model of reversible
gelation

Thc sum 1s ovcl all poss1blc AA, M and AB
nearest-neighbor pairs, where II =1 if site j is oc-
cupied by a solvent molecule, and IIj ——0 other-
wise. Similarly IIj =1 if site j is occupied by a
monomer; IIJ ——0 otherwise. Since each cell must
be occupied by either a solvent or a monomer, we
have the constraint

Z, =expj P[(f/2)ÃII~+jj, „jii] ]

is thc partltlon functioii of tile pure solvent,

jt'tt= ptt p~+f ( IIr»—W» )—
IIj".+ rrj~ ——1 .

The partition function Z~ l ezz j for a given
configuration of interacting bonds l ezra J can be
written

(3)
(Sc)

Thc sum in (7) is over all possible configurations
of monomers I IIJ J. Equation (5) can be written

t

Ziv=Z. g cxp P jt.it+11, + W'QIIfil, '.

I IIB I

P'(Ng, Njt )]I—, (4)

e~ =p„exp[Pa( 8'equi )]+(1—p„)exp[Pa(E) ]

=P.cxP[P( ~~~+ ~ajt 2II'»)]+(1 P—.)CxP[P(E+ I—I'gg 2II'» )] . —
l

Equation (9) is obtained using the identity

pu( +'gg )III'~ g4(E)II~II~ PmII~II~pge '+(1—p„)e ' '=e

In conclusion, our system. is equivalent to a one-
component system with an effective chemical po-
tential p, tt given by {Sb) and effective energy W
given by (10). Prom the partition function one can
derive the free energy and aB the thermodynamic
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properties of the system. In particular, one can lo-
cate the consolute temperature T, below which the
system separates in the different phases, and the.
coexistence curve.

One interesting question is "can we derive the
gelation curve from the free energy?" That is, in a
temperature-density plane, can we derive from the
free energy the curve which separates the sol phase
from the gel phase? The answer is no for the
model that we are considering. In fact the process
of gelation is related to the connectivity properties
of the system; connectivity properties have never
been derived from a free energy.

A "gel" phase is defined to be the phase where a
nonzero fraction of monomers are bonded together
via chemical bonds to form a macroscopic mole-
cule. In order to calculate the gelation threshold

Ps(T) we must specify when a pair of monomers
are bonded. We require that (i} they be nearest
neighbors and (ii) their relative energy be E. —
Where two nearest-neighbor monomers satisfy (ii),
we say that a bond is present between two mono-
mers. The probability pz that such a bond is
present between two nearest-neighbor monomers
can be easily calculated and is simply given by'

(12)

The reversible gelation that we are describing is an
equilibrium situation where bonds are continuously
created and destroyed on a time scale short com-
pared to most observations (weak gels). It definite-

ly does not apply to strong gels. Thus the time
scales of weak gels are analogous to those of an-

nealed random magnets, while strong gels are
analogous to quenched random magnets.

The problem of calculating Ps(T) is in some
respects analogous to the usual site- or bond-

percolation problem. However, it is more com-
plex for the following two reasons: (a) In the
"pure" site-percolation problem, the particles are
randomly distributed, while here they are correlat-
ed according to the Hamiltonian (2) ("correlated"
percolation}. (b) In site percolation, the vertices
can be occupied or not and the bonds are always
present. In bond percolation the vertices are all
occupied by the particles and the bonds may be
present or absent. In our model the vertices may
be occupied or not and also the bonds may be
present or absent ("site-bond" percolation}. The
correlated percolation problem ' and the site-
bond percolation problem' have each been treated
separately, while we have proposed treating both

problems simultaneously.
From the above considerations, it follows that if

p~ &p„where p, is the pure bond-percolation
threshold, there is no gelation no matter how high
the monomer density. Therefore from Eq. (12)
there exists a limiting value of the temperature
T,„,with ps(T,„) =p, above which there is no
gelation. From Eq. (12) it follows that T,„d oes
not depend on the nature of the solvent.

Thus far we have presented a model to describe
the sol-gel phase transition for weak gels. An ex-

plicit expression for ps as function of temperature
has been obtained and a value of temperature T,„,
independent of solvent, is predicted above which
there is no gel. In the next two sections we will
solve this model for the interior of the Cayley tree.
We will first calculate the equation of state (Sec.
III) and then the connectivity properties (Sec. IV).
Results on this lattice correspond to making
Flory's assumption of no intramolecular interac-
tions and hence the closed-form expressions we ob-
tain provide a useful anchor point for theoretical
descriptions of this model system.

III. EQUATION OF STATE (M =1)

In the preceding section we have shown that the
monomer-solvent solution is equivalent to an effec-
tive one-component system with the partition func-

16

20
{a)

t4

10

FIG. 8. (a) Cayley tree of coordination number f=3.
The center 0 is connected to branches with origin in
1,2,3. (b) Example of branch with origin in 0.
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tion given by Eq. (9). For such a system we calcu-
late here the equation of state for the interior of
the Cayley tree, following closely the procedure of
Ref. 24.

To fix the ideas, consider the Cayley tree or
Bethe lattice of coordination number ("functionali-
ty") f=3, with a "center" denoted 0 [Fig. 8(a)].
Any site is connected to f branches. Any bond, if
cut d1v1dcs thc tI'cc 1n two blanchcs. For example
if we cut the bond [03] we have one branch with

origin 0 [Fig. 8(b)] and another with origin at 3.
We split the partition function Zz ——Zz(+ )

+Zz( —) where ZIv(+ ) [Zz( —)] is the Partition
function under the condition that site 0 is occupied
(empty). They satisfy the following relations:

for the branches 1 and 2 which have been obtained
by cutting, respectively, bonds [01] and [02].

Dividing Eq. (17a) by Eq. {17b)and using the
translational invariance assumption, we obtain in
the thermodynamic limit the desired expression for

y eI I eff(yePw+ 1)2/(y + 1)2

A. General functionality

First wc introduce the new variables

Zlv(+) =Zw, (+)[e ZIv, (+)+tv, ( —)],
(13a)

II I=y/z .

(19b)

(19c)

z~( —)=z~,( —)[Zgg, (+ )+ZN, ( —)], (13b)

where ZIv (+ ) [Z~ ( —)] is the partition function

of the branch 0 [Fig. 8(b)] under the condition that
site 0 is occupied (empty). Analogous definitions
hold for the partition function relative to branch 3.
Ão and N3 arc the number of sites, respectively, in
branch 0 and 3. The density of monomers P is
clearly

0= llm [Zx(+)]/[Zx(+)+Zn( —)] (14)

From Eqs. (13) and {14)

y =[y(ye~~+1)]/[y2e~~+2y+1],

y= lim [ZN, (+)]/[Zx, ( —)]
No-+ ce

Here we have made the assumption of translational
invariance. The translational invariance condition
is equivalent to neglecting the surface of the Cay-
ley tree.

We need an equation for y. To do so we write
tllc followlIlg 1'clatloIls:

ZN, (+)=e "'ll [e~ z~, (+)+ZN. ( —)],

Equations (15) and (18), generalized to arbitrary
functionality f, become

4=( 1+VIx)/( I+2ulz+1»

II =II I [(a&+1)/(I2I+&)]/ ' (20b)

a=exp(P[ [I a+) a(0)]—[p~+p&(0)] J),
{21a)

where ps(0)=( , )fW&II and p—„(0)=(—,)f8'zz are
the chemical potential of species 8 and A, respec-
tlvcly, ln thc abscncc of spcclcs A and 8. Herc

Pw~~ P8'~~BB e BB+{1 ~ )eIIE (21b)

From (20a) it follows that p =1 corresponds to
the disordered phase. The consolute temperature
T~ (01' cqlllvalcIltly z~ ) alld thc collsollltc density $~
are obtained from the equations:

Tc— Tc

which are the desired equations of state coinciding
with the Bethe approximation. From (19a), (19b),
and (8b), p can be written in the following way:

Z, ( —)=g[z,(+)+Z,( —)] . (17b)

Here we have introduced the partition functions
FIG. 9. (a) Coexistence curve for the monomer case

(M =1) and (b) for the polymer case (M & & 1).
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host site

st site

(b)

FIG. 10. Example of ghost sites for a section of the
square lattice (a) and Cayley tree (b).

extended by Coniglio ' for correlated percolation.
Here we calculate P in the presence of the "ghost"
field h (Refs. 28 and 29) which plays the same role
as the magnetic field in a ferromagnet. To be
more precise, we introduce a ghost site which is
connected to every site with probability h (see Fig.
10). Consequently all the sites that are connected
with the ghost sites are connected to an infinite
cluster. The advantage of introducing the ghost
field stems from the relation

Bp Bp=0 or =0
ap,

(22a) S =(1 P)—
Bh

(27)

and B„Bp"=Oor
2

——0.
a4' api

(22b)

The spinodal curve P, is obtained from Eqs.
(20a) and (22a),

N. =(pl. +pl.z}/(pl. +2pl.z+1}. (24)

Here p» is the solution of Eq. (22a) and is given

by

pi, —,E+( ,F ——I)'~—— QSa)

and

From Eqs. (20a), (20b}, (22a), and (22b) we have

z, =(f—2)/f, (23)

P =1—(1—h)QI .

Clearly Q satisfies the following relation

Q = 1 —apz+apz(1 —h)QI

(28)

(29)

where a is the probability that one of the peri-
pheral sites of the elementary cell [e.g., site 1 of
Fig. 8(a)] is occupied under the condition that the
origin is occupied,

Starting from the origin of the elementary cell

[Fig. 8(a)] there are f branches that emanate from
the origin. Given that the origin is occupied by a
monomer, let Q be the probability that moving
along one of the branches there is no infinite clus-
ter attached to the origin. The probability P that
the origin, occupied by a monomer, belongs to an
infinite cluster is given by

F=z '(f 2 fz ) . —— (25b) a =(II II, )/(II ), (30)

The + and —signs in (25a) correspond to the
two different branches of the spinodal curve. The
coexistence curve is obtained by putting p =1 and
solving (20a) and (20b) for P, „as function of T
(Fig. 9}.

IV. CONNECTIVITY PROPERTIES

In this section we investigate the connectivity
properties of the system. In particular, we are in-
terested in the following quantities: (i) the percola-
tion probability P, defined to be the probability
that a given monomer belongs to the infinite clus-
ter, (ii) the mean cluster size S,

S =ps'n, //gsn, .

conf conf

Now a has already been calculated, with the re-
sult

a =pi/(pi+z),

where z is given by Eq. (19a) and pi by Eqs (19c}
and (20b) (see also Appendix A for a more general
case M+I}. ps is the probability that the two
monomers at the origin 0 and at the peripheral site
1 are in a "bound state, " and is given by Eq. (12).
From (27)—(29), we have

where the angle brackets stand for the usual sta-
tistical average

(31)

Here n, is the average number of clusters (mole-

cules) per site of s monomers.
To calculate P we follow closely the formalism

introduced by Essam for random percolation and

(I+apsQ/ ')S=
[1—(f—1)apsQ '1

where Q is calculated for h =0.

(33)
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FIG. 11. Coexistence curve for the monomer-solvent binary mixture and sol-gel phase boundary for three different

solvents (M =1). The solvents have been chosen in such a way that the consolute point is (a) in the sol phase (b) on the

gelation curve, and (c) in the gel phase. T~ is the temperature at which the gelation curve meets the coexistence curve.
The situation depicted in (c) is not expected to be observable for usual experimental time scales.

We note that (29) is the same equation as for
random site percolation. In this case ay~ becomes
the monomer density P. The equation for h =0
has been studied previously.

The solution near the percolation threshold is

Q(x)=l, x &x,

Q(x)-1—[2/(f —2)]e, x &x, .

(34a)

(34b)

Here x, =(f—1) ', x =aps, and e=(x —x, )lx, .
From Eqs. (28), (29), and (33), it follows that for
x &xc~

and

P =[2fl(f —2)]e (35a)

From Eqs. (20a) and (32) we find

0g =z'pa(f I )/[ [pa(f —1—)—1]'

+z'[2(f —1)ps —1 l ( (37)

which is identical to the critical threshold in the
pure correlated case. The only difference is the
change of (f—1)~(f 1)ps. We see that the-
bond dilution reduces the effective connectivity of
the lattice. We also note that, consistent with our
general result, we find, from (36}and from the fact
that z & 1, the limiting value of the temperature
T above which there is no gelation:

ps(T,„)=(f—1) (38)

Note that (f 1) ' is the percolat—ion threshold for
the pure random bond percolation.

In Fig. 11 we have plotted the sol-gel phase

(35b)

The equation for the gelation threshold Ps is deter-
mined by the condition

(36)

boundary, Eq. (37), together with the coexistence
curve for the binary mixture of monomers and sol-
vent, for three good solvents. Changing the sol-
vent corresponds to changing the parameters

Wzz —2$&q. The solvent parameters have been
chosen in such a way that the consolute point is in
the sol region [Fig. 11(a)], on the gelation curve
[Fig. 11(b)], and in the gel region [Fig. 11(c)]. We
stress two interesting features:

(i) For all solvents there is a temperature T~
(below the consolute temperature T, }at which the
coexistence curve crosses the gelation curve. For
T & T~ we have coexistence between sol phase and
gel phase. In addition, in Fig. 11(c) for Tz & T
& T, we have two possible gel phases. Note that

in a real system, this situation is very difficult to
realize because the monomers form very large clus-
ters for short time scales when the demixion con-
centration P, is near the gel curve. Therefore P,
tends to decrease. Hence the situation depicted in

Fig. 11(c) is not exp&@ted to be realized in prac-
tice. Only for an infinite time scale, the mono-
mers act as single elements and phase separation
would occur at P, .

(ii) By changing the solvent properties it is possi-
ble to realize the interesting case in which the con-
solute point lies on gel-sol phase boundary, as
shown in Fig. 11(b). We find that this special
point Q is realized, if for fixed values of the solute
parameters (p„,E, Wss) the solvent parameters
( Wzz —2W&s) and T, are related by

—w/2kT
pz ——1 —e '=—1 —z, . (39a)

In fact, from (37) using (39a) and z =z, =fI
(f—2) we find Ps

———,. This means that critical
point and gelation threshold coincide. Equation
(39a) is actually valid for any lattice and for all
d 31

This particular point Q is characterized by the
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x x, =pea (I—J, „z) (f 1)-'—, — (39b)

with ps given by Eq. (39a), a (p~,z) given by Eq.
(32), and p~ from Eq. (20b) with p= 1. It.is
straightforward but tedious to show that x —x,
—T T, for T &—T, and x —x, -(T,—T)'~ for
T & T, along the coexistence curve. Consequently
the mean cluster size diverges with a classical ex-

ponent y&
——1 for T & T, and with a different ex-

ponent yz
———, for T &T,.

This asymmetry above and below T, is not
found in low dimensionality using a Migdal-
Kadanoff renormalization-group approach. '

However the critical exponents are found to be

given by random percolation exponents along the
gelation curve, with a crossover to different
behavior as the Q point is approached. This same

kind of crossover has also been found near six di-

mensions using the e-expansion technique, where

the calculations have been done only in the disor-

dered phase (T & T„p= 1). More study therefore
is required to fully understand the critical behavior
near the Q point especially as a function of the
dimensionality of the system.

divergence of two lengths. One is the usual corre-
lation length g which diverges at the consolute
point, and the other is the characteristic linear di-
mension of the finite clusters (the "connectedness
length" ) gz which diverges on the sol-gel phase
boundary. It is interesting to study the nature of
point Q, which in some respects is analogous to the
point (T =O,p =p, ) in the T —p phase diagram of
a randomly dilute ferromagnet.

From Eqs. (35a) and (35b) we see that along all
the gelation curve, including the Q point, the per-
colation critical exponents are the classical ones if
the parameter x =apz is chosen as variable. Ex-
perimentalists, however, do not measure exponents
along a path of varying x but, for example, along
the T axis. Therefore let us choose the value of
ps, given by Eq. (39a), so that we obtain the situa-
tion in which the Q point occurs. We can ap-
proach the Q point along the coexistence curve

(p = 1) using as variable
~

T T,
~

. W—e find criti-
cal exponents different from those that we find if
we approach the Q point from T & T, . In order to
show this we must calculate near T,

() (,

(W'v()

C 6 ()

be found in Refs. 5 and 33. The polymer is made
of M monomers, each one of which occupies a lat-
tice site (Fig. 12). The solvent molecules, as in the
case M =1, fill the remaining sites of the lattice.
The monomer-monomer, solvent-solvent, and
monomer-solvent interactions are given by Eq. (1)
as before. The partition function becomes

Z~ I ass I for a given configuration of monomer in-

teraction I as~ J can be written as:

Here Z, is the partition function of the pure sol-

vent, given by Eq. (8a), while Z„ is the contribu-
tion to the partition function which comes from
those configurations with n polymers,

II efP ~ I (6BB~ BBZ„[Egg ~=e ~ e
config

(40b)

The sum is over all configurations of the n poly-
mers, Xzz is the number of nearest-neighbor pairs
of monomers, and

jeff= Ppoly ™Pa

FIG. 12. Polymer chains embedded on a square lat-
tice. The wavy line is a bond between two monomers of
two different chains.

V. POLYMERS IN A SOLVENT (M p 1)

—[(f—2 }M+2]( Wgg —Wgs )

—(M —1)Wgg, (41)

In this section we want to extend the previous
treatment to the case of a solution of polymers in a
solvent. Treatment of chain percolation can also

where ppo/y and p~ are the chemical potentials,
respectively, of the polymer and the solvent. The
origin of (41}can be easily understood considering
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(a) Dimer configuration + t (b) Dimer configuration '+2

FIG. 13. Examples of configurations of two dimers

(a) without nearest-neighbor monomers and (b) with taro
nearest-neighbor monomers.

the example of two dimers (n =2,M =2), as illus-
trated in Fig. 13. There are two possible configu-
rations. %e have to calculate the energy and the
chemical potential of a system made of (Ã —4)
solvent molecules. Since the contribution to the
chemical potential is pe% in Z„@remust subtract
such a term and add np~~y due to the presence of
two polymer molecules. The contribution to (41)
due to the chemical potential is

(1)
Pf Jeff =Pl@~)y

—PlMPg

A=R(p~+p p)/[Rpf+(1+R)p, ,z+1] .

Here

(45)

p p(p z—+1)sr~f—l)/(& + )sr(/ —2~+l

(46a)

f{f—1)
[(f—1)(f—2)+2(f —1)/M]

' (46b)

tern is equivalent to the grand partition function of
a system of polymers with an effective chemical
potential p,&& given by Eq. (41) and an effective
monomer-monomer interaction 8' given by Eq.
(10).

As for the case M =1, we derive the equation of
state in closed form for the interior of the Cayley
tree, The equation of state is derived in Appendix
A. Here we give only the result for the monomer
density P,

The contribution to (41) due to the interaction is

W"'= n [(f—2)M+2](Wgg —Wss)

+{M 1)W~~—+Naa{W~~ 2~'~a+—&ss) .

p =exp t P[ppoly+ ppoly(0) l

—M[ ~+p~(0)]I
(46c)

(43)

The sum np, rr+ W =np, rr +(&ss)+ps proves

Eqs. (40) and (41).
Taking in (40b) the average over all possible

vallles of esyy the Partition function ZN ——Z~ Iess J

becomes

where pp, ~„(0) is the chemical potential of tlM po-
lymers in absence of solvent, and p„(0) is the
chemical potential of the solvent in absence of po-
lymers; explicit expressions are in Appendix A and
z has been defined in Eqs. (19a) and (10). If we set
M =1, Eqs. (45) and (46) reduce to Eqs. (20a) and
(20b) derived in Sec. III.

The consolute temperature T„or equivalently
z„ is obtained from the two equations

Pp ~p ~ P$VEgg
Zn =

conf

(44b)

where Wis given by Eq. (8c).
In conclusion, the partition function of our sys-

Bp =0 {or equivalently, =0),
BII) Bpi

I) P I) P=0 (or equivalently, z
——0) .

BIII I)Pf

From Eqs. (45) and (47) we find

(47a)

(47b)

z = M'~2/[M(f —1—)+1]+[M(f—1)+1] '[M (f—1) —M (f—1)+M(f 1)+M 1]'~— (48a)—

and

y, =(R +RM'"z, )/[R +(1+R)M'"z, +M] .

(48b)

The spinodal curve P, can be obtained from Eqs.
{45) and (47a)

Os=R{pis+plsz)/[RpiII+(1+R)plIz+1] ~ (49)

Clearly for large M,

z, -(f 1) '[(f—1)(f—2)]' '—
and Q, -Rz,M

where p„ is the solution of Eq. (47a) and is given
by

p, i, F/2+(F /4 M'——)' ~—
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{M—(f—1)+1]z'—M(f —2) j/Mz
(50b)

ps =Rz (f 1)1'{[(1+R—)(f 1)—
—1]z'+(f—2)'] .

Herc

f 1=[M(f—1—)+1 M]ps, — (52)

and ps ls given by Eq. (20b). The discussion of
th«esults for M & 1 is identical to the M =1 case,
and the results are indicated in Fig. 14.

For the case M = 1, in order to find the coex-
istence curve P,~„, it was enough to put p= 1 be-

cause of the symmetry. This time we have to ap-

ply the "equal area" rule. The conditions for the
cocx1stcncc cufvc afc that thc pfcssufc P RQd the .

chemical potential must bc thc same in coexisting
phases A and B. From the relation dP/'d p,rr

——p,
where p is the density of chains related to the den-

sity of monomers by P=Mp. The condition for
the plessurc to bc the same 1s

8 8
J„dP= J„p&I.II=0

or

I P d (lnp )=0,
and for the chemical potential p(A) =p(3). »
Fig. 14 we have plotted schematically P, „as a
function of T. Note that the critical density P, is
located much nearer to zero than in the symmetric
case M = 1 (Fig. 9).

The connectivity properties of the system of
chains can also be derived. Here we give only the
result for the gelation curve Ps (the derivation is

given in Appendix 8),

In conclusion we have proposed a model which
applies to weak gcls. Wc have solved the model in
closed form for the Cayley tree. The general phase
diagrams arc in qualitative agreement with the ex-
perimental data of Tanaka et al. ' and Ruiz
et a/. This model can also be adapted to explain
peculiar effects inherent in the M » 1 system.
All llltcrcstlllg sltuRtlon occuls whcll fol R particu-
lar solvent thc gelation curve ends at the consolutc
po1nt. This po1nt 1s a highef-order cfit1cal point
where both the correlation length and the connect-
edness length diverge.

In the Cayley-tree solution, which is valid for
high dimensionahty, the critical behavior in the
sol-gel transition exhibits an asymmetry above and
below the consolute temperature. This asymmetry
is not found in a renormalization-group approach
in low dimensionality. More study needs to be
dollc to lllvcs'tlgatc 'tllc 11Rtulc of tllls Q polllt Rs

function of the dimensionality. This point presents
analogies with the end of the line of critical points
in the dilute ferromagnets. Such lines of critical
points cannot be obtained with the previous simpli-
fied theory of gelation.

After this work was completed, several exten-
sions of the present model were developed. In par-
ticular, Barrett has recently generalized the
present model to incorporate features displayed by
the polymeric system hyaluronic acid, which un-

dergoes an order-disorder transition. There are
two types of side groups, amide and carboxyl, as
well as two types of "solvent molecules, "potassi-
um ions and phosphate ions. Very recently, De-
lyon et al. found that the present model displays
a peculiar transition in the region below T, . A
physical interpretation of this effect has been sug-
gested by Klein and Stauffer. 39

SOL SOL

TNOX

GEL
Tc=Tp

FIG. 14. Same as Fig. 11 except that M is large (polymer).
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APPENDIX A: POLYMERS IN A SOLVENT,
EQUATION OF STATE

Bond

Solvent
molecule

Monomer

Here we derive the equation of state of a solu-

tion of polymers in a solvent for the interior of the
Cayley tree. The result was given in Sec. V, Eqs.
(45) and (46). The polymer is made of M mono-

mers, each one of which occupies a lattice site
(Fig. 15). The partition function Z„ is given by
Eqs. {44R) RIll (44b) wlllch wc 1'ccall llclc fol co11-

venience

ZN =Ze g Z»,

FIG. 15. Polymer chains (heavy line) embedded on a
Bethe lattice of coordination number f=3. The open
circles are the monomers. The dots are the solvent mol-
ecules. The wavy lines are the bonds between monomers
of different chains.

The special case of the present model in which
bonds are considered broken with probability

q~ =1 pII =exp(—2JtkT)—

was introduced by Coniglio and K.lein ' as a candi-
date for representing "droplets" at the critical
point of an Ising model with coupling constant J.
Numerical studies in two and three dimensions in-
dicate that these site-bond percolation clusters in
fact do behave just like Ising droplets in that their
spatial extent becomes infinite at the critical
point. Thus wc scc that a IQodcl introduced in
connection with polymer gelation would appear to
be of relevance for a completely different
problem —that of defining Ising droplets near the
critical point of a thermal phase transition.

ZN ZN{ )+ZN{+ ) t (A3)

where ZN( —) and ZN(+ ) are the partition func-
tions under the condition that the origin 0 is,
respectively, empty or occupied by a monomer. In
the latter case we can write

ZN( y )=ZN[0, 1]+ZN[0,2]+ZN[0, 3], (A4)

where ZN [O,i] (i =1,2,3) is the partition function
under the condition that the dimer occupies bond
[O,i]. The following rdations hold:

ZN[0, 1]=e ""ff[e ZN, .(+»N,.( —)]
i =2

(A5)

»eff" ~ &maZ~ =8 . Z e
config

All the other quantities are defined in Sec. V.
Consider first the case M =2. Following the

derivation for the M =1, we consider the Cayley
tree of coordination number 3 [Fig. 8(a)] and write
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Here ZN ( —) and ZN, (+)=ZN [2,6] + ZN [2,7]
are the partition functions of branch 2 under the
condition that site 2 is, respectively, vacant or oc-
cupied by R monomer. ZN, [2,6) and ZN [2,7] are
the contributions relative to the configurations in
which the diner occupies, respectively, the bond
[2,6] and [2,7]. Analogous definitions hold for any
other ZN (+ ) and ZN ( —) and analogous relations

hold for ZN[0, 2] and ZN[0, 3]. We also have

ZN ( —)=[ZN (+)+ZN, ( —)][ZN (+)+ZN, {—)] .

(A7)
In relation to branch 0 [Fig. 8(b)] the following re-
lations also hold:
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Zw, [0 11= e ""'[e~ ZN, (+ )+ZN, ( )]—

X [e Z~ ( + )+Z~ ( —)]

X [e ZN, (+)+Z ( —)], (A8)

Z)vo( —)= [Z)v ( + )+Z)v ( —)]

X [Z)v, (+ ) +Z~ ( —)] .

Taking the ratio (A8):(A9),

(A9)

Z„,[0,1] e "(e y„+1 }(e y„,+ 1)(e y„+1)Z~ ( —)Z„(—)

ZN ( —) (yN + I )(y)v + 1 }Z)v ( —}

(A 10)

where y)v [ZN, .(———)]/[ZN. (+ )) for any i Fr.om

(A7} and taking the limit N~ ~ oo, Eq. (A10}be-
comes

y/2=e '~~(e(s y + 1 ) /(y + 1 )

where

y = lim y~.

(A 1 1)

P= lim Z„(+)/Z)v .
N~ oo

(A12)

Note that here we have assumed the independence

upon the particular site i. This assumption is
equivalent to neglecting the surface effects.

The monomer density (t) in the thermodynamic
limit is given by

@=a e z—1 lM eff —M (f—2 )—2

R =b/a

(A19)

containing the origin on one branch of the Cayley
tree [Fig. 8(b)] and

(f 1 )M —2fM

is the number of ways of embedding a polymer
containing the origin on the Cayley tree [Fig. 8(a)].
The above expressions for a and b, which are valid
for M & 2, will be derived at the end of this appen-
dix. If, for convenience, we introduce the follow-
ing new variables,

(A17)

(A18)

From Eqs. (A3) —(A7)

3 &„„,(e~ y+1}'
(y +1)'

From (Al 1)

(A 13)

f(f—1 }

[(f—1)(f—2)+2(f —1)/M]
'

Eqs. (A15) and (A16) become

8=[81(p lz + I )
' "]/[(p 1+z) ' "+1]

(A20)

—', y (e &ay + 1 )

—', y(e& y+1)+y+1
(A14)

~)'eff(ePw + 1)M(f—2)+(

( + 1 )M(f ))—
(bla)y(e~ y +1)

(b /(2 )y (e ~ y + 1 )+y + 1

(A15)

(A 16)

The above calculations can be easily generalized to
chains made of M monomers on a Cayley tree of
coordination number f. In this case Eqs. (Al 1)
and (A14) become

p =ePI (ppQ]y+p(o)]™tp'g +pg (0)) I

where

p~(„(0)= —ina + —,[M(f—2) +2]8'ss

(A23)

(A24)

(A21)

p = [R (p) +p )z) ]/[R p, + ( I +R )Iz2+)1] . (A22)

These two coupled equations represent the
desired equation of state. Note that (A19) can be
written in a different way. In fact, from (41),
(A17), and (10),

where

a = , (f —1 )M 2[(f—2)M—+2]
is the chemical potential of the polymers in ab-
sence of solvent, 8'ss is defined in Eq. (21b), and

js the number of ways of embedding a polymer W (0}=(f/» ~~~ (A25)
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a(M,f)= g (M, )g (M2)
~ M)+M2 ——M —1

+(f—1)g(M —1), (A26)

b(M f)= 2 g g(Mi}g(M2)

+fg(M —1) .

is the cheniical potential of the solvent in absence
of polymers.

Now wc want to calculate explicitly thc cxprcs-
sion for u =—a (M,f) and b =b—(M,f). According to
their definition we have

a macroscopic molecule (infinite cluster). Consider
first the case M =2, pii = 1. If P is the probability
that the origin 0 [Fig, S(a)] occupied by a mono-
mer, belongs to an infinite cluster, then

[P(01)+P (02)+P (03)]
[p(01)+p (02)+p (03)] (81)

P(oi) is the probability that there is a dirner in (Oi)
and belongs to an infinite cluster (i = 1,2, 3);
Q,.P(oi) is the fraction of monomers which belong
'to aii iilfiilite clllstei, p (Ol ) is the probability tllat
there is dimer in (Oi) (i =1,2,3), P=g,p (Oi) is the

density of monomers. In the limit of infinite sys-

tems we have P{01)=P(02) =P(03), and

p (01)=p {02)=p(03). Consequently
P =P(01)/p(01). This quantity can also be writ-

ten as

P =1—Q2QiQ4Q5 ~ {82)
Here Mi and M2 & 1 and g (E) is the number of
configurations of embedding a chain of E bonds in
a given branch with the origin fixed which is given

by

(A28)

From (A26), (A27), and (A28) for M & 2,

u(M, f)= —,(f—1) '[(f—2)M+2],

b(M,f)=—,(f—1) fM .

Thg I'atlo

APPENDIX 8: PERCOLATION
OF INTERACTING CHAINS

Here we consider the connectivity properties of a
system of chains made of M monomers. The
monomers interact with an effective interaction

given by Eq. (10). Two chains are bonded if they
have at least two monomers bonded. The probabil-

ity pii for two nearest-neighbor monomers being
bollded is giveii by Eq. (12}.

%e calculate now in the Cayley-tree approxima-
tion the gelation threshold p (T), i.e., the mini
mum density of monomers above which a nonzero
fraction of rnononmrs are bonded together to form

Q2 is the probabihty that there is no infinite clus-
ter in the branch (2.6)—(2.7) under the condition
that site 0 is occupied by a monomer.

Also in the limit of infinite system we have

Q2 ——Qs ——Q&
——Q5 =—Q. I.et us calculate Q2 ——Q,

Q =1—p, (0 occup)+p2(0 occup)Q', (83)

where p2(0 occup) is the probability that site 2 is
occupied by a monomer under the condition that 0
is occupied by a monomer belonging to a different
cham,

p (0 o p)=(llo II (+))/(11 )

(IloiIIi(+ })/[(IIoiII2(+))

+(II„II,( —))],
(84)

where H01 is the projector operator on states in
which the polymer occupies position (01). II2(+ )
and II2( —) are the projectors operators on states in
which site 2 is, respectively, occupied or not by a
monomer. The angle brackets stand for the ther-
mal average. Using the same approach as in Ap-
pendix A we have

(II„II,(+})=(1/Z„)Z„,[0,1] & Z„{+),
(85)

( Iioii12( —) ) = ( I/Zjr)zpg [0,1]z~,( —), (86)

where Zz, [0,1] is the partition function of the

branch (0,1)—(0.3) [see Fig. 8(a)], under the condi-
tion that there is a dimer in (01). Z~ {+) and

2

ZN, ( —) are the partition functions of the other
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branch with origin in 2 under the condition that
site 2 is, respectively occQpied ol empt/.

From (84) follows

p, (0 occup) =e&~y/(e~~y +1) =p, /(p, +z) .

Q =1 a—Pz+apzQ~ (810)

which is the same as Eq. {24) for M = 1 and h =0
with an effective coordination number f. The
gelation threshold will therefore be given by

Here y, p„and z have been defined in Appendix
A. In the case of general M, Eq. (82) becomes

(88)

where f=M(f —2)+2. And Eq. {83)becomes

(89)

and a =pi/(p i+z). We introduce a probability Pz
that there is a cross link between the nearest-

neighbor monomers. Then Eq. (89) becomes

az =1/pz(f —1),
namely

I i,=z/[{f 1)pz——I ]

which substituted in Eq. (A22) gives the gelation

threshold

p =Rz (f—1)/I [(1+8)(f—1) —1]z +{f—»'1

(813)
where f 1=—{f 1)p—z
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