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Monte Carlo study of melting in two dimensions
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%e present the results of Monte Carlo simulations of the two-dimensional Lennard-Jones sys-
tem. The energy, pressure, structure factor, elastic constants, and (tl2) have been computed at
several temperatures along three isochores. In addition, vie have studied the distribution of dis-
clinations and dislocations on the same isochores. There is a well-defined solid phase and a
vvell-defined fluid phase. The nature of the transition bet&men these t~o phases cannot be
unambiguously determined from our data. %e are also unable to determine whether or not
there is a hexatic phase. Somewhat more limited data are presented for the hard-disc system.
The transition between the solid and liquid phases of the system appears to be first order.

I. INTRODUCTION

It is now well established' ' that a wide class of
two-dimensional solids does not display the positional
order that is characteristic of three-dimensional
solids. The first theoretical discussions of this
behavior were given by Peierls4 and Landau. ' A
rigorous discussion, based on the Bogolyubov ine-
quality, was provided by Mermiri. ' This theoretical
work shows that if the particles are assumed to be lo-
calized near a set of lattice sites then their mean-
square displacement from these sites will diverge like
1nN, and that the Fourier components of the density

pk will vanish exponentially fast. Here N is the
number of particles in the system. The height of the
"Bragg" peaks are weaker in two dimensions behav-

1-g6/2
ing as N, ~here q~ is a number less than unity
and depends on the square of the reciprocal-lattice
vector. These results lead naturally to the question:
How does one characterize a two-dimensional solid?
Perhaps the most obvious way of characterizing such
a solid is that it should possess a finite shear
modulus. 7 If this feature is present, then we ~ould
naturally use the term "solid." A second characteris-
tic of two-dimensional solids, which we will study in

detail, is that they possess long-range orientational
order. By this we mean that the orientation of parti-
cles in the local neighborhood of a point A is correlat-
ed with the orientation of those around a point 8, no
matter how distant 8 is from A. This remarkable
property was first pointed out by Mermin' and first
observed in simulation studies by Gann et al. 3

Most of the computer simulations carried out prior
to 1979 were concerned with establishing the equa-
tion of state, computing the structure function of the
fluid phase and locating the melting transition. Simu-
lations for both the hard-disc systems and the
Lennard-Jones (LJ) system9 showed that a melting

transition was present. Alder and Wainwright'0 simu-

lated what appeared to be two-phase coexistence.
Young and Alder2 showed convincing evidence that
(u'), for hard discs, grows as In%for N in the range
10—10".

The description we have given of a two-
dimensional solid leads immediately to the question:
How does such a solid melt? Is it a first-order transi-
tion in which the long-range angular order abruptly
disappears, or is it a transition of higher order& The
theoretical framework in which this transition is usu-
ally discussed was developed by Kosterlitz and Thou-
less (KT)."'2 They proposed a general mechanism
for two-dimensional phase transitions, including the
melting of two-dimensional solids. Their basic idea
was that in two-dimensional systems, with continuous
symmetry, topological defects will be thermally excit-
ed and will eventually destroy the order. Examples of
such defects are spin vortices in magnetic systems,
superfluid vortices in helium, and dislocations and
disclinations in solids. We discuss these defects in
more detail in the Appendix. For energetic reasons
these excitations will be excited, at low temperatures,
as bound pairs of opposite "sign." As the tempera-
ture is increased, the bound pairs will eventually start
to break up and, at this point, the "order" of the
low-temperature phase is destroyed and a phase
transformation takes place to a less ordered phase.
In this theory two-dimensional melting occurs when
bound pairs of dislocations begin to break up into
free dislocations. Computer simulations'3' have
sho~n that the KT theory for the two-dimensional
planar magnet is basically correct. There is good
agreement between theory' ' and experiment' for
thin helium films.

The purpose of this paper is to present the results
of Monte Carlo simulations on the two-dimensional
Lennard-Jones system over a wide range of density
and temperature. We have supplemented this work
with some smaller scale simulations of the hard-disc



8. Solid phasesystem. These simulations were carried out to test
the underlying ideas of Kosterlitz and Thouless and
to see whether we could verify the more quantitative
predictions of the theories of Halperin and Nelson
(HN)" and Young. '9 These authors used
renormalization-group techniques to make quantita-
tive predictions based on the ideas of Kosterlitz and
Thouless. We now summarize the results of this
theory.

(i) In this phise there are long-range angular corre-
lations but no long-range positional correlations. At
very low temperatures, where only bound pairs of
dislocations are excited, the angular correlations can
be computed from harmonic theory. The angular
correlation function is defined by the equation

g 6(r) = (exp Ii 6 [8(r) —e (0) ]j )

A. Phases oII the system
Here 8 is the angle between a vector joining two
nearest neighbors and some fixed direction, and r is
the distance between two sets of nearest-neighbor
pairs. The factor 6 naturally arises from the sixfold
symmetry in a triangular lattice. Our definition
differs from that of Ref. 25, where g6(r)
=—(p(r) p(0) ) and p(r) = X,', e""' is an average
over all bonds connecting an atom located at position
r. We do not perform this average and our values of
r are located at the midpoints of the bonds. The
result is that we do not find the large oscillations in
g6(r) reported in Ref. 25. The long-range orienta-
tional order manifests itself through the long-range
behavior of g6(r): g6(r) tends to a constant as r in-
creases indefinitely.

At higher temperatures in the solid phase g6(r)
still shows long-range order but its asymptotic value
is now reduced by both anharmonic motions and by
the excitation of bounds pairs of dislocations.

(ii) As we have already mentioned, we expect to
see thermally excited bound pairs of dislocations, in-
creasing in number as we approach the melting point.
Just before melting wc should see some of these
pairs unbind. This is predicted to be the signal for
the onset of melting.

(iii) Near melting there is a universal behavior of a
combination of thc two Lame constants A. and p, .20

The quantity E =4p, (p, + A. )/(2y+ h, ) is predicted to
bc given by

The most striking prediction of the HN theory is
that the melting process may take place in two steps.
The solid first melts into a hexatic phase. Then the
hexatic phase makes a transition into a disordered
fluid. We shall describe the nature of the phases
belo~. For the moment, we note that this two-step
process is merely a possibility. It is not a universal
prediction of the theory. A single-step process might
replace it. In Fig. 1(a), we show a schematic phase
diagram in which there is a bounded region of hexat-
ic phase. At temperatures above T, the transition is
a single-step process; below T it is a two-step pro-
cess. Two other examples of possible phase diagrams
are shown in Figs. 1(b) and l(c). In Fig. 1(b) there
is an unbounded "strip" of hexatic phase, and melt-
ing is always a two-step process. In Fig. 1(c) there is
no region of hexatic phase; here melting is always a
single-step process.

According to Kosterlitz and Thouless the melting
transition is the point where dislocation pairs begin to
unbind. If at that point the disclinations which make
up a dislocation remain bound, then we expect a hex-
atic phase just above the melting point. When the
disclinations unbind, the hexatic order is destroyed
and we have a normal fluid.

(1.2)

Here r = (T —T )/T, where T is the melting tem-
perature, v is an index with the universal value of
0.369, and e is a constant. The Lame coefficients A.

and p, are in units of ksT/ao. The melting tempera-
ture is defined as the point at which E drops sudden-
ly from a universal value of 16m to 0. These predic-
tions for E are universal in the sense that they
should hold at all points on and near the melting
curve as long as the transformations are controlled by
the KT mechanism. Systems with different potentials
will show this universal behavior-again provided
that the melting mechanism is that suggested by KT.

(iv) We conclude by mentioning the predictions for
the peaks in the structure factor S(k). These predic-
tions are based on harmonic theory and can be
viewed as being independent of KT theory. For

p SO

c

FIG. 1. These figures f, (a), (b), and (c)] sho~ the three
possible types of phase diagram for meltirig in two dimen-
sions. (a) showers a bounded region of hexatic phase H; (b)
an unbounded region of hexatic phase H; and in (c) there is
no region of hexatic phase.
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small q near a reciprocal-lattice vector 6,

At a reciprocal-lattice vector,

S(G) —4X "'

(1.3)

(1.4)

creation of significant numbers of point defects.
Second, it is assumed that the density of dislocation
pairs is sufficiently low so that the pairs can be treat-
ed as a dilute system. Both of these assumptions can
be investigated by means of computer simulation.

Here N is the number of particles in the system and

gG = G'(3p, + Z)/4ir p, (2p, + h. )

Equation (1.3) tells us the shape of the "Bragg" peak
and Eq. (1.4) tells us the height of these peaks. The
exponent qG is a number less than unity.

C. Hexatic phase

We have already mentioned that there are at least
two possibilities suggested for how melting takes
place. Either the solid melts into a hexatic phase or
into a disordered fluid. The hexatic phase is in many
ways "fluidlike. "

It is characterized as follows:
(i) The angular correlations, as defined previously,

decay slowly,

g6(r) —r

where q6 is always less than 4. In this phase there

are no infinite range angular correlations.
(ii) The hexatic phase possesses a finite Frank con-

stant E&.' ' The Frank constant is a measure of the
resistance of the hexatic phase to local angular distor-
tions. This constant is related to the exponent q6 by
the equation

18k' T

The Frank constant is expected to diverge as the
solid phase is approached from the high-temper-
ature side. It has a universal jump of 72/n at the
temperature where the hexatic order disappears and
normal fluid order takes over.

D. Fluid phase

This is a normal fluid phase with exponentially de-
caying angular correlations and a vanishing Frank
constant.

We should conclude this description on the HN
theory by emphasizing the two basic assumptions on
which it is built. First, that the unbinding of pairs of
topological defects is the mechanism by which the
two-dimensional order is destroyed. If other
mechanisms are more important, then the topological
defects may not control the melting transition. For
example, the order might be destroyed by the

E. Recent computer simulations

We now summarize the results of the recent com-
puter simulations. This summary will lead us natu-
rally to the most controversial question concerning
two-dimensional melting: Is melting a first-order
transition or of the type suggested by KT? Two
simulation studies have recently been reported which
support the idea that melting in two dimensions is
first order.

Abraham, working with a constant pressure en-
semble, has found strong hysteresis effects in the
Lennard-Jones system. Hysteresis is a natural
phenomenon if the transition is first order. It could
also occur if the simulated system were for some
reason showing strong metastability. Toxvaerd" has
published pictures, derived from molecular dynamics
simulations on the Lennard-Jones system, which ap-
pear to show two-phase equilibrium between a solid
and a fluid just above the melting temperature. The
diagrams show clear regions of ordered phase and re-
gions of disordered fluidlike phase. They are very
similar to the picture published much earlier by Alder
and Wainwright. ' While these results are, at first
sight, quite convincing, we shall see that their inter-
pretation is not unambiguous.

Two other recent studies have produced results
that support the predictions of the Halperin-Nelson
theory. Morf' has published results for the two-
dimensional Coulomb system which show that the
elastic constant E obeys the predictions of HN
theory. '" There is a discontinuity in E of approxi-
mately equal to 16m and its temperature dependence
just belo~ the discontinuity temperature is close to
that given by Eq. (1.2). These results strongly sup-
port the idea that the melting transition is well
described by the theory. The published data throw
no light on the existence of the hexatic phase. The
molecular dynamics study carried out by Frenkel and
McTague" does suggest that the Lennard-Jones sys-
tem will have a hexatic phase for some temperatures
and pressures. These authors find a region in which
the angular correlations, defined by Eq. (1.7), decay
slowly across the system. This is, of course, a
characteristic feature of this phase. Again, we shall
see that the interpretation of these data is also not
unambiguous.

In Sec. II we describe our results for two low-

density isochores (p'=0.856 and p'=0. 888). Here

p =per, with p the areal density and o- the LJ
length parameter. The cutoff in the LJ potential was
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3o. %e give results for the order in the solid phase,
the elastic constants and the structure factor.

The angular correlations were studied at several
temperatures along these isotherms. %e shall see
that it is difficult to give an unambiguous interpreta-
tion of their behavior. In addition, we have, using
the Voronoi26 polygon construction, counted both
disclinations and dislocations in the solid phase and
above the melting point. These data allow us to both
compute the "core" energy of a bound pair of dislo-
cations and to qualitatively test the underlying hy-
potheses of KT theory. In Sec. III we give a similar
set of data for a high-density isochore p' 1.143 of
the Lennard-Jones system. At this density, both the
thermodynamic functions and the elastic constants
show strikingly different behavior. Section IV is de-
voted to a similar presentation of the data for t'he
hard-disc system. The behavior of this system is very
similar to that of the high-density Lennard-Jones sys-
tem. A very striking feature is that it, too contains
bound pairs of dislocations at low temperatures.

In Sec. V we give a discussion of our results. %e
are able to convincingly demonstrate that the solid
phases behave as expected and that there is a definite
melting transition. %e are not, however, able to

show convincingly whether or not a hexatic phase ex-
ists and whether or not the melting transition is first
order. There is indeed a fundamental ambiguity
which plagues the. interpretation of nearly all the data
in the region above melting. A two-phase region
can, it turns out, readily mimic the behavior of a
hexatic phase. %e are, at this time, unable to
demonstrate a clear distinction between them.

%e conclude our discussion by suggesting several
simulation studies that might illuminate, and even el-
iminate, some of the present confusion.

The Appendix contains a discussion of dislocations,
disclinations, and Voronoi polygons,

II. LO%-DENSITY LENNARD-JONES SYSTEM

In this section we will present our results for the
low-density Lennard-Jones system. Our simulations
were carried out on the two isochores p'=0. 856 and
p'=0.888. For comparison we recall that the two-
dimensional (2D) triple-point reduced density is es-
timated" to be 0.815. On each of these isochores we
made successive Monte Carlo runs increasing and de-
creasing the temperature. At several temperatures
we collected very extensive data. In Table I we show

TABLE I. Simulation results for the isochore p -0.856. T, E, and P are the reduced tem-
perature, energy, and pressure, respectively. E is the elastic constant 4p, (p. + L)/(2p, + A, ). The
column labeled "N pass" gives the number of Monte Carlo passes made at that temperature.

N pass

0.500
0.550
0.630
0.640
0.650
0.660
0.670
0.680
0.685
0.690
0.700
0.710
0.720
0.725
0.730
0.740
0.760
0.770
0.790
0.810
0.830
0.860
0.875

-2.7440
-2.7071
—2.6503
—2.6409
—2.6341
—2.6290
-2.6190
-2.5939
-2.5636
-2.5876
-2.5481
-2.5560
-2.5458
-2.5449
—2.5249
—2.4997
-2.4662
-2.4503
—2.4372
—2.4099
—2.3896
-2.3830
-2.3531

-0.977
1.320
1.838
1.924
1.988
2.033
2.121
2.403
2.652
2.380
2.808
2.724
2.915
2.825
3.006
3.213
3.493
3.636
3.747
3.962
4.133
4.536

82.0
68.1
67.3
64.6
61.2
61.4
59.0
54.0
31.0

3900
2560

10240
5120
5120

10240
20480
10240

5120
15 360
15360
15 360

5120
5120
5120
5120
5120
5120
5120
5120
5120
5120
5120
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some of the data for the isochore p'=0.856; the last
column gives the total number of Monte Carlo passes
made at each temperature. Table II provides the
same summary for p'=0. 888. At nearly all tempera-
tures several Monte Carlo runs were made from dif-
ferent starting configurations. ( P'= kz T/—e where e
is the LJ strength parameter. )

Our data clearly show that along both of these iso-

chores there are three distinct regions. At low tem-
peratures there is a solid phase, at high temperatures
there is a normal fluid phase, and at intermediate
temperatures there is a complex region. This region
may tentatively be identified with a hexatic phase or
with a two-phase region. As we present our data, we
will carefully ~eigh the evidence for and against each
interpretation.

TABLE II. Simulation results for the isochore p'=0.888. T, E, and P" are the reduced tem-
perature, energy, and pressure, respectively. E is the elastic constant 41M, (p, + X)/(2p, + ~). The
column labeled "N pass" gives the number of Monte Carlo passes made at that temperature.

E+ N pass

0.5000
0.7500
0.8000
0.9000
1.0000
1.0250
1.0500
1.0600
1.0650
1.0700
1.0750
1.0800
1.0850
1.0900
1.0950
1.1000
1.1100
1.1200
1.1400
1.1500
1.1600
1.1700
1.1800
1.1900
1.2000
1.2200
1.2500
1.2700
1.3000
1.3200
1.3500
1.3700
1.4000
1.5000
1.6000

—2.8415
—2.6483
—2.6064
—2.5344
—2.4435
—2.4297
—2.3863
—2.3850
—2.3141
—2.3154
—2.3032
—2.3143
—2.3188
—2.3105
—2.3098
—2.2346
—2.2525
—2.2059
—2.2036
-2.1771
—2.1548
-2.1553
—2.1692
-2.1478
—2.1349
—2.0975
—2.0833
—2.0491
—2.0522
—2.0204
—2.0007
-1.9666
-1.9464
-1.8804
-1.7888

1.9041
3.6350
4.0022
4.6442
5.2747
5.4733
5.9213
5.8266
6.5102
6.4987
6.6072
6.5298
6.4836
6.4917
6.4594
7.1476
7.0079
7.3820
7.3982
7.6187
7.7896
7.7931
7.6995
7.8658
7.9686
8.2526
8.3866
8.6441
8.6545
8.9258
9.0690
9,3207
9.4905

10.0355
10.7826

118.7
87.9
83.6
74.7
63.0
64.1

57.0
54.2
16.5

6400
10000

8000
13600
40800
20000
44 800
12 800
12 800

6400
35 200

6400
12 800

6400
6400

21 600
92000
25 600
12 800

9600
25 600
16 800
12 800

6400
44000

6400
6400

16 000
6400
6400
6400
6400

19200
13 800

6600
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The energy and pressure are the two thermo-
dynamic quantities we derived from our simulation
data. Other thermodynamic quantities, such as the
specific heat and free energy, can be computed from
these quantities by differentiation or integration.

The reduced energy (E'-E/a) ls shown as a func-
tion of the reduced temperature r = (T —T )/T in
Fig. 2. %e have chosen this reduced temperature
with T~ the temperature at which the elastic constant
E drops suddenly to zero (see Sec. II 0). Tables I
and II show the data for these densities. The uncer-
tainty in the data is shown by the scatter in the
points. At both densities there is a pronounced
change in the shape of the curves at t =0. This im-
plies a rapid increase in the specific heat at the same
temperature as the elastic constant E drops to zero.
There is, ho~ever, another change in the slope of
these curves at a some~hat higher temperature. This
is clear from Fig. 2. For p'=0.856 the second anom-
aly occurs at 1.13T, awhile for p'=0.888 the anom-
aly occurs at 1.06T . The precise position of these
anomalies is difficult to locate. They are considerably
weaker than those at lower temperatures. The pres-
ence of these two anomalies on each isochore implies
that the specific heat will have a fairly sharp max-
imum just above T . The standard analysis of the
KT transition'8 leads to broad peak in the specific
heat above the transition temperature. This disagree-

ment with the theory may be explained by the fact
that the density of defect pairs is rather large just
below T . The pairs also show a strong tendency to
cluster. These points will be discussed in more detail
in Sec. II6. %C note that the behavior of the specif-
ic heat in the two-dimensional Lennard-Jones system
is somewhat- similar to that found in the planar spin
system. "'" In tha» system, also, strong clustering of
defect pairs was observed.

The sharp rise in the energy, and hence specific
heat, as a function of temperature is in qualitative
agreement with a KT transition. It is also in qualita-
tive agreement with a first-order transition. If the
melting transition is first order, then the region
between the two "kinks" in the energy curves could
be interpreted as the two-phase region. As one
passes through T a small amount of liquid phase ap-
pears, causing a change in the shape of the energy
curve, At a higher temperature the last piece of solid
phase disappears and the energy curve again shows
an anomaly. Thus the temperatures at which we ob-
serve the sudden changes in slope mark the bound-
aries of the two-phase region; the lower temperature
corresponds to melting at constant density, the upper
temperature to freezing at constant density. This in-
terpretation can be compared with the data from
Toxvaerd's23 simulation study of freezing and melt-
ing. From this comparison we find that his two-
phase region is about 300k wide in temperature,
whereas our widths are 13'/0 and 4'/0 wide, respective-
ly, on the two isochores. While the discrepancy
between 300/o and 130/0 might bc rcmovcd by im-
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FIG. 2. Reduced energy E =E/a as a function of re-
duced temperature r =(T T~)/T~ Here T~ is the tem-.—
perature at e'hich the elastic constant

hydrops

to zero: 0
corresponds to p =1.143, C3 corresponds to p =0.888, and
1 to p =0.856. Note that the energy scale has been
changed for p 1.146.

-0
I

0.6

FIG. 3. Reduced pressure P"=Po /a as a function of
reduced temperature t = ( T —T~)/T~. The notation on
the three curves ls t1M same as in Fig. 2.
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proved simulations, the discrepancy between 4% and
30% is outside the range of our errors. We thus have
a puzzle. Our data are roughly consistent with a
two-phase interpretation but are not in agreement
quantitatively. There is, however, the possibility that
our simulations may not have reached true equilibri-
um and that we are looking at the boundaries of me-
tastable regions. We shall discuss this suggestion in
detail in Sec. V.

The pressure behaves in the same way as the ener-

gy. The data are shown in Fig. 3. There are no pre-
dictions of the behavior of P as a function of tem-
perature from the KT theory. However, there is no
reason to believe that our data are inconsistent with

the theory. If the transitions were first order than
the region between the two changes in slope arises
because a constant density system will follow the melt-

ing curve in the P- T plane until the density of the
liquid phase equals that of the solid.

We shall see that the data we have obtained on the
high-density Lennard-Jones system may throw some
light on the situation at low densities. These data will

be discussed in Sec. III.

5.0—

3.0-

50 I 00 ~ ~ I5Q
6 ao

200

B. Displacement of the particles

We computed the mean-square displacement (u')
of the particles from their lattice sites for all tempera-
tures in the solid phase and for a few temperatures
just above T . For a large finite system we expect
(u2) to behave like lnN, where N is the number of
particles. This prediction has been verified in the
hard-disc and the one-component plasma system. '
We found that in our 1024-particle system and for
p" =0.888, (u'), in units of o', increased from 0.023
at T'=0.50 to 0.25 at T'=1.05. For this density
T"=1.06. At T', (u2) rose abruptly, showing that
some of the particles were becoming delocalized.
Harmonic theory predicts that (u2) is proportioned
to the temperature. We found this to be true for
temperatures up to T"=0.90. Between this tempera-
ture and T", (u') increased faster than the first
power of the temperature.

The values (u') provide us with direct evidence
that in the solid phase the particles are well localized
and that at T' the particles start to diffuse freely.

FIG. 4. lnS (G) vs G ao, where G is a reciprocal-lattice
vector, ao the lattice spacing, and S(G) the static structure
factor. The density p =0.888. The curves from the top
down correspond to reduced temperatures T = ks T/a equal-
to 0.5, 0.75, 1.025, and 1.06, respectively, Theory predicts
that the slope of these curves is equal to 0.511n4N(r)G/G2).
The exponent qG is defined in the text and N is the number
of particles in the system.

IO-

I.O-

t~
I

tp
CO

O.I-

C. Structure function
O.OI

Q. I I.O

In the low-temperature solid phase, harmonic
theory should provide a reasonable guide to the
behavior of the structure function S(k). In the In-
troduction we summarized the two main predictions,
Eqs. (1.3) and (1.4). In Fig. 4 we show our data for
S (

~
G —

q ~ ) for small
~ q ~

and three different recipro-
cal-lattice vectors G. For each temperature and
reciprocal-lattice vector the slope of the curves of lnS

FIG. S. Structure factor S ((6—q ~) for q near a

reciprocal-lattice vector. The vectors G and q are in units
o- ~. The three curves correspond to different tempera-
tures, densities, and reciprocal-lattice vectors. 0 is for
T =0.5, p" =0.888, and G = (2w/aa, 2rr/+3aa); 5 is for
T =0.63, p"=0.856 and G = (2a/aat 2rr/+3ac); 0 is for
T =7.2, p -1.143 and G = (0, 4rr/+3ac).
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TABLE III. The exponent qG, see Eq. {1.5) for three densities. The third column gives qG cal-

culated from the height of the structure factor at various reciprocal-lattice vectors. The fourth
column gives qG computed directly from the elastic constants. The two sets of values are all con-
sistent with each other within the statistical errors which are about 10% for each method of compu-
tation.

QG
(»0-')

from S(G)

&G
(x 10-3)

from p, +A, % diff

0.63
0.64
0.65
0.66
0.67

0.5
0.75
0.8
0.9
1.025
1.05
1.06

7.0
7.2
7.3
7.4

3.4
3.9
3.6
4.0
4.1

2.0
3.4
3.5
3.5
3.7
5.7
4.3

4.1
4.6
4,5
4.2

4.1
4.2
4.3
44
46

2.3
3.1
3.2
3.8
4.2
4.8
5.3

3.5
3.7
3.8
3.6

+ 19.0
+7.0

+18.0
+ 10.0
+ 11.0

+ 14.0
-9.0
-9.0
+8.0

+ 13.0
—17.0
+21.0

—16.0
—22.0
—17.0
+7.0

vs q is so close to —2 that we cannot extract a reliable
value of qg from the data. This behavior is com-
pletely different from the behavior in three dimen-
sions when S ( ~ G —q ~ ) diverges as a delta function
for small q. Figure 5 shows plots of lnS(G) vs G2.

The data are sufficiently accurate that w'e can now ex-
tract a value of q~ with sn accuracy of about 10%.
These values are given in Table III. They allow us to
make an important consistency test. From qG, ob-
tained from S ( ~

G
~ ), we can easily compute values of

the quantity (3p, + X)/4n p (2p, + X) [see Eq. (1.5)].
We can also compute p, and A. directly28 and hence
obtain values of this quantity in an independent
manner. In Sec. III we will compare the values ob-
tained by these two methods.

At the melting temperature the peaks in the struc-
ture function drop dramatically in value. In the solid
phase, just below T", the value of S(G) for the
smallest reciprocal-lattice vector is about 300. Just
above T the value fluctuates about s mean which is
approximately ten times smaller. Thus S gives a clear
signal that the system has melted.

Throughout the intermediate region the structure
function fluctuates strongly, It takes on values rang-
ing from unity to 100. The mean values computed
over long Monte Carlo runs are in the range 30—50.
These fluctuations suggest that in this region there is

some spatial order which is fluctuating on. long
Monte Carlo time scales. It does not seem possible
to use S(k) values to distinguish between a hexatic
phase snd a two-phase region.

In the disordered fluid phase we find values of
S(k) typical of an isotropic two-dimensional fluid. 3 9

D. Elastic constants

The elastic constants of the solid phase can be
computed directly from the expressions given by
Squire et al. 2' There are two independent Lame
coefficients A. and p, . For s triangular lattice these
can be related to Ci~ and C22..

CI(=C22=2p, +X . (2.1)

The expressions for the elastic constants contain
differences between fairly large quantities. Our data
at low temperatures show quite large fluctuations
leading to statistical errors of about 10'/o. There are
two consistency checks we can apply to our data. The
simplest is to see whether the equality (2.1) is satis-
fied. We find that it is satisfied within our errors.
The second is to compute the exponent q~ from the
elastic constants [Eq. (1.5)] and compare this value
with that obtained from s direct simulation of the
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structure function (see Sec. II C). Again we find
consistency within the statistical fluctuations of our
data. These two tests give us confidence that we are
computing the elastic constants with reasonable accu-
racy (see Table III).

We now turn to a discussion of a key quantity in
the HN theory, the elastic constant E. This is de-
fined in Eq. (1.2). If the melting transition is medi-
ated by the unbinding of dislocation pairs then E
should have the universal temperature dependence
give by Eq. (1.2), and this implies a universal discon-
tinuity of 16m at melting. The elastic constant E is
mainly determined by p, and is comparatively insensi-
tive to A, . This is fortunate because p, shows fluctua-
tions of about 100/0, but those in X are much larger.
The uncertainty in E is only a few percent when T is
much less than T and about 150/0 near T . In Fig. 6
we show plots of E against reduced temperature.
The curves are fits to the data within 10'/0 of T' of
the form suggested by theory [Eq. (1.2)]. As can be
seen, the fits2~ are quite good. The best values for
the parameters in Eq. (1.2) are at p"=0.856,
T'=0.682, v=0.38, and C =0.65, while at
p'=0.888, T~ 1.061, v=0.28, and C =0.45. In
each case the deviation of the fit from the data is of
order unity. If we fix T', then at p'= 0.856, v

changes to 0.31 for T'=0.681 and to 0.43 for

T"=0.683. Thus our data strongly point to v being
less than 0.5 and our two best va1ues of v are very
close to the theoretical value of 0.369. The data
show an extremely rapid drop in E. Since the data
have been shown to fit the theoretical predictions
very well, the magnitude of the discontinuity in E is
also confirmed. The points on the curve at t =0
represent fluctuations in E as we cool the system
through the melting point. We plan to carry out fur-
ther simulations to clarify this behavior. We con-
clude that the low-density Lennard-Jones system
agrees with the melting prediction of the HN theory
very well indeed, The behavior at high densities is
very different and wiB be discussed in Sec. III.

At a first-order phase transformation we also ex-
pect a discontinuity in the elastic constants. Howev-
er, there is no reason to believe that the discontinuity
will have a universal value or that the temperature
dependence just belo~ T will be universal. The
universal behavior of E is a unique prediction of the
HN theory. As long as an elastic continuum descrip-
tion of dislocations and dislocation pairs is adequate,
then one can show that the solid will be unstable to
the creation of free dislocations if E is less than 16m.
Our data confirm this instability. We conclude that
the melting transition, at low densities, is described
very well by the HN theory. It is, of course, possible
that we have superheated the solid and that we are
watching the collapse of a metastable system. 3 %e
defer further discussion of this suggestion to Sec. V.

IOO-

B. Angular correlation function
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FIG. 6. Elastic constant E =4p, (p, +X)/(2p, + X) vs the
reduced temperature s = (T"—T~)/T~. The points marked

with 0 are for a density p = 1.143; those marked with C3 are
for p'=0.888; and those marked 5 are for p'-0.856. The
two lower curves are least-square fits to the data points from

t =0.20 to just below t 0.

In the hexatic phase of the HN theory, the angular
correlation function, defined by Eq. (1.1), shows a

slow-power law decay towards zero:

g6(r) —r

for large r. Here q6 is a temperature-dependent ex-
ponent whose value is predicted to be always less
than —.In the hexatic phase there is thus a remnant

of orientational order. This is to be contrasted with
the behavior of gq(r) in the solid phase, where it
tends asymptotically to a constant. In a normal fluid
phase the angular correlations decay exponentially to
zero. An example of g6(r) is shown in Fig. 7.

On both isochores and for all temperatures below
the melting temperature we find that g6(r) tends
asymptotically to a constant. For example, just below
T', the asymptotic value is approximately 0.35. Per-
fect correlation would be 1.0. In the solid phase the
asymptotic values fluctuate by 1'/0 to 3'/0 during a run
of several thousand passes. The solid at these densi-
ties and temperatures clearly exhibits long-range
orientational order.

At temperatures much greater than T', g6(r) de-
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cays very rapidly to zero. There is clearly a high-
temperature fluid phase in which the angular correla-
tions are rapidly damped out. This occurs at tem-
peratures above 1.4T'. We made successive Monte
Carlo runs, gradually lowering the temperature, and
monitored the behavior of g6(r). Qualitatively, we

found a rapid increase in the range of the correla-
tions. However, large fluctuations in the orientation-
al order were present. We analyzed our data by as-
suming an exponential form for the correlation func-
tion

g6(r) —exp( —r/g6)

and we assumed that g6 was given by

(6- exp(bt2 't')

This is the form suggested by KT theory. Here b is a
constant and t2=(T' T~")/T2. Thus—g6 is expected
to diverge at some unknown temperature T2'. Much
of our data could be reasonably well fitted by these
forms for g6(r) and $6(t). There were, however,
large fluctuations in g6(r) which made the determina-
tion of g6 very difficult. Our best fits suggest that g6
does diverge: we estimate that, for p"=0.888,
T2 =1.26, while for p'=0.856, T2 =0.82. Both of
these values of T2 are significantly higher than the
values of T'. It is this fact which suggests to us that
there is a clearly defined intermediate region between
T' and T2.

For temperatures just above T", g6(r) appears to
decay very slowly across the system and appears to fit
a power law. At somewhat higher temperatures the
decay is more rapid, but still appears to fit a power
law. In all of our simulation runs we found very
large fluctuations over very long Monte Carlo "time"
scales. Our data on g6(r), between T' and T2, can

0.05 0.IO 0.I5 0.20 0.25 030 0.35 0,40 0.45 0.50
r/L

FIG. 7. Angular correlation function g6(r) as a function

of distance. Here L is the length of the side of the box con-
taining the particles. The solid curve represents the general
trend of the data over very long Monte Carlo runs. The
data showed very long-term fluctuations. The x's show the
range of these long-term fluctuations. The curve can be
represented by r & with g=0.3.

be fitted by a power law g6- r . However, the
fluctuations in the data produce the large uncertain-
ties in the value of q6. At T'= 1.11, which is 5%
above T', on the isochore p'=-0.888, we ran a total
of 75000 passes and found F6=0.3 + 0.2 (see Fig. 7).
At higher temperatures q6 is larger and so are the
uncertainties in it. At T'= 1.11 it took about 30000
passes for q6 to pass from its highest to lowest value.
It is for this reason that we doubt that we have ob-
tained equilibrium values for g6(r).

According to the HN theory, q6 cannot exceed-
in the hexatic phase. This is actually a rather more
general result; q6 cannot exceed

4
as long as the dis-1

clinations can be described by a macroscopic elastic
theory. When the exponent exceeds

4
the phase be-1

comes unstable with respect to free disclinations and
transforms into a disordered fluid. Since most of our
values for q6 are larger than

4
there is a serious

problem with the HN interpretation that the inter-
mediate region is a hexatic phase. Either the dis-
clinations cannot be described by a macroscopic elas-
tic. theory, or the intermediate region is not a hexatic
phase. Two difficulties with our simulation should be
pointed out. First, our system of 1024 particles may
not be large enough for us to have reached the
asymptotic region of g6(r). A simulation on a sys-
tem of at least twice the linear size would be useful
to test this hypothesis. Second, the very long time
scale fluctuations lead to large uncertainties in the
results of our analysis. We estimate that we would
need to extend our runs by a factor of 10, at least, to
remove the major part of this uncertainty.

It seems plausible that a two-phase region could
also lead to a very slow decay of g6(r). In such a re-
gion the patches of solid will produce angular correla-
tions which decay towards constant values, while the
fluid regions will have correlations that decay rapidly
to zero. An average of these two kinds of behavior
taken with appropriate weights for the solid and fluid
regions might well produce a power-law decay. The
evidence we have found for a power-law decay is not
adequate to distinguish between a hexatic phase and
a two-phase region. If simulation on a larger system
or with larger runs could more convincingly demon-
strate a power law and produce precise values of q6
close to those predicted by theory, then such a dis-
tinction might be made.

We end with some comments on how our data
might be interpreted if the melting transition is first
order. If the transition is first order, then T2 might
be the temperature where the two-phase region ends.
This gives a two-phase region which has a width in
temperature of 20% of T'. This is smaller than the
width suggested by Toxvaerd, although we should
again point out that we may be looking at the bound-
aries of metastable regions. If T2 is the beginning of
the two-phase region, then near that temperature we
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would expect g6(r) to gradually increase —as more
and more solid forms. We see no evidence for this
behavior, rather we tend to see a very rapid rise in

g6. Unfortunately, this behavior is beset with uncer-
tainties induced by large fluctuations and no definite
conclusion can be drawn.
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F. Topological defects

The phase transitions in the HN theory of melting
are caused by the unbinding of topological defect
pairs. First, dislocation pairs unbind and then, at a
higher temperature, the disclination pairs unbind. A
dislocation in a triangular lattice can be regarded as a
pair of disclinations of opposite disclinicity tightly
bound together. We discuss these matters in detail in

Appendix A. Thus it is important to determine if
these defects are indeed important in the melting
process.

The disclinicity enclosed by any closed circuit in

the lattice can be determined by computing the
change in the bond angle 8, modulo n/3, as the loop
is traversed, If the disclinicity is zero then the
change in 8 will be zero. Otherwise the change in 8
will be an integral multiple of m/3. If we have tightly
bound pairs of disclinations then we must compute
the disclinicity around a loop whose radius is of the
order of a lattice spacing. To do this we must have a
precise definition of the bond angles and thus of the
nearest neighbors. "Such a definition is given by the
Voronoi polygon construction explained in Appendix
A. Once this construction is made, we can carry out
the above procedure for the bond angles associated
with each particle.

However, we show in the Appendix that all that is

necessary is to count the vertices of the Voronoi
polygon associated with each particle. A disclination
of unit positive strength is located at a particle with

five vertices (near neighbors) in its Voronoi polygon.
One with unit negative strength has seven vertices
(neighbors). Disclination of higher strengths are pos-
sible. In our simulations we found only one other
kind, namely, of strength —2.

In the cold solid we find that there are only a small

number of tightly bound disclinations. In Fig. 8 we

show the positions of disclinations for a single config-
urations in a solid with T'= 1.05 and p" =0.888.
This is 1% below the melting temperature. Notice
that even at this temperature the disclinations nearly
all occur in quadruples. Such a quadruple corre-
sponds to a bound pair of dislocations. In a periodic
system such as ours the net disclinicity and the total
Burgers vector must be zero. This is verified in all

our simulations. Note also that there are some clus-
ters of six disclinations. The Burgers vectors for a
dislocation is perpendicular to the vector joining the
two disclinations comprising the dislocation. We find

0 4
4 0

040

40
D 4

4 0
0 040

0 4
0 4

0 40
D 4

FIG. 8. Distribution of disclinations at T =1.05,

p =0.888. A 0 denotes a disclination of unit positive

strength, i.e., a particle with five near neighbors; a 5
denotes a disclination of unit negative strength, i.e., a

particle with seven near neighbors; and a I a disclination

of strength —2 with eight near neighbors. A closely bound

pair {+—) of disclinations is equivalent to a dislocation.
The distribution corresponds, fairly closely, to a set of
bound dislocation pairs. The temperature is just below the
melting temperature for this density.

that these clusters of six disclinations still have a net
zero Burgers vector. We also have a small number
of disclinations of strength —2. These are located at
particles with eight nearest neighbors. These dis-

clinations always appear close to two others of
strength +1.

Two disclination plots for T'=1.11 and p'=0. 888
are shown in Figs. 9 and 10. This temperature is 5%
above melting. The density of disclinations is quite
different in the two pictures; large fluctuations are
possible in the intermediate region between the disor-
dered liquid and solid. The areas where no disclina-
tions are found correspond to regions which appear
well ordered on a plot of particle trajectories. Some
free dislocations (pairs of disclinations not bound to
other pairs) can be seen. This supports the conten-
tion of HN theory that melting is due to the unbind-
ing of dislocation pairs. In Fig. 8 there are some dis-
clinations which are more than two lattice spacings
away from any other disclination. These could be
free disclinations or they could be weakly bound.
According to the HN theory, free disclinations should
not appear until one is close to the second phase
transition. Our analysis of the correlations of angular
order suggests that this occurs at T'=1.26.

At T'= 2.0, where the system is clearly an isotro-
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FIG. 9. Distribution of disclinations for T = 1.11,
p -0.888. This temperature is 5'k above the melting tem-
perature and is in the intermediate region. The density of
disclinations is now so great that we cannot tell whether they
all form bound (+-) pairs. Note also that they ire inho-
mogeneously distributed.

FIG. 11. Distribution of disclinations at T = 2.0 and

p =0.888. At this density and temperature the system ap-
pears to have all the properties of a hot dense fluid. The
disclinations are very dense at this temperature and there
appears to be some free disclinations.
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pic liquid, the disclinations appear as in Fig. 11. Here
the density of defects is so great that it is difficult to
determine whether or not they are free.

%e now estimate the core energy E, for the dislo-
cations near melting. %e can determine the value
for E, by computing the density of defects n in units

of disclinations per particle. The density n should be
a function of temperature given by

In {n)

'oo~ 'I

n —exp ( p, /kz T)—
where p, is the activation energy for an excitation.
From our plots of the defects we see that the basic
excitation consists of a pair of bound dislocations or
equivalently a quadruple of disclinations. Then,
neglecting any core interaction energy, E, for a single
dislocation will be p, /2. We determined N by count-
ing the number of defects for a number of configura-
tions. Plots of in(n) vs 1/T" are shown in Fig. 12.

Da 0

Tml Tm t

O. I50 O, I55 O. I@0 0.6 0.8 I.O l.2
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t Tm

I.4 l.6

FIG. 10. Distribution of disclinations at T 1.11 and

p =0.888. By comparing the figure with Fig. 8, we see that
the number of dislocations and disclinations fluctuates from
configuration to configuration. The notation is the same as
in Fig. 8.

FIG. 12. Logarithm of the number of disclinations per
particle as a function of 1/T . The straight lines are least-
square fits to the points ai lower temperatures. In the text
we showed how the slope of these lines could be used to
determine the energy of a dislocation: 0 for p =1.143, 5
for p =0.888, C for p =0.856.
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At p'=0.856, E, —14T' and at p'=0.888,
E,'= 9T'. We find that just at melting there are
about 50 disclinations for 1024 particles.

However, we should note that the dislocation pairs
are not uniformly distributed. There is a very strong
tendency to cluster. It is clear that the density of
dislocation pairs is so high in some regions that they
cannot be treated as a homogeneous dilute gas of ex-
citations. The basic application of the HN theory
may not be valid just above T . A very similar situa-
tion holds for the planar magnet. '4

The first-order interpretation of melting makes no
predictions regarding the presence of topological de-
fects. However, just above melting, it is plausible
that some free dislocations will appear. The liquid
part of a two-phase region would be expected to show
many such defects, the solid part very few. This is
consistent with our plots of defects.

At the present stage of our analysis of the topologi-
cal defects we cannot make any distinction between a
first-order transition and KT transition. Nor can we
make any distinction between a hexatic phase and a
two-phase region.

G. Particle trajectories

We have plotted the Monte Carlo (MC) trajectories
of the particles in our system for several runs of dif-
ferent duration. Each plot contains the positions of
each particle, usually plotted at 10 times, separated
by consecutive runs of equal duration. The positions
for each particle are connected by straight lines.
From such pictures we may gain some insight into
the nature of each of the phases discussed so far.

In the solid region, at all densities and tempera-
tures, the particles are clearly well localized on their
lattice sites. In the solid just below melting one can
see some evidence for diffusive motion. For exam-
ple, at T'= 1.05, p'= 0.888, which is 1% below melt-

ing, we see the pattern shown in Fig. 13. This figure
contains the particle trajectories for about 18000 MC
passes and contains 10 points separated by 1800
passes.

In the liquid phase, the particle trajectories look
completely disordered for runs of a few thousand
passes. However, even at T'= 3.0 for a run of 200
passes, short-range order is quite apparent, as seen in

Fig, 14. Here we see well-ordered patches with about
10—20 particles each. The patches are randomly
oriented and separated from each other by disordered
boundaries. This order may be responsible for the
large peaks in S(k) and increased structure in g (r)
found in dense 2D liquid systems. "

In the intermediate region we find results such as
those shown in Figs. 15 and 16 which contain the
particle trajectories of two succesive MC runs of
5000 passes at T'=1.11 and p'=0.888. As one can
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FIG. 14. MC trajectories for T = 3.0, p =0.&88. Ten
points for each particle separated by 20 passes. Total passes
200. In the hot disordered fluid order is present on short
MC "time scales. "

FIG. 13. Monte Carlo (MC) trajectories at T =1.05 and

p =0.888. Ten points, separated by 1800 passes, are plotted
for each particle. The total number of passes is 18000. This
temperature is just below melting. The solid appears to be
well ordered with regions of "diffusion. "
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FIG. 15. MC trajectories for T'=1.11, p -0.888.
Twenty points per particle, 250 passes between the points.
Total of 5000 passes.

see, there are two types of regions, solid-like and
liquid-like. Also, we can see that the solid-like region

appears to be growing between Figs. 15 and 16. Thus
there is evidence that the size and shape of the or-
dered region is not fixed over time. If one looks at a
trajectory picture for 50000 passes, the system looks

disordered, implying that the boundaries of the or-
dered regions have moved over large distances. On a
time scale of 200 passes, we obtain the picture shown
in Fig. 17. Here the region which looks disordered
over 5000 passes is on a short time scale much more
ordered with perhaps a few patches of order oriented
in different directions from the large ordered region.

For the same density we show pictures at T'= 1.22
and 1.28 for 2000 passes (Figs. 18 and 19). These
temperatures are above and below T2, the upper
boundary of the intermediate region. We note that at
T'= 1.22 there still is a large ordered region, whereas
at T"=1.28 there appears to be much smaller patches
of order. In Fig. 20, at T'=1.075, 1% above melt-
ing, the disordered region takes up a sizable fraction
of the total area.

The interpretation of these pictures is difficult.
They could be interpreted in terms of two-phase
coexistence as was done by Toxvaerd. ' In this case
wc would cxpcct that thc fract1on of 01'dcrcd rcglon
would decrease with temperature. This is certainly
true if we look only at pictures made from 5000 MC
passes. However, if we decrease the duration over
which we look at the trajectories then we find only
small changes in the fraction of solid present. For
example, compare Fig. 15 at T'= 1.11 with Fig. 18 at
T'= 1.22. In a first-order interpretation we do not
expect the fraction of solid to change as much as it

appears to do at T'= 1.11.
If thc 1ntcrmcd1atc rcg1on ls hcxatic then thc 01'-
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FIG. 16. MC trajectories for T =1.11, p =0.888. This
figure is plotted in the same way as Fig. 15, but the initial

configuration was taken 5000 passes after Fig. 15.

FIG. 17. MC trajectories for T =1.11, p =0.888. Ten
points per particle, 20 passes between the points. Total of
2DO passes. On this very short time scale the. system is com-
paratively well ordered.
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QPP~
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FIG. 18. MC trajectories for r =1.22, p =0.888. Ten
points per particle, 200 passes between the points. Total
number of passes, 2000. At the higher temperature, in the
intermediate region, there are still large "ordered" regions.

FIG. 20. MC trajectories at T"=1.075, p =0,888. Ten
points per particle separated by 500 passes. Total number of
passes, 5000. This temperature is very near melting and we
have considerable order in the system with patches of disor-
der and some diffusive motion.
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FIG. 19. Same MC trajectories as in Fi. 18 but comput-
ed at T =1.28, p =0.888. At this temperature the angular
corrrelations clearly decay to zero and we have little order in

the system.

dered regions could represent critical fluctuations,
since the hexatic phase is a critical region. One must
remember that the total real time of our longest runs
is equivalent to less than 10 sec. In a critical region
we expect regions of all sizes, the largest of which
would last for very long times. We would also expect
large ordered regions at all temperatures within a
hexatic phase, which we do indeed see if we look at
MC runs of different durations.

H. Bond angle configurations

We can construct a representation of a hexatic
phase that allows interesting comparisons with spin
configurations in the magnetic planar model. In Fig.
21 we show the position and orientation of the vec-
tors representing each bond in a single configuration
at T =1.11 and p 0.888. The angle each vector
makes with the x axis is six times the angle deter-
mined by the Voronoi polygon construction which we
used previously to determine the disclinicity at each
particle. As can be seen, there is a general trend for
the vectors to point in one direction. Also, there is
no evidence of two phases, one well ordered and the
other disordered,

To make a comparison with the planar model, we
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FIG. 21. Bond angle field for one configuration at
T =1.11, p =0.888. There is a tendency for the bond an-

gle vectors to point to the right.
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FIG. 22. Bond angle field in Fig. 21 was spatially aver-

aged over a region o && o-, and the average bond angle vec-

tor was then normalized to unity, Again we see a general

alignment to the right.

have constructed Fig. 22. This represents the same
bond angle field in Fig. 21, except that we have aver-
aged over small square regions 0 x o. in size. We
then rescaled to unit vectors and placed the resulting
vectors on a square lattice. In Fig. 23 we show the
spin configuration for the planar model about 10%
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FIG. 23. Typical spin configuration for the planar magnet-

ic model at T' = 0.82(T,' = 0.89). This figure is presented

for comparison with Fig. 22. It was made at a temperature a
little below the transition temperature ~here the system
shows power-law decay for the spin correlations.

belo~ T, generated by molecular dynamics simula-

tions. Figures 22 and 23 look very similar. This is

consistent with a hexatic phase interpretation of the
intermediate region. The bond angle field for a solid

just below the melting temperature also looks similar

to Figs. 21 and 22 since there is little difference
between weakly decaying orientational correlations
and long-range correlations in a finite system.

IH. HIGH-DENSITY LENNARD-JONES SYSTEM

We have also carried out a series of simulations on
the Lennard-Jones system at a reduced density
p'=1.143. This study was carried out for two

reasons. First, HN have suggested that the character
of the melting transition might change as one moves
along the melting curve from low to high densities.
In the Introduction we pointed out that there may be
an "upper" triple point above which the presumed
hexatic phase no longer exists. This is shown in Fig.
l(a). Second, at this much higher density the repul-

sive part of the potential tends to dominate in poten-
tial energy calculations. It thus tends to determine
the configurations that are important in the system.
In effect we are, at this density, studying a system
with a rather different interaction potential. Our
results are as follows.

In the solid phase the behavior of the energy, pres-
sure, and orientational order are very similar to the
behavior on the two low-density isochores. We can

again establish a melting temperature; the elastic con-
stant E again abruptly drops to zero from a relatively

large finite value. This drop occurs at T'= 7.45.
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However, E cannot be fitted by the universal form
suggested by the HN theory, and the discontinuity is
now larger than 16m. This is shown in Fig. 6. At
this transition the behavior of both E' and P' is
quantitatively different from that found earlier. Both
these quantities show a very sharp rise —much
sharper than before. In addition, this is followed by
a second sharp increase in slope at T'= 8.50. This is
shown in Fig. 2. Thus the energy and pressure now
clearly show that there is an intermediate region
between T'= 7.65 and T' = 8.50. At the lower densi-
ties the behavior of the energy and pressure could
also be interpreted in the same way. However, the
width of the region, as a fraction of T' was narrower
and the second anomaly was very much weaker.

The long-range orientational order of the solid
disappears abruptly at the melting temperature, con-
firming our preliminary determination of that point.
In the intermediate region, g6(r) decays exponential-
ly up to r —6—10. For larger r, a slow decay appears
to set in and the function oscillates about zero with
values ranging from +0.06 to —0.06. This behavior
is very different from that found on the low-density
isochores. At this higher density, decay is much fas-
ter and asymptotically the value is close to zero.

The qualitative behavior of the defects is similar to
that found at lower temperatures. However, there is
a quantitative change in the density of dislocations at
T'. It is a factor of 2 larger in the high-density sys-
tem. We computed the core energy from the data
shown in Fig. 11. We find that E, —11k~T. This
value is not very different from the low-temperature
values quoted in Sec. IIF.

At this density we see no evidence to support the
KT theory of melting. The elastic constant E does
not show the expected behavior and the orientational
order shows little evidence for a hexatic phase. The
data we have generated from our simulations is con-
sistent with a first-order melting transition.

Our analysis of the topological defects are not suf-
ficiently detailed to allow us to draw any conclusions.
Dislocations are numerous at T'. They may play an
important role in the melting transition. However,
the density of dislocations is sufficiently great that we
are not really able to say anything about whether they
are unbound or whether the disclinations are unbind-
ing at T'. HN have suggested that a "premature"
unbinding of disclination pairs would lead to a first-
order transition.

The behavior of the high-density Lennard-Jones
system allows us, with the minimum of assumptions,
to predict the melting behavior of both the inverse
12th power potential and the hard-disc system. If we
assume that the qaulitative features of the high-
density transition will be maintained as we increase
the density, then we can conclude that the inverse
12th power potential will lead to the same behavior.
This is because, at sufficiently high densities, the

Lennard-Jones system will be dominated entirely by
the repulsive part of the potential. A system interact-
ing via an inverse 12th power potential is character-
ized by a single thermodynamic variable I'~2= e/ksT
(o./ao). " Here s is the Lennard-Jones strength
parameter, cr the length parameter, and ao the mean
particle spacing. Thus when its properties have been
established at one point (T,A) on the melting curve,
they are known at all other points; the melting curve
is given by I"i2= const. We therefore believe that
this system will show a first-order melting transition
and will not have a hexatic phase.

The hard-disc system should be qualitatively well
described by the inverse 12th power system. It is
therefore expected to show a first-order transition
and no hexatic phase. We shall see in Sec. IV that
this prediction appears to be born out by our simula-
tions.

IV. HARD-DISC SYSTEM

The hard-disc system was one of the first systems
to be studied by molecular dynamics and Monte Car-
lo methods. ' Over a fairly large period of time a con-
siderable amount of data has been collected on it. In
particular the melting transition has been studied
carefully. It is believed to be a first-order transition
with a freezing density p, = p/pa= 0.7611 and a melt-
ing density p, =0.798. Here po is the close-packed
density. ' In Sec. III we gave a plausible argument
that the melting transition in this system would be
very similar to that in the high-density Lennard-
Jones system. Since our data on the high-density
Lennard-Jones system are consistent with a first-
order transition, we expect that our simulations will

confirm the earlier work on the transition.
Our simulations were done on a 1024 hard-disc

system and most of our runs were made near the
melting and freezing transitioris. We computed
S(k), (u2), g6(r), and the disclination density. We
also made plots of the disclination configurations and
the Monte Carlo trajectories. Our results are as fol-
lows.

We find that if we start in the solid phase and de-
crease the density, then (u') suddenly increases at

p, =0.781 and S(k) drops abruptly at p, =0.775.
Both these densities are lower by 2—3% than the ac-
cepted melting density.

The disclination density rises from n =0.05 at

p, = 0.781 to n —0.15 at p, =0.775. This increase is
greater than we observed in the low-density
Lennard-Jones system and suggests that the transi-
tion may be controlled more by the number of de-
fects than their unbinding. Although we also have
some evidence that at melting there are some free
disclinations. At densities well inside the solid phase
the defects appear only as bound pairs of dislocations.
It is worth pointing out that in this system configura-
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FIG. 24. Distribution of disclinations in the hard-disc sys-
tem at the reduced density p, =0.775.

tions only differ in "entropy" content. Hence the
binding of dislocations has to be explained on purely
entropic grounds.

The angular correlation function g6(r) shows
long-range order for all densities above p, = 0.781.
Between p, = 0.781 and p„=0.763, g 6(r) shows a
slow decay across the system. Below p, = 0.763 the
function shows exponential decay. There is thus an
intermediate region between these densities. The
width b, p, = 0.018 is about one-half of that found in

the earlier studies of the hard-disc transition where

Ap, = 0.037. However, we note that the lower densi-

ty at which the intermediate region ends p, =0.763, is
very close to the freezing density p, = 0.761, found in

the earlier work. The discrepancy is almost entirely
confined to the melting density.

In the intermediate region, the particle trajectory
plots show the same behavior as those of the
Lennard-Jones system. There is some evidence that
the boundaries of thc ordered regions do not change
as fast as in the Lennard-Jones system. In the inter-
mediate region there are free dislocations and, in ad-
dition, there are some free disclinations. A typical
plot of the defects is shown in Fig. 24 for p, =0.775.
The presence of free disclinations just above the
melting density suggests that they may have become
unbound just before melting, in which the transition
would be expected to be first order.

The data we have generated on the hard-disc sys-
tem are consistent with it being a first-order transi-
tion. While our freezing density is very close to the
currently accepted value, our melting density differs
from the earlier values by 2—3%.

V. CONCLUSIONS

In the main text of this paper we have summarized
our results for each system which we simulated. We
start this section by giving our overall summary of
our findings. We then turn to a discussion of the
basic difficulties in simulation studies of this type.
Finally, we suggest areas where future work might
yield interesting results.

We feel that our results for both the high-density
Lennard-Jones and the hard-disc systems are con-
sistent with a first-order transition. An alternative
statement would be that there is no feature of these
transitions that suggests that they are driven by the
unbinding of topological defect pairs. Since the Kos-
terlitz and Thouless transition is not expected to be
universally valid in all two-dimensional systems, we
should not be surprised that first-order transitions
can be found in two dimensions. More careful and
extensive simulations on the hard-disc system might
show whether there is a real discrepancy between the
older estimates of the melting density and those
found by our methods. It would also be interesting
to study the behavior of the dislocation pairs in this
system. One would like to understand why they ap-
pear only as bound pairs in a purely entropic system.

We next turn to the low-density Lennard-Jones
system. We believe that our simulation results do
not lead us to a definite conclusion as to the nature
of the melting transition or to whether or not a hex-
atic phase exists. The single set of data that unam-
biguously suggests that the melting transition is of
the Kosterlitz and Thouless type is the behavior of
the elastic constant EC. In Sec. II we displayed our
data and showed that its temperature dependence was
very close to that predicted by the HN theory. In ad-
dition, the discontinuity in E was also very close to
the theoretical prediction of 16m.

We remind our readers that both these statements
are true for both low-density isotherms. Morf' found
the same behavior in the one-component plasma. It
is also worthwhile recalling that our simulations
showed that we had a unique melting point: (u') in-
creased dramatically at T, the peaks in S (k)
dropped dramatically, and the angular correlation
function changed its asymptotic behavior at that tem-
perature. The melting temperatures, as we estimate
them, on these two isotherms are lower than those
given by Toxvaerd. There is clearly a need for fur-
ther work to try to reconcile these different estimates.
Since we have no other strong evidence that the sys-
tem is behaving as the theory predicts, one is tempt-
ed to try to explain away the behavior of K. It has
been suggested that what we are seeing is the "melt-
ing" of a metastable solid. That is to say we have in
our simulations superheated the solid above its true
melting point which, when it becomes sufficiently un-
stable, melts via the Kosterlitz-Thouless mechanism.
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This leads to results that agree with the predicted
behavior for E. While we cannot produce an argu-
ment which completely disposes of this suggestion,
we find it at least somewhat implausible that at two
different densities a metastable solid melts in accor-
dance with the predictions of equilibrium statistical
mechanisms. Moreover, we have some evidence
from our simulations that we may be able to cool into
the so-called metastable region. When we cool into
the solid just below melting we find reasonably well

ordered crystal configurations with small values of
(u'). Moreover, in medium length Monte Carlo
runs the asymptotic value of the angular correlations
does not reach the same value as it had when the
system was heated to the same temperature. We will

investigate whether this result can be changed by
larger runs. If we can "reconstruct" the solid by
cooling, we feel this would be strong evidence against
the idea that our melting transition is that of a meta-
stable solid. We also believe it is worthwhile to carry
out some careful simulations to determine over what

range of melting densities E shows the predicted
behavior. It is especially important to try to deter-
mine whether the temperature dependence of E is
the same on cooling as on heating.

We now turn to a discussion of the intermediate
region we found in our simulations. All our data in

this region can be interpreted as evidence either for it
being a two-phase region or a hexatic phase. We see
nothing conclusive in our data. A basic difficulty in

this region is that we appear to be dealing with a sys-

tem which contains very long relaxation times. This
fact in itself could be explained in either the two-

phase hypothesis or hexatic phase hypothesis. The
hexatic phase in the HN theory is a critical region
with correspondingly long relaxation times. On the
other hand, in a two-phase region we expect slow

changes in time as the two phases change their
boundaries and reform. Our current estimates are
that we need to run simulations at least ten times
longer than our longest runs to obtain better esti-
mates of the relaxation times and perhaps obtain
reasonably accurate equilibrium values for the angu-
lar correlation function and structure function. We
do, however, think it worthwhile to try to compute
the value of the Frank constant in the region. This is

predicted to have a discontinuity at the upper transi-
tion point T2 of 72/n. We have done some work on
this quantity and have found values of approximately
this magnitude. Our data are very preliminary and we
need to do much more work.

A rather different simulation has been suggested.
The idea is to prepare a hexatic phase in the ap-
propriate region of the density temperature plane and
then examine whether it is a stable phase. The phase
can presumably be readily prepared by applying a
field which will bring about angular order without
producing crystalline order. The field can then be re-

moved and a long Monte Carlo run conducted to see
whether the system behaves as predicted by the
theory. This kind of simulation seems to us to be
worthwhile because it can be argued that our inability
to find the hexatic phase is due to the fact that on ei-
ther heating or cooling we rather suddenly pass
through a phase boundary with the consequence that
a homogeneous hexatic phase does not form. A
series of domainlike structures may form which will

obscure the true nature of the phase. The external
field which we apply may enable us to eliminate these
domains and produce a homogeneous phase which
might then be stable over long periods of time. We
have begun some preliminary experiments of this
kind.

We conclude by discussing two questions. Our
simulations are of necessity performed on finite sys-
tems. One must, therefore, ask whether the finite
size of our system is significantly affecting the nature
of the melting phenomenon. We have two com-
ments to make on this question. First, we see in our
simulations direct evidence for the lack of any long-
range positional order which is characteristic of the
behavior of 2D systems. The peaks in the structure
factor in the solid phase behave as theory predicts
and are distinctly different from those in a 3D solid.
In addition, it is well established that in simulations
on systems of the same size as ours, (u') will show
the characteristic 1n(N) dependence in accord with

theory. Thus even small 2D systems show the ex-
pected "large system" behavior. Our second point is
that it is conceivable that the weak order characteris-
tic of 2D systems could in some more subtle way be
altered in a small system, and thus the nature of the
transition could be changed. While this argument
has some appeal, we do not find it very convincing.
This is because the simulated transition in the planar
magnetic model seems to be in good quantitative
agreement with theory. We then have to understand

XO~

FIG. 25. Solid lines represent the boundary of the Voro-
noi polygon. The angles formed by the dashed lines and the
x axis are the bond angles. The angles (g;) are used in the

proof.
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why the finite size has no appreciable effects in that
system but are able to completely alter the nature of
the transition in the 2D solid-fluid system.

Our final question has to do with the "time scales"
of our simulations. These are indeed quite short,
perhaps no longer than 10 ' sec in our long runs. A
Debye time is about 10 "sec, so we are working on
time scales of about 1000 Debye times. Another
comparison is that 10 sec is about ten times longer
than the transit time of a sound wave across our sys-
tem. Since the expected hexatic phase is a critical re-
gion, we must expect it to be dominated by very long
time scales. These two facts suggest that it may be
exceedingly difficult to simulate equilibrium condi-
tions in a hexatic region. We have not at the mo-
ment found a way to explore this problem further.

X8,-2n (Al)

We now define the pi.

P&= 6 X8, mod2m, —ir ~P;~w
lm]

(A2)

The factor of 6 is used to convert the problem from
one where, if 58, = m n /3, then 8,P; = 2n m We. also
define the angles

ai = 8i —21r/z

Then we have, using Eq. (Al):

(A3)

m such that a total change in the bond angles of
m w/3 corresponds to a change in the p, of 2rrm W. e
define the angles 5i as shown in Fig. 25. Clearly
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ai=0

The P; are now given by
1 i

12 12-2z
pi = 6ai+ rr mod2w = 6ai+ m'

z z
i

(A4)

APPENDIX: NEAREST NEIGHBORS, VORONOI

POLYGONS, AND DISCLINATIONS
2m'= 6ai+

z
(A5)

In this Appendix, we define the nearest neighbors
in terms of the Voronoi polygons and show that a
disclination is located at a particle which has a coordi-
nation number z, not equal to six.

A Voronoi polygon is defined as the boundary of a
region enclosing a particle i, such that every point
within that region is closer to particle i than any other
particle. The sides of the Voronoi polygon are the
perpendicular bisectors of the lines joining particle i
with z other particles which we define as the nearest
neighbors of particle i, as shown in Fig. 25. We now
show that a particle with z nearest neighbors is a dis-
clination of strength m =6 —z. At a disclination of
strength m, the bond angle turns by m n /3 in
transversing the circuit containing the bonds associat-
ed with that particle.

To prove this result we convert the bond angles
into a set of angles (p, I with values between —n and

where p, +i=—pi and a,~i=—ai. We sum up the hp,
and obtain

X6p; = 6 X a i+i + 2a m = 2am. (A7)

The last step follows from Eq. (A4). This completes
the proof. A disclination of strength m = 6 —z is lo-
cated at a particle with z neighbors.

2Am
p +i= p + +6a;+i,

z

where by definition from (A2), —m ~ 6a;+i
+ 2m m/z ~ m. Now the change in p; from one angle
to the next is

2s'm
8 pl pi+i pl 6a i+i +
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